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 The present paper is focused on the study of natural convection in a porous square cavity 

saturated by a nanofluid (Al2O3-Water) in the presence of a corrugated heat source. The 

horizontal walls and the hatched parts of the vertical walls are considered adiabatic. The 

corrugated portions of the vertical walls are maintained at uniform and constant 

temperatures. The basic equations describing the natural convection flow consist of mass 

conservation, Darcy-Brinkman and energy were solved by means of finite element method. 

For the physical parameters of (Al2O3-water) nanofluid, we use the Brinkman and Maxwell 

models. The results are presented as isotherms, streamlines, average Nusselt number, 

velocity and temperature profiles for various combinations of Modified Rayleigh number, 

volume fraction of nanoparticles, amplitude and both sources position. It is found that the 

heat transfer increases with the increase of Modified Rayleigh number, volume fraction 

and amplitude. The hot source is at the bottom and the cold source is at the top is the 

optimal position of the two sources to evacuate better the convection heat transfer. 
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1. INTRODUCTION 

 

Natural convection in porous media saturated by a fluid is 

widely studied in the literature. Among these works we 

include Ingham et al. [1-4]. They studied numerically the fluid 

displacement using the Darcy-Forchheimer model. For Da 

10-5, they showed that conduction dominates the heat transfer 

regardless of the Rayleigh number value. Beyond Da≥10-4 the 

convection is attached to the thermal Rayleigh number 

evolution. The boundary layer phenomena in rectangular 

enclosures that contain a porous medium is numerically 

treated by Tong and Subramanian [5], Lauriat et al. [6] 

applying the Darcy-Brinkman model [7]. Mehdaoui et al. [8] 

have developed a comparative study, in the case of free 

convection, between the Darcy-Brinkman model and the 

modified Navier-Stokes equations. From the results obtained, 

they found that the relative error between the two models does 

not exceed 6% except for Ra=1.5x108 (the limit of laminar 

flow). They concluded that the use of the Darcy-Brinkman 

model is preferable for laminar flows. Since energy devices 

sustain a technological progression, they require a good 

cooling. The use of fluids is inadequate, this is due to the value 

of the thermal conductivity of fluids by comparing with solids. 

For a long time, researchers in the field of heat transfer, have 

tried to find new solutions to optimize the performance of 

energy devices through the improvement of heat transfer. In 

1995, Choi and Eastman [9] carried out a study on the 

dispersion of solid nanoparticles in a base liquid to improve 

their thermo-physical properties. This suspension is named 

nanofluid. Khanafer et al. [10] have conducted studies in this 

area, they have shown that the variation of heat transfer is more 

important for nanofluids compared to pure fluids. Among the 

advantages of nanofluids we can adduce: a large specific 

surface area compared with conventional solid-liquid 

suspensions, reduced fouling of nanoparticles for equivalent 

heat transfer and lower pumping power compared to other 

suspensions, therefore a lower expenditure. 

The phenomenon of natural convection in porous media 

saturated by a nanofluid has a various application in 

engineering as, the cooling of electronic components, storage 

of different types of energy, heat exchangers and thermal 

buildings. Many researchers have invested in this field, 

Khanafer et al. have studied the influence of natural 

convection heat transfer in a confined porous medium 

saturated by a nanofluid (Al2O3-water) [11, 12]. The 

simulation of the partial differential equations system is solved 

with the finite volume method. They showed the influence of 

some parameters on the heat transfer such as the volume 

fraction of the nanoparticles, the Darcy and the Rayleigh 

numbers. The propagation of heat in a confined porous 

medium saturated by a nanofluid has simulated by 

Sheikholeslami et al. [13, 14]. They have showed that the 

Nusselt number increases as the Rayleigh number and the 

volume fraction increases. On the other hand, it decreases with 

the increase in the Hartmann number. Revnic et al. [15] have 

considered the effect of the Brownian motion proposed by 

Buongiorno [16]. Many theoretical and experimental works 

have developed in the field of porous medium saturated by a 

nanofluid, we can cite Baïri et al. [17-20]. 

