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 In this paper, analyses of the thermal and thermo diffusion effects on the Heat and Mass 

transfer in a Viscous Fluid over an exponential stretching Surface in the presence of heat 

absorption have been investigated. The two-dimensional boundary-layer equations 

governing the system is obtained in form of partial differential equations by Boussinesq 

approximation and transformed into a system of the ordinary differential equation via 

similarity variables. The resulting equations are then solved, using Homotopy Analysis 

Method and the effect of heat absorption, radiation parameter and other parameters 

encountered are presented graphically and discussed, while the effect of Local skin-

friction, Nusselt and Sherwood numbers are presented numerically. The result shows 

among other results obtained that the effect of Lorentz force on velocity acts against the 

fluid flow, thereby resist the motion of the fluid of which its aftermath reduces the fluid 

velocity while its temperature improves due to the frictional heating generated across the 

boundary layer. 
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1. INTRODUCTION 

 

The dynamics of heat and mass transfer over a stretching 

surface has wide application in many manufacturing industries 

and technological process among which are paper production, 

glass-fiber production, hot metal rolling, plastic sheet and 

drawing of plastic films e.t.c. An early investigation are 

carried out by Sakiadis et al. [1-3] and based on the foregoing 

application, it has attracted the attention of many researchers 

and extensively studied in the literature. Anuar [4] studied 

MHD boundary layer flow due to an exponentially stretching 

sheet with radiation effect. Seini and Makinde [5] buttressed 

the work of Anuar [4] to include chemical reaction which was 

solved numerically using the fourth-order Runge-Kutta 

integration scheme with a modified version New-Raphson 

algorithms. The results obtained agreed with the previous 

work done in the literature where the surface shear stress 

increases with increasing magnetic parameter whilst the 

transfer rate increases with Prandtl number. Other authors like 

Partha et al. [6], Sajid and Hayat [7], Noran et al. [8], Yasir et 

al. [9], Bidin and Nazar [10], Devi et al. [11], Jat and Gopi [12] 

and Chen [13] worked on exponential stretching sheet or 

surface with different conditions and their result agreed with 

other results in the literature.  

In addition to the foregoing contribution of authors, the 

inclusion of porosity term has not been left out. Nagbhoohan 

et al. [14] included porosity term in their investigation while 

studying flow and heat transfer over an exponential gradient 

dependent heat sink and thermal radiation. The magnetic field 

reduces the heat transfer rate, which in turn improves the 

temperature with the boundary layer according to Animasaun 

et al. [15] while investigating the Casson fluid flow with 

variable thermo-physical property along exponentially 

stretching sheet with suction and exponentially decaying 

internal heat generation, using the Homotopy Analysis 

Method. Heat transfer and boundary layer flow past a 

stretching porous wall with temperature gradient dependent 

heat sink was investigated by Singh [16] while Mukhopadhyay 

et al. [17] studied mass transfer over an exponentially 

stretching porous sheet embedded in a stratified medium. Due 

to the destructive chemical reaction, the result shows among 

others that the solute boundary layer becomes thinner and for 

constructive chemical reaction, it becomes thicker. Other 

researchers like; Bhattacharyya and Layek [18], Chauham and 

Onkha [19], Cortell [20] included porosity term in their 

investigation. 

Motivated by the previous work done in the literature, this 

present investigation is to extend the work in Seine and 

Makinde [5] to include thermal and thermo diffusion effects 

on the heat and mass transfer in a viscous fluid over an 

exponentially stretching surface in the presence of heat sink. 

The governing equations are solved analytically using 

Homotopy Analysis Method (HAM) developed by Liao [21, 

22] and the effects of the different parameter on fluid flow are 

discussed numerically and graphically. 

 

 

2. MATHEMATICAL FORMULATION 

 

Consider a steady-state, incompressible two-dimensional 

boundary layer flow with heat and mass transfer of a viscous 

and electrically conducting fluid induced by a stretching 

surface and is placed in a quiescent fluid of the ambient 

temperature 𝑇∞ and concentration 𝐶∞. The variable magnetic 

field B(x) is applied normal to the sheet and the magnetic 

Reynolds number is assumed to be small and so, the induced 

magnetic field is neglected. The reaction rate is taken as R 

while the heat absorption coefficient is Q* (See Figure 1). In 
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view of the assumption mention above and usual Boussinesq’s 

approximation, the geometry and governing equations of this 

present problem can be expressed as: 

 

 
 

Figure 1. Flow configuration and coordinate system 

 

Continuity Equation: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (1) 

 

Momentum Equation: 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= ѵ

𝜕2𝑢

𝜕𝑦2
−

𝜎𝐵2

𝜌
𝑢 (2) 

 

Energy Equation: 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2
−

1

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦
+

ѵ

𝐶𝑝

(
𝜕𝑢

𝜕𝑦
)

2

 

+
𝜎𝐵2

𝜌𝐶𝑝

𝑢2 +
𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝

𝜕2𝐶

𝜕𝑦2
+

𝑄∗(𝑇 − 𝑇∞)

𝜌𝐶𝑝

 

(3) 

 

Concentration equation: 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑚

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑚𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2
− 𝑅(𝐶 − 𝐶∞) (4) 

 

where, u and v respectively denote the velocity components in 

x and y directions, v is the kinematic viscosity, 𝜌 is the fluid 

density, k is the thermal conductivity, Cp is the specific heat at 

constant pressure, Dm is the mass diffusivity coefficient, qr is 

the radiative heat flux, R is the reaction rate parameter, Q* is 

the heat source\absorption coefficient, Tm is the mean fluid 

temperature while T and C respectively denote the fluid 

temperature and concentration. 

The corresponding boundary conditions for this present 

investigation are: 

 

𝑢 = 𝑈𝑤 = 𝑈0𝑒𝑥 𝐿⁄   ,    𝑣 = 0 

𝑇 = 𝑇𝑤 = 𝑇∞ + 𝑇0𝑒𝑥 (2𝐿)⁄  

𝐶 = 𝐶𝑤 = 𝐶∞ + 𝐶0𝑒𝑥 (2𝐿)⁄      𝑎𝑡   𝑦 = 0 

𝑢 → 0,    𝑇 → 𝑇∞,   𝐶 → 𝐶∞ 𝑎𝑠 𝑦 → ∞ 

(5) 

 

Which agreed with Anuar [4] and Seini and Makinde [5]. 

where, T0 and C0 are respectively taken as reference 

temperature and reference concentration while L is the 

reference length. The radiative heat flux is simplified by 

Rosseland approximation as:  

𝑞𝑟 =
−4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
 (6) 

 

where, 𝜎∗ is the sterfan-Boltzmann constant and k* is the mean 

of the absorption coefficient. Following Hossain et al. [23] this 

approximation is valid at points optically far from the 

boundary surface and is good only for intensive absorption for 

an optically thick boundary layer. It is assumed that the 

temperature differences within the flow are such that the term 

T4 can be expressed as a linear function of temperature by 

expanding T4 in a Taylor series about 𝑇∞ as:  

 

𝑇4 = 𝑇∞
4 + 4𝑇∞

3 (𝑇 − 𝑇∞) + 6𝑇∞
2(𝑇 − 𝑇∞)2+. .. (7) 

 

and neglecting the higher-order terms beyond the first degree 

in (𝑇 − 𝑇∞) gives: 

 

𝑇4 ≈ 4𝑇∞
3 𝑇 − 3𝑇∞

4  (8) 

 

The substitution of Eqns. (6) and (8) in Eq. (3) gives: 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= (

𝑘

𝜌𝐶𝑝

+
16𝜎∗𝑇∞

3

3𝑘∗𝜌𝐶𝑝

)
𝜕2𝑇

𝜕𝑦2
+

ѵ

𝐶𝑝

(
𝜕𝑢

𝜕𝑦
)

2

 

+
𝜎𝐵2

𝜌𝐶𝑝

𝑢2 +
𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝

𝜕2𝐶

𝜕𝑦2
+

𝑄0(𝑇 − 𝑇∞)

𝜌𝐶𝑝

 

(9) 

 

Following Seini and Makinde [5], we obtain a similarity 

solution by assuming the variable magnetic field B(x) of the 

form:  

 

𝐵(𝑥) = 𝐵0𝑒𝑥 (2𝐿)⁄  (10) 

 

Here, B0 is the constant magnetic field. The continuity Eq. 

(1) is satisfied automatically by invoking the stream function 

defined by:  

 

𝑢 =
𝜕𝜓

𝜕𝑦
     and     𝑣 = −

𝜕𝜓

𝜕𝑥
 (11) 

 

The similarity equations of the problem are obtained by the 

introduction of the following similarity transformation similar 

to that obtained by Anuar [4]. 

 

𝑢 = 𝑈0𝑒𝑥 𝐿⁄ 𝑓′( 𝜂) 

𝑣 = − (
ѵ𝑈0

2𝐿
)

1 2⁄

𝑒𝑥 (2𝐿)⁄ (𝑓( 𝜂) + ղ𝑓′( 𝜂)) 

𝜂 = (
𝑈0

2ѵ𝐿
)

1 2⁄

𝑦𝑒𝑥 (2𝐿)⁄  

𝑇 = 𝑇∞ + 𝑇0𝑒𝑥 (2𝐿)⁄ 𝜃( 𝜂) 

𝐶 = 𝐶∞ + 𝐶0𝑒𝑥 (2𝐿)⁄ ∅( 𝜂) 

(12) 

 

where,  𝜂  is an independent similarity variable, 𝜃( 𝜂)  and 

∅( 𝜂)  are dimensionless temperature and concentration 

respectively. Apply Eqns. (11) and (12) in (1), (2), and 

Modified Eq.= (9), we have: 

 

𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 − 𝑀𝑓′ = 0 (13) 