The problem of natural convection in a wavy enclosure 

filled by a porous medium saturated by a nanofluid has 

exploited by many researchers. Shenoy et al. have recently 

simulated the effect of corrugated source in a porous cavity 

saturated by a nanofluid with the finite element method. The 
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results obtained enable to deduce that increasing of 

corrugations numbers decreases the heat transfer [21, 22]. 

Also, amplification of the amplitude of the concave wall 

improves convective heat transfer. Near convex walls, the 

phenomenon reverses. Sheremet et al. have presented a 

numerical analysis of natural convection in a partially heated 

corrugated porous cavity saturated by a nanofluid in the 

presence of a magnetic field [23, 24]. 

This paper studies numerically the phenomenon of natural 

convection in a porous cavity saturated by a nanofluid (Al2O3-

Water) with partially corrugated vertical walls. Several effects 

are taken into consideration such as: the modified Rayleigh 

number, the volume fraction of the nanoparticles, the 

amplitude and the position of corrugated sources. The 

objective of our work is to search the optimal amplitude and 

position of the source in order to find the favorable cooling 

conditions of the electronic components and storage different 

types of energy.  

 

 

2. GEOMETRY AND MATHEMATICAL 

FORMULATION 

 

The physical model is shown in Figure 1. It consists of a 

stationary two-dimensional problem of natural convection in a 

porous enclosure of dimension (LxH) saturated with a 

nanofluid (Al2O3-Water). The hatched part of the vertical 

walls and the two horizontals walls are considered adiabatic. 

The unhatched part of the vertical walls is partially corrugated 

and maintained at constant temperatures. This corrugation is 

traced by the second-order Bézier curve. 

 

 
 

Figure 1. Physical model 

 

The nanofluid is assumed incompressible and the flow is 

laminar. The porous medium and the nanofluid are 

homogeneous and isotropic substances. Thermo-physical 

properties of nanofluid are supposed constant. Also, the base 

fluid and the nanoparticles are in thermal equilibrium and they 

flow at the same velocity. The Boussinesq approximations are 

undertaken to be valid. In the present study, the radiation 

effects, Brownian movement of nanoparticles and chemical 

reactions during flow are neglected. Another important 

hypothesis assumes that the matrix of the porous medium is in 

deformable and in thermal equilibrium with the nanofluid and 

that its diffusion is neglected. 

The dimensional system of equations is written as: 
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Based on the suspension theory, the effective density, the 

heat capacity and the thermal expansion coefficient of a 

nanofluid are defined by the following relationships: 
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The dynamic viscosity and the thermal conductivity are 

calculated respectively from the Brinkman and Maxwell 

models: 
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The thermal diffusivity of the nanofluid is given by: 
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Based upon the previous assumptions and introducing the 

following dimensionless variables: 
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After replacing these last variables (11) in the Eqns. (1-4), 

the dimensionless forms of the governing equations under 

steady state condition are expressed as following: 
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The Rayleigh number, Darcy number, modified Rayleigh 

number, Prandtl number, conductivity and thermal diffusivity 

ratios are defined, respectively, as: 
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Figure 2 shows the dimensionless forms of the boundary 

conditions for the present problem. 

 

 
 

Figure 2. Dimensionless boundaries conditions 

 

We note here that the previous equations are solved in the 

field  of the configuration Figure 2; the boundary of this 

field noted 𝜕𝛺 = 𝛤𝑇 ∪ 𝛤𝐵 ∪ 𝛤𝑊𝑙 ∪ 𝛤𝑊𝑟 ∪ 𝛤0  such as 𝛤𝑇  and 𝛤𝐵  

are respectively the Top and Bottom boundary, 𝛤𝑊𝑙  and 𝛤𝑊𝑟  

are respectively the left and right wavy boundaries, 𝛤0 are the 

remaining borders of the left and right walls as illustrated in 

Figure 2. Table 1 groups the dimensionless boundary 

conditions. 

 

Table 1. The dimensionless forms of the boundary conditions 

 
Boundaries 

conditions 

Thermal 

boundaries 

Hydrodynamic 

boundaries 

ΓT 
𝜕𝑇∗

𝜕𝑦∗
= 0 u*=v*=0 

ΓB 
𝜕𝑇∗

𝜕𝑦∗
= 0 u*=v*=0 

Γ0 
𝜕𝑇∗

𝜕𝑦∗
= 0 u*=v*=0 

Γwr 0 u*=v*=0 

Γwl 1 u*=v*=0 

 

The local and average Nusselt numbers are calculated at the 

wavy walls from the following relations: 
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where,  

n is the normal direction of the wall. 

lw is the length of wavy surface. 

 

 

3. NUMERICAL METHOD 

 

 
 

Figure 3. Isotherms and Streamlines for Ra=106, Da=10-4, 

Pr=0.71 and T*(x, 0) =1: comparison present results (a) with 

the result of Basak el al. [4] (b). 

 

To solve numerically the differential Eqns. (12)-(15) with 

the boundary conditions, we used the discretization of the 
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Galerkin finite element method. The two-dimensional spatial 

domain is divided into triangular elements (non-orthogonal 

mesh) and a Lagrange-quadratic interpolation has been chosen. 

A nonlinear solver has been used and the nonlinear tolerance 

has been set to10-6. 

In order to validate our results, we have used as reference 

some numerical results available in the literature. The first 

validation consists in studying the phenomenon of natural 

convection in a porous square cavity saturated by a fluid 

elaborated by Basak et al. [4]. The results are presented in the 

form of isotherms, streamlines (Figure 3) for Ra=106, Pr=0.71 

and local Nusselt number variation for Ra=106, Pr=10 (Figure 

4). The Figures show an acceptable concordance between our 

numerical results and that of Basak. 

The second validation is a comparison between our results 

and that of Shehzad and Nazari [13] in terms of average 

Nusselt number. During this validation we studied the 

phenomenon of free convection in a porous cavity saturated by 

a nanofluid (Al2O3-Water) the results in Table 2 show a 

concordance between our numerical results and the literature. 

 

 
 

Figure 4. Validation of local Nusselt number with distance 

x* at the bottom wall for Ra=106, Da=10-3, Pr=10 

 

Table 2. Validation of average Nusselt number with different 

Rayleigh number for Da=10-3, Pr=5.83 and φ=10% 

 
Average Nusselt number 

 Present work Shehzad [13] The difference % 

Ra=105 2.25 2.34 3.8% 

Ra=106 7.26 7.70 5.7% 

 

Table 3. Variations of the average Nusselt number of the 

heat source with the non-uniform grids 

 

Number 

of 

elements 
avrNu

 

, ,5192

,

100%
avr i avr

avr i

Nu Nu

Nu
 

700 10.1233 0.69% 

1738 10.1407 0.52% 

5192 10.1932 -------- 

5380 10.1949 0.017% 

5568 10.1962 0.030% 

 

The mesh test is performed in a porous cavity saturated by 

a nanofluid with a partially corrugated wall, we set the 

following parameters at Ra*=104, φ=10%, a=0.1 and h*=0.25. 

Table 3 presents the mesh effect on the average Nusselt 

number at the wavy hot source. 

According to the test performed in Table 3, the optimal 

mesh is around 5192 elements, Figure 5 shows the distribution 

of the optimal mesh chosen in our model. 