 

(1 +
4

3
𝐾) 𝜃′′ + 𝑃𝑟𝑓𝜃′ − 𝑃𝑟𝑓′𝜃 + 𝑃𝑟𝑀𝐸𝑐(𝑓′)2 

+𝑃𝑟𝐸𝑐(𝑓′′)2 + 𝐷𝑢∅′′ + 𝑃𝑟𝑄𝜃 = 0 

(14) 
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∅′′ + 𝑆𝑐𝑓∅′ − 𝑆𝑐𝑓′∅ − 𝑆𝑐𝛽∅ + 𝑆𝑟𝜃′′ = 0 (15) 

 

where, the prime symbol represents derivates with respect to 

𝜂 Which agreed with Seini and Makinde [5], where the prime 

symbol represents differentiation with respect to 𝜂 and 𝑀 =
2𝜎𝐵0

2𝐿 𝜌𝑈0⁄  is the magnetic parameter, 𝐾 = 4𝜎∗𝑇∞
3 𝑘∗𝑘⁄  is 

the radiation parameter, 𝑃𝑟 = ѵ𝜌𝐶𝑝 𝑘⁄  is the prandtl number, 

𝐸𝑐 = 𝑈0
2 𝑇0⁄ 𝐶𝑝 is the Eckert number and 𝑆𝑐 = ѵ 𝐷𝑚⁄  is the 

Schmidtl number, 𝛽 = 2𝐿𝑅 𝑈𝑤⁄  is the reaction rate parameter, 

𝐷𝑢 = 𝐷𝑚𝐾𝑇𝐶0 𝐶𝑠𝑇0𝑘⁄  is the Dufour number and 𝑆𝑟 =
𝑇0𝐾𝑇 𝐶0𝑇𝑚⁄  is the  Soret number and 𝑄 = 𝑄0𝐿2 𝑈0𝜌𝐶𝑝⁄  (see 

Ibrahim [24], Süngü [25] and Hussain et al. [26]). The 

corresponding boundary conditions are as follows [27]: 

 

𝑓′(0) = 1,   𝑓(0) = 0,    𝜃(0) = 1,    ∅(0) = 1 (16) 

 

𝑓′(𝜂) → 0,    𝜃(𝜂) → 0,    ∅(𝜂) → 0   𝑎𝑠   𝜂 → ∞ (17) 

 

 

3. HOMOTOPY ANALYSIS METHOD 

 

The rising of coupled Non-linear differential equations has 

become a culture and usually ineviTable in mathematical 

modeling. They are solved by a different method, among 

which are; Galerkin Weighted Residual Method (GWRM), 

Variation Iteration Method (VIM) and so on. Homotopy 

Analysis Method (HAM), discovered by Liao [22], was 

preferred over another method due to its efficiency in solving 

both Linear and non-linear differential equations.  

Following Farooq et al. [24] and Animasaun et al. [15] in 

agreement with the rule of the solution and boundary 

conditions (16) – (17), we choose the initial guess:  

 

𝑓0(𝜂) = 1 − 𝑒𝑥𝑝(−𝜂),     𝜃0(𝜂) = 𝑒𝑥𝑝(−𝜂), 
∅0(𝜂) = 𝑒𝑥𝑝(−𝜂) 

(18) 

 

as the initial linear approximations of 𝑓(𝜂), 𝜃(𝜂) and  ∅(𝜂). 

The auxiliary linear operations 𝐿𝑓 , 𝐿𝜃 , and 𝐿∅ are  

 

𝐿𝑓[𝑓(𝜂; 𝑟)] =
𝜕3𝑓(𝜂; 𝑟)

𝜕𝜂3
−

𝜕𝑓(𝜂; 𝑟)

∂𝜂
 (19) 

 

𝐿𝜃[𝜃(𝜂; 𝑟)] =
𝜕2𝜃(𝜂; 𝑟)

𝜕𝜂2
− 𝜃(𝜂; 𝑟) (20) 

 

𝐿∅[(𝜂; 𝑟)] =
𝜕2∅(𝜂; 𝑟)

𝜕𝜂2
− ∅(𝜂; 𝑟) (21) 

 

agreed with the following properties: 

 

𝐿𝑓[𝐶1 + 𝐶2 𝑒𝑥𝑝(𝜂) + 𝐶3 𝑒𝑥𝑝(−𝜂)] = 0 (22) 

 

𝐿𝜃[𝐶4 + 𝐶5 𝑒𝑥𝑝(−𝜂)] = 0 (23) 

 

𝐿∅[𝐶6 + 𝐶7 𝑒𝑥𝑝(−𝜂)] = 0 (24) 

 

where, 𝐶1, 𝐶2, . . . , 𝐶7 are constants. 