 

 
 

Figure 5. Optimal mesh grid 

 

 

4. RESULTS AND DISCUSSION 

 

To describe the structure of the thermal and hydrodynamic 

flow of natural convection in a porous cavity saturated by a 

nanofluid (Al2O3-Water) with partially corrugated wall, the 

following parameters are fixed: Da=10-2, Ԑ= 0.5, A=1, n=1 and 

Rk=1 and the Prandtl number of water is Pr=5.83 [13]. 

Thermophysical properties of the base fluid and the 

nanoparticles are presented in Table 4. 

 

Table 4. Thermophysical properties of water and 

nanoparticles at T=25°C [13] 

 
Physical property Water Nanoparticles 

Cp [J/Kg] 4179 765 

ρ [Kg/m3] 997.1 3960 

k [W/m k] 0.613 40 

 [K-1] 21x10-5 0.85x10-5 

µ [kg/m.s] 8.55x10-4 --------- 

 

4.1 The modified Rayleigh number effect 

 

Figure 6 shows the variation of isotherms and streamlines 

for different values of the modified Rayleigh number Ra* (10; 

102; 103 and 104) and the control parameters: ϕ=2%, a*=0.1, 

h*=0.25. We note that for Ra*=10. (See Figure 6.a), the 

isotherms are almost parallel to the gravitational acceleration 

field (ΔT*┴ �⃗� ) thus giving a pseudo-thermal stratification, 

conduction is the predominant mechanism of heat transfer in 

this study. Increase the modified Rayleigh number (Ra*≥ 102, 

Figures 6.b, 6.c, 6.d), the isotherms deform until the 

temperature gradient becomes parallel to the acceleration field 

of gravity (ΔT*║�⃗�), the convective exchange dominates the 

entire cavity which promotes the rate of heat dissipation. 

We also note that for different Ra* values the thickness of 

the thermal boundary layer close to the corrugated walls 

decreases, the isotherms close to these walls are condensed 

and always remains parallel to the differentially heated walls, 

the conductive exchange is favored. For the distribution of the 

streamlines we note that for different values of Ra*, the 

structure of the flow is represented in a single central cell, the 

intensity of the flow and the force of circulation increases and 

becomes more significant in the whole cavity with the increase 

of Ra* which favors the convective flow regime compared to 
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the conductive regime thus confirming the isothermal results. 

The vortex keeping the same position in the heart of the cavity 

but it expands with the growth of Ra*. Also, when the 

modified Rayleigh number increases, the thickness of the 

hydrodynamic boundary layer shrinks which is clear in the 

important values of the density of the current lines close to the 

corrugated rigid walls. 

 

 

 
 

Figure 6. Isotherms and Streamlines at different modified 

Rayleigh number: (a) Ra*=10, (b) Ra*=102, (c) Ra*=103, (d) 

Ra*=104 

 

Figure 7 shows the variation of the stream function along 

the cavity at y*=0.5 for different modified Rayleigh values. 

We observe that the stream function is almost parabolic. 

Whatever the value of Ra*, the flow intensity near the 

corrugated walls is almost zero (=0) and takes a maximum 

value at the center of the cavity. Beyond Ra*>102; the stream 

function value is maintained constant over a large length 

distance of the cavity, which explains the expansion of the 

central vortex. The evolution of the stream function explains 

the importance of the influence of buoyancy forces on viscous 

forces. The convective flow regime encompasses the entire 

cavity with the increase of Ra*. 

 
 

Figure 7. Variation of the stream function at (0, 0.5) to (1, 

0.5) 

 

 
 

Figure 8. Temperature evolution at (0, 0.5) to (1, 0.5) 

 

Figure 8 illustrates the temperature evolution as a function 

of the cavity length at y*=0.5 for different modified Rayleigh 

values. The figure shows a critical point located in the center 

of the nucleus. There is symmetry with respect to this point. 

At Ra*=10, the temperature variation is almost linear. As the 

modified Rayleigh number increases, the evolution of the 

temperature loses its linearity. Near the hot corrugated wall, 

the increase in the modified Rayleigh number decreases the 

temperature value which confirms the isothermal observations. 

Close to the cold corrugated wall, the phenomenon is reversed. 

 

4.2 The source amplitude effect 

 

In this part we have studied the effect of amplitude a*. For 

this we have varied the hot source amplitude between 0.05-

0.35 when the cold source amplitude is fixed at a*=0.10. The 

two sources are fixed in the middle of the vertical walls.  

Figure 9 represents the evolution of the average Nusselt 

number as a function of the amplitude for different modified 

Rayleigh numbers at ϕ=2%. We can notice dependence 

between the average Nusselt number and the amplitude of the 

hot corrugated wall whose the amplification of the latter 

increases the heat transfer rate from the increase in the wall-
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fluid exchange surface. This amplification takes place in a 

monotonous way. We also observe that increasing the 

modified Rayleigh number increases the value of the average 

Nusselt number. 

 

 
 

Figure 9. Variation of the average Nusselt number with 

various amplitude of hot source at different modified 

Rayleigh number for h*=0.25 and ϕ =2% 

 

 
 

Figure 10. Variation of the vertical component of velocity v* 

at (0, 0.5) to (1, 0.5) for h*=0.25 and ϕ=2%: (a) Ra*=10 (b) 

Ra*=104 

 

The Figure 10, shows the variation of the vertical 

component of velocity v* at y*=0.5 along the width of the 

cavity for two cases (a): Ra*=10 and (b): Ra*=104. The first 

remark is that the velocity increases with the increase of the 

modified Rayleigh number. Thus, we note a deceleration of 

the fluid as the amplitude increases especially for Ra*=104 or 

the convective regime is dominant. This means that the effect 

of adhesion to the wall increases with increasing amplitude 

because the point of the maximum value approaches the 

middle of the cavity. Near the fixed cold wall, the velocity 

remains constant. 

 

4.3 The nanoparticle volume fraction effect 

 

To describe the influence of the volume fraction of 

nanoparticles on heat transfer in a partially wavy cavity, the 

following control parameters are fixed: h*=0.25 and a*= 0.1. 

The variation of Nuavr as a function of the nanoparticles 

volume fraction is illustrated in Figure 11 for different values 

of the modified Rayleigh number. We observe that the average 

Nusselt number (the rate of heat transfer) increases with the 

increase in the volume fraction of the nanoparticles ϕ, which 

means that the thermal conductivity increased, moreover the 

amplification of the modified Rayleigh number Ra* increases 

the buoyancy force thus the average Nusselt number. On the 

other hand the hydrodynamic flow of the fluid becomes slower 

with the increase in the volume fraction of the solid because it 

is strongly attached to the walls this depends on the increase 

in the viscosity of the nanofluid (the hydrodynamic flow 

becomes slower because that it depends on the interactions 

between the layers of the fluid and the effect of adhesion to the 

walls) (see Table 5). 

 

 
 

Figure 11. Variation of the average Nusselt number with the 

volume fraction of the nanoparticles at different modified 

Rayleigh numbers 

 

Table 5. Maximal velocity as function as Modified Rayleigh 

number and volume fraction for nanoparticles 

 
|𝑈|𝑚𝑎𝑥  

ϕ 

Ra* 

ϕ= 

0.00 

ϕ= 

0.02 

ϕ= 

0.04 

ϕ= 

0.06 

ϕ= 

0.08 

ϕ= 

0.10 

10 1.45 1.35 1.26 1.17 1.08 1.00 

102 11.90 11.43 10.93 10.41 9.87 9.32 

103 52.34 51.76 51.04 50.24 49.31 48.27 

104 171.55 170.65 169.37 168.22 166.85 165.12 
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4.4 The effect of the hot and the cold source position 

 

 
 

Figure 12. Temperature and Stream function Distribution at 

different position of hot source: (a) h*=0.5, (b) h*=0.25, (c) 

h*=0 

 

 
 

Figure 13. Temperature and Stream function Distribution at 

different position of cold source: (a) h*=0, (b) h*=0.25, (c) 

h*=0.5 

 

 
 

Figure 14. Maximum stream function value of different 

position; (a) hot source (b) cold source 

 

Figure 12 shows the distribution of isotherms and 

streamlines for different positions of the corrugated hot source 

located on the left vertical wall. The cold source always 

remains fixed at the position h*=0.25, Ra*=103, a*=0.1 and 

ϕ=10%. 