 

3.1 Zero order deformation problem 

 

(1 − 𝑟)𝐿𝑓[𝑓(𝜂; 𝑟) − 𝑓0(𝜂)] 

= 𝑟ℏ𝑓𝐻𝑓(𝜂)𝑁𝑓[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟), ∅(𝜂; 𝑟)] 
(25) 

(1 − 𝑟)𝐿𝜃[𝑓(𝜂; 𝑟) − 𝜃0(𝜂)] 
= 𝑟ℏ𝜃𝐻𝜃(𝜂)𝑁𝜃[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟)] 

(26) 

 
(1 − 𝑟)𝐿∅[𝑓(𝜂; 𝑟) − ∅0(𝜂)] 

= 𝑟ℏ∅𝐻∅(𝜂)𝑁∅[𝑓(𝜂; 𝑟), ∅(𝜂; 𝑟)] 
(27) 

 

Here, ℏ ≠ 0 and 𝐻 ≠ 0 denote the auxiliary functions and 

𝑟 ∈ [0,1] is the embedded parameter, satisfying the following 

boundary conditions. 

 
𝜕𝑓(𝜂; 𝑟)

∂𝜂
│𝜂=0 = 1,   𝑓(𝜂 = 0; 𝑟) = 0,    𝜃(0; 𝑟) = 1, 

∅(𝜂 = 0; 𝑟) = 1 

(28) 

 
𝜕𝑓(𝜂; 𝑟)

∂𝜂
│𝜂→∞ = 0, 𝜃(𝜂 → ∞; 𝑟) = 0 

= ∅(𝜂 → ∞; 𝑟) 

(29) 

 

The nonlinear operator (25)-(27) followed and defined as: 

 

𝜕3𝑓(𝜂; 𝑟)

𝜕𝜂3
+ 𝑓(𝜂; 𝑟)

𝜕2𝑓(𝜂; 𝑟)

𝜕𝜂2
− 2 (

𝜕𝑓(𝜂; 𝑟)

∂𝜂
)

2

 

−𝑀
𝜕𝑓(𝜂; 𝑟)

∂𝜂
 

(30) 

 

[1 +
4

3
𝐾]

𝜕2𝜃(𝜂; 𝑟)

𝜕𝜂2
+ 𝑃𝑟𝑓(𝜂; 𝑟)

𝜕𝜃(𝜂; 𝑟)

∂𝜂
 

−𝑃𝑟𝜃(𝜂; 𝑟)
𝜕𝑓(𝜂; 𝑟)

∂𝜂
+ 𝑃𝑟𝑀𝐸𝑐 (

𝜕𝑓(𝜂; 𝑟)

∂𝜂
)

2

 

+𝑃𝑟𝐸𝑐 (
𝜕2𝑓(𝜂; 𝑟)

𝜕𝜂2
)

2

+ 𝐷𝑢
𝜕2∅(𝜂; 𝑟)

𝜕𝜂2
 

+𝑃𝑟𝑄𝜃(𝜂; 𝑟) = 0 

(31) 

 

𝜕2∅(𝜂; 𝑟)

𝜕𝜂2
+ 𝑆𝑐𝑓(𝜂; 𝑟)

𝜕∅(𝜂; 𝑟)

∂𝜂

− 𝑆𝑐∅(𝜂; 𝑟)
𝜕𝑓(𝜂; 𝑟)

∂𝜂
 

+𝑆𝑐𝛽∅(𝜂; 𝑟) + 𝑆𝑟
𝜕2𝜃(𝜂; 𝑟)

𝜕𝜂2
= 0 

(32) 

 

where, 𝑟𝜖[0,1]  is the same as the embedding parameter 

defined above. Putting 𝑟 = 0 and 𝑟 = 1, we respectively have 

the following solution from Eqns. (25)-(27). 

 

𝐿𝑓[𝑓(𝜂; 0) − 𝑓0(𝜂)] = 0,   𝐿𝜃[𝜃(𝜂; 0) − 𝜃0(𝜂)]  = 0, 

𝐿∅[∅(𝜂; 0) − ∅0(𝜂)] = 0 
(33) 

 

𝑓(𝜂; 0) = 𝑓0(𝜂),   𝜃(𝜂; 0) = 𝜃0(𝜂), 
∅(𝜂; 0) = ∅0(𝜂) 

(34) 

 

with 

 
𝜕𝑓(𝜂; 0)

∂𝜂
│𝜂=0 = 1,   𝑓(𝜂 = 0; 0) = 0, 

𝜃(𝜂 = 0; 0) = 1,    ∅(ղ = 0; 0) = 1 

(35) 

  
𝜕𝑓(𝜂; 0)

∂𝜂
│𝜂→∞ = 0,   𝜃(𝜂 → ∞; 0) = 0 

= ∅(𝜂 → ∞; 0) 

(36) 

 

353



 

and  

 

0 = 𝑁𝑓[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟), ∅(𝜂; 𝑟)], 

0 = 𝑁𝜃[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟)], 
0 = 𝑁∅[𝑓(𝜂; 𝑟), ∅(𝜂; 𝑟)] 

(37) 

 

But 

 

ℏ𝑓𝐻𝑓(𝜂) ≠ 0, ℏ𝜃𝐻𝜃(𝜂) ≠ 0 𝑎𝑛𝑑 ℏ∅𝐻∅(𝜂) ≠ 0 

𝑓(𝜂; 1) = 𝑓(𝜂),   𝜃(𝜂; 1) = 𝜃(𝜂),    ∅(𝜂; 1) = ∅(𝜂) 
(38) 

 

with 

 
𝜕𝑓(𝜂; 1)

∂𝜂
│𝜂=0 = 1,   𝑓(𝜂 = 0; 1) = 0, 

𝜃(𝜂 = 0; 1) = 1,    ∅(𝜂 = 0; 1) = 1 

(39) 

 
𝜕𝑓(𝜂; 1)

∂𝜂
│𝜂→∞ = 0,   𝜃(𝜂 → ∞; 1) = 0 

= ∅(𝜂 → ∞; 1) 

(40) 

 

3.2 Mth-order deformation problem 

 

The increase in embedding parameter 𝑟 from Zero (0) to 

One (1), lead to a variation of the function 𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟) 

and ∅(𝜂; 𝑟) from initial guess 𝑓0(𝜂), 𝜃0(𝜂) 𝑎𝑛𝑑 ∅0(𝜂) to the 

solutions 𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟)  and  ∅(𝜂; 𝑟) . Using Taylor series 

with respect to r, we have: 

 

𝑓(𝜂; 𝑟) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)𝑟𝑚

∞

𝑚=1

 (41) 

 

𝜃(𝜂; 𝑟) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)𝑟𝑚

∞

𝑚=1

 (42) 

 

∅(𝜂; 𝑟) = ∅0(𝜂) + ∑ ∅𝑚(𝜂)𝑟𝑚

∞

𝑚=1

 (43) 

 

where,  

 

𝑓𝑚(𝜂) =
1

𝑚!

𝜕𝑚𝑓(𝜂; 𝑟)

𝜕𝜂𝑚
│𝑟=0,   𝑓𝑚(𝜂)

=
1

𝑚!

𝜕𝑚𝜃(𝜂; 𝑟)

𝜕𝜃𝑚
│𝑟=0, 

𝑓𝑚(𝜂) =
1

𝑚!

𝜕𝑚∅(𝜂; 𝑟)

𝜕∅𝑚
│𝑟=0 

 

 

Here, the convergence depends on ℏ𝑓, ℏ𝜃 and ℏ∅. However, 

by appropriately choosing ℏ𝑓, ℏ𝜃 and ℏ∅, the series (41)-(43) 

converge for r=1 (See Hayat [28], Akinbo and Olajuwon [29]) 

and so 

 

𝑓(𝜂) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)𝑟𝑚

∞

𝑚=1

 (44) 

 

𝜃(𝜂) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)𝑟𝑚

∞

𝑚=1

 (45) 

 

∅(𝜂) = ∅0(𝜂) + ∑ ∅𝑚(𝜂)𝑟𝑚

∞

𝑚=1

 (46) 

 

For the mth-order deformation, we take the derivative of 

zeroth-order deformation of Eqns. (25)-(27) mtimes with 

respect to r, dividing by m! and set r=0 we have: 

 

𝐿𝑓[𝑓𝑚(𝜂) − 𝜒𝑚𝑓𝑚−1(𝜂)] = ℏ𝑅𝑚
𝑓 (𝜂) (47) 

 

𝐿𝜃[𝜃𝑚(𝜂) − 𝜒𝑚𝜃𝑚−1(𝜂)] = ℏ𝑅𝑚
𝜃 (𝜂) (48) 

 

𝐿∅[∅𝑚(𝜂) − 𝜒𝑚∅𝑚−1(𝜂)] = ℏ𝑅𝑚
∅ (𝜂) (49) 

 

having the following boundary conditions. 

 
𝜕𝑓𝑚(𝜂 = 0; 𝑟 = 0)

∂𝜂
= 0,   𝑓𝑚(𝜂 = 0; 𝑟 = 0) = 0, 

𝜃𝑚(𝜂 = 0; 𝑟 = 0) = 0,   ∅𝑚(𝜂 = 0; 𝑟 = 0) = 0 

(50) 

 
𝜕𝑓𝑚(𝜂 = 0; 𝑟 = 0)

∂𝜂
│𝜂→∞ = 0,   𝜃𝑚(𝜂 → ∞; 𝑟) = 0 

= ∅𝑚(𝜂 → ∞; 𝑟) 

(51) 

 

where, 

 

𝑅𝑚
𝑓 (𝜂) =

𝑑3𝑓𝑚−1(𝜂)

𝑑𝜂3
+ ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2
 

−2 ∑
𝑑𝑓𝑛(𝜂)

d𝜂

𝑚−1

𝑛=0

𝑑𝑓𝑚−1−𝑛(𝜂)

d𝜂
− 𝑀

𝑑𝑓𝑚−1(𝜂)

d𝜂
 

(52) 