It is noted that the isotherms distribution has the shape 

ensuring a convective transfer mode. There is a zone of the hot 

fluid near the top part of the hot corrugated wall, this zone 

shrinks when the hot source takes the bottom position. This 

means that the bottom position of the hot source ensures good 

heat dissipation by natural convection. The streamlines 

distribution is characterized by a single central cell for 

different positions of the hot source, except that the shape of 

the vortex changes. The convective flow regime remains 

dominant. We also observe that the convective flow becomes 

more and more favorable, when the hot source takes the 

bottom position of the left vertical wall. 

The distribution of isotherms and streamlines for different 

positions of the corrugated cold source is illustrated in the 

Figure 13. The following control parameters are fixed: 

Ra*=103, ϕ=10%, a*= 0.1 and the hot source remains at the 

bottom position h*=0. 

From this distribution we notice that the flow force intensity 

becomes more important as the cold source is moved to the top. 

This favors the convective regime, so the convective heat 

transfer regime is gaining momentum, the buoyancy effect is 

confirmed. See Figure 14. 
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5. CONCLUSION 

 

In this work, we performed a numerical simulation of 

natural convection inside a porous enclosure saturated with 

(Al2O3-water) nanofluid partially wavy. The first results 

obtained indicate that the increase in the number of modified 

Rayleigh ensures that the porous medium becomes more 

permeable, the average Nusselt number and the buoyancy 

force increase. Consequently, the viscous force improves 

which translates acceleration in the molecules of the fluid and 

there after the convective flow is favored. The second results 

show that the amplitude of the corrugated wall influences the 

rate of heat transfer in the porous cavity where it enhances the 

average Nusselt number. Also, the flow velocity of the 

nanofluid in the enclosure decreases. The third results deduced 

from the increase in the volume fraction of nanoparticles 

which implies a decrease in the recirculation rate of nanofluids 

in the cavity and an improvement in the average Nusselt 

number. Finally, to ensure heat dissipation, the optimal 

position of the hot source is presented at the bottom and that 

of the cold source is at the top, this strongly depends on the 

density distribution of the hot and cold fluid (density gradient 

effect). 
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NOMENCLATURE 

 

H Cavity width  

L Cavity height  

A Aspect Ratio, L/H 

w Wavelength of wavy surface 

lw Length of wavy surface 

h Height of the source 

a Corrugated source amplitude 

n Wavelength number  

(x, y) Cartesian coordinates 

(u, v) Components of velocity fields 

T  Temperature 

P  Pressure 

g Gravitational acceleration 

k* Permeability 

k Thermal conductivity 

Rk Thermal conductivity ratio 

R Thermal diffusivity ratio 

Da Darcy number 

Pr Prandlt number  

Ra Rayleigh number 

Ra* 

Nu 

Modified Rayleigh number 

Nusselt number 

 

Greek symbols 

 

 

ρ  

Thermal diffusivity 

Density 

 Thermal expansion coefficient 

Ԑ Ratio of heating element to enclosure width, w/H 

ϕ Nanoparticles volume fraction 

µ Dynamic viscosity 

 Stream function 

(ρ.Cp) Heat capacity 

 

Subscripts 

 

f  Fluid properties 

nf  Nanofluid properties 

s Solid properties 

c  Cold wall 

h  Hot wall  

m Porous medium 

* 

avr 

L 

Dimensionless parameters 

Average 

Local  
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