 

𝑅𝑚
𝜃 (𝜂) = [1 +

4

3
𝐾]

𝑑2𝜃𝑚−1(𝜂)

𝑑𝜂2

+ 𝑃𝑟 ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑𝜃𝑚−1−𝑛(𝜂)

𝑑𝜂

− 𝑃𝑟 ∑ 𝜃𝑛(𝜂)

𝑚−1

𝑛=0

𝑑𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂

+ 𝑃𝑟𝑀𝐸𝑐 ∑
𝑑𝑓𝑛(𝜂)

d𝜂

𝑚−1

𝑛=0

𝑑𝑓𝑚−1−𝑛(𝜂)

d𝜂

+ 𝑃𝑟𝐸𝑐 ∑
𝑑2𝑓𝑛(𝜂)

𝑑𝜂2

𝑚−1

𝑛=0

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2

+ 𝐷𝑢
𝑑2∅𝑚−1(𝜂)

𝑑𝜂2
+ 𝑃𝑟𝑄𝜃𝑚−1(𝜂) 

(53) 

 

𝑅𝑚
∅ (𝜂) =

𝑑2∅𝑚−1(𝜂)

𝑑𝜂2
+ 𝑆𝑐 ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑∅𝑚−1−𝑛(𝜂)

𝑑𝜂
 

−𝑆𝑐 ∑ ∅𝑛(𝜂)

𝑚−1

𝑛=0

𝑑𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂
− 𝑆𝑐𝛽∅𝑚−1(𝜂) 

+𝑆𝑟
𝑑2𝜃𝑚−1(𝜂)

𝑑𝜂2
 

(54) 

 

and  

 

𝜒𝑚 = 0   𝑓𝑜𝑟   𝑚 ≤ 1 

𝜒𝑚 = 1   𝑓𝑜𝑟   𝑚 > 1 
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having the following as a general solution. 

 

𝑓𝑚(𝜂) = 𝑓𝑚
∗ (𝜂) + 𝐶1 + 𝐶2 𝑒𝑥𝑝(−𝜂) + 𝐶3 𝑒𝑥𝑝(𝜂) (55) 

 

𝜃𝑚(𝜂) = 𝜃𝑚
∗ (𝜂) + 𝐶4 + 𝐶5 𝑒𝑥𝑝(𝜂) (56) 

 

∅𝑚(𝜂) = ∅𝑚
∗ (𝜂) + 𝐶6 + 𝐶7 𝑒𝑥𝑝(𝜂) (57) 

 

where, 𝑓𝑚
∗ (ղ), 𝜃𝑚

∗ (ղ) and ∅𝑚
∗ (ղ)  represent the particular 

solution of Eqns. (47)-(49). In agreement with Akinbo and 

Olajuwon [29], we consider the rule of coefficient ergodicity 

and rule of solution existence and choose the auxiliary 

functions as:  

 

𝐻𝑓 = 𝐻𝜃 = 𝐻∅ = 1  

 

3.3 Convergence of the HAM solution 

 

Following Liao [21, 22], the convergence of the series for 

HAM strongly depends on non-zero auxiliary parameters ℏ𝑓, 

ℏ𝜃 and ℏ∅ which helps in controlling the convergence region 

of the series solution. However, the admissible range values of  

ℏ𝑓 , ℏ𝜃 and  ℏ∅ are obtained by the 10th-order approximation 

of the HAM at M=1, 𝐷𝑢 = 0.1, 𝛽 = 1,  

𝐸𝑐 = 0.1, 𝑆𝑟 = 0.1, 𝑃𝑟 = 0.72, 𝑆𝑐 = 0.24, 𝐾 = 0.1, 𝑄 =
−0.5 at the range where ℏ − 𝑐𝑢𝑟𝑣𝑒 becomes parallel which 

gives −1.6 ≤ ℏ𝑓 ≤ −0.4, −1.7 ≤ ℏ𝜃 ≤ −0.2  and −1.2 ≤

ℏ∅ ≤  −0.3 for ℏ𝑓 , ℏ𝜃  and  ℏ∅  respectively as shown in 

Figures 2-4 below. 

 

 
 

Figure 2. ℏ𝑓-curve of 𝑓′′(0) at 10th order approximation 

 

 
 

Figure 3. ℏ𝜃-curve of 𝜃′(0) at 10th order approximation 

 
 

Figure 4. ℏ𝑓-curve of ∅′(0) at 10th order approximation 

 

 

4. VALIDATION OF THE STUDY 

 

Here, we first ensure the successful implementation of the 

numerical result by comparing it with the previous work done. 

So, these present results are compared to those obtained by 

Seini and Makinde [5] for the local skin-friction.  

Nusselt Number and Sherwood number by setting the 

extension over Seini and Makinde [5] results to zero, such as 

𝑄 = 0, 𝐷𝑢 = 0, 𝑆𝑟 = 0.  The results strongly agreed with 

each other (see Table 1). 

 

 

5. DISCUSSION OF RESULTS 

 

In order to gain a physical understanding of the present 

problem, Eqns. (13)-(15) with the boundary conditions (16) 

and (17) have been solved using Homotopy Analysis Method 

(HAM) at 20th –order due to the unbounded domain, in order 

to meet the far-field boundary conditions. The behaviors of a 

various parameter such as; Magnetic Parameter (M), Radiation 

parameter (K), Dufour Number (Du) , Prandtl Number (Pr) 

Schmidt Number (Sc), Soret Number (Sr), Heat Absorption 

Parameter (Q), Eckert Number (Ec), and Reaction rate 

parameter (𝛽)  on Velocity, Temperature, Concentration is 

presented graphically while the Local Skin-friction, Nusselt 

Number and Sherwood number were presented numerically in 

a tabular form. 

During the computational analysis of the results, we hold 

𝑀 = 1, 𝐷𝑢 = 0.1, 𝑆𝑟 = 0.1, 𝛽 = 1, 𝑃𝑟 = 0.72, 𝑆𝑐 =
0.24, 𝑄 = −0.5, 𝐾 = 0.1, 𝐸𝑐 = 0.1 constant and vary each 

parameter as shown in the figures below. 

Figures 5-7 respectively presents the influence of the 

magnetic parameter (M) on velocity and temperature profile. 

It can be seen from Figure 1 that velocity distribution across 

the boundary layer decreases as the magnetic parameter 

increases. This result strongly agreed with the expectation 

because of the application of the magnetic field, an electrically 

conducting fluid that produces resistive force, called Lorentz 

force, which resist the motion of fluid flow within the 

boundary layer. The effect of Lorentz force causes frictional 

heating thereby results on the increase in fluid temperature and 

consequently boosts thermal layer thickness. It is interesting 

to note that the presence of (M) enhances the local skin-

friction (see Table 2), which magnifies the shear stress and 

accelerates the flow. 
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Table 1. Comparison of the present result with Seini and Makinde [5] 

 
 Seini and Makinde [5] Present Results 

𝐾     𝑀      𝑃𝑟     𝑆𝑐      𝐸𝑐  𝛽 −𝑓′′(0)         −𝜃′(0)        −∅′(0) −𝑓′′(0)         −𝜃′(0)      −∅′(0) 

0      1    0.72   0.24   1    1 

0.1   1    0.72   0.62   1    1    

0.5   1    0.72   0.78   1    1    

0.1   2    0.72   0.24   1    1    

0.1   5    0.72   0.24   1    1    

0.1  10   0.72   0.24   1    1    

0.1   1    2.14   0.24   1    1    

0.1   1    5.71   0.24   1    1    

0.1   1    7.10   0.24   1    1    

0.1   1    0.72    1       1    1    

0.1   1    0.72    2       1    1    

0.1   1    0.72   2.64   1    1    

0.1   1    0.72   0.24   1    1    

0.1   1    0.72   0.24   2    1    

0.1   1    0.72   0.24   3    1    

0.1   1    2.14   0.24   1    1    

0.1   1    2.14   0.24   1    2    

0.1   1    2.14   0.24   1    3    

1.629178   -0.006338     0.561835     

1.629178    0.0069647   0.561835     

1.629178    0.0357547   0.561835     

1.912620   -0.276418     0.554247     

2.581130   -0.874464     0.541547     

3.415289   -1.536591     0.531405     

1.629178   -0.268846     0.561835     

1.629178   -1.153452     0.561835     

1.629178   -1.499348     0.561835     

1.629178    0.0069647   1.399541     

1.629178    0.0069647   2.394415                                                  

1.629178    0.0069647   3.027351    

1.629178   -0.006338     0.561835     

1.629178   -0.598521     0.561835     

1.629178   -1.204006     0.561835     

1.629178   -0.006338     0.561835     

1.629178    0.0069647   0.754006     

1.629178    0.0069647   0.903556     

1.629176   -0.006335     0.561834 

1.629176    0.0069639   0.561834 

1.629176    0.0357538   0.561834 

1.912618   -0.276417     0.554245 

2.581129   -0.874462     0.541545 

3.415286   -1.536590     0.531406 

1.629176   -0.268845     0.561834 

1.629176   -1.153450     0.561834 

1.629176   -1.499346     0.561834 

1.629176    0.0069645   1.399540 

1.629176    0.0069645   2.394413                                                                                                       

1.629176    0.0069645   3.027348 

1.629176   -0.006335     0.561834 

1.629176   -0.598518     0.561834 

1.629176   -1.204005     0.561834 

1.629176   -0.006335     0.561829 

1.629176    0.0069645   0.754005 

1.629176    0.0069645   0.903555 

 

Table 2. Numerical values of the skin-friction coefficient, Local Nusselt number, and Local Sherwood number  

 
𝑴     𝑫𝒖    𝜷    𝑬𝒄     𝑺𝒓    𝑷𝒓     𝑺𝒄      𝑲      𝑸  | 𝒇′′(𝟎)|       −𝜽′(𝟎)       −∅′(𝟎)     

0.1     0.1    1.0    1.0     0.1    0.72    0.24     0.1   -0.5 

1.0     0.1    1.0    1.0     0.1    0.72    0.24     0.1   -0.5 

2.0     0.1    1.0    1.0     0.1    0.72    0.24     0.1   -0.5 

1.321014      0.867495      0.596126 

1.629166      0.807374      0.580850 

1.911950      0.759047     0.570446 

0.1     0.1    1.0    1.0     0.1    0.72    0.24     0.1   -0.5 

0.1     1.0    1.0    1.0     0.1    0.72    0.24     0.1   -0.5 

0.1     3.0    1.0    1.0     0.1    0.72    0.24     0.1   -0.5 

1.321014      0.867495     0.596126 

1.629168      0.588359     0.598172 

1.629175      0.400612     0.611727 

0.1     0.1    1.0    1.0     0.1    0.72    0.24     0.1   -0.5 

0.1     0.1    2.0    1.0     0.1    0.72    0.24     0.1   -0.5 

0.1     0.1    3.0    1.0     0.1    0.72    0.24     0.1   -0.5 

1.321014      0.867495      0.596126 

1.629166      0.807374     0.770520 

1.629166      0.807374     0.918517 

0.1     0.1    1.0    0.1     0.1    0.72    0.24     0.1   -0.5 

0.1     0.1    1.0    2.0     0.1    0.72    0.24     0.1   -0.5 

0.1     0.1    1.0    4.0     0.1    0.72    0.24     0.1   -0.5 

1.321014      0.867495      0.596126 

1.629169   −0.185165     0.672935 

1.629176   −1.229960     0.769869 

0.1     0.1    1.0    1.0     0.1    0.72    0.24     0.1   -0.5 

0.1     0.1    1.0    1.0     1.0    0.72    0.24     0.1   -0.5 

0.1     0.1    1.0    1.0     3.0    0.72    0.24     0.1   -0.5 

1.321014       0.867495     0.596126 

1.629165      0.807376     0.135762 

1.629171      0.807373   −0.853330 

0.1     0.1    1.0    1.0     0.1    0.72    0.24     0.1   -0.5 

0.1     0.1    1.0    1.0     0.1    2.72    0.24     0.1   -0.5 

0.1     0.1    1.0    1.0     0.1    5.72    0.24     0.1   -0.5 

1.321014      0.867495      0.596126 

1.629176      1.691727     0.502943 

1.629178      2.505181     0.426397 

0.1     0.1    1.0    1.0     0.1    0.72    0.24     0.1   -0.5 

0.1     0.1    1.0    1.0     0.1    0.72    0.62     0.1   -0.5 

0.1     0.1    1.0    1.0     0.1    0.72    0.78     0.1   -0.5 

1.321014      0.867495      0.596126 

1.629167      0.807374     1.033785 

1.629167      0.807374     1.182428 

0.1     0.1    1.0    1.0     0.1    0.72    0.24     0.1   -0.5 

0.1     0.1    1.0    1.0     0.1    0.72    0.24     0.4   -0.5 

0.1     0.1    1.0    1.0     0.1    0.72    0.24     0.8   -0.5 

1.321014      0.867495      0.596126 

1.629166      0.686861     0.590543 

1.629168      0.583081     0.598572 

0.1     0.1    1.0    1.0     0.1    0.72    0.24     0.1     0 

0.1     0.1    1.0    1.0     0.1    0.72    0.24     0.1    0.3 

0.1     0.1    1.0    1.0     0.1    0.72    0.24     0.1    0.8 

1.629169      0.523507     0.602007 

1.629175  − 0.209857    0.635294 

1.629177   −3.483415     0.728654 

 

 
 

Figure 5. Velocity profiles for different M 

 
 

Figure 6. Temperature profiles for different values of M 
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Figure 7 depicts the effect of Prandtl number (Pr) which 

ranges from 0.72(Air) to 7.1(Water) on the temperature profile. 

The temperature distribution within the boundary layer falls 

for larges of Pr, which in turn declines the thickness of the 

thermal boundary layer. This reveals that smaller values of Pr 

possess high thermal conductivity and cause the heat to diffuse 

away quickly from the surface than higher values. It is 

noteworthy that the presence of 𝑃𝑟 > 0 enhances the Nusselt 

number, which in turns improves the rate of heat transfer (see 

Table 2).  

 

 
 

Figure 7. Temperature profiles for different values of Pr 

 

 
 

Figure 8. Concentration profiles for different values of Sc  

 

Figure 8 illustrates the behavior of Schmidt Number (Sc) on 

concentration profile, which ranges from 0.24 (H2), 0.62(H2O), 

0.78(NH3) and 2.62 (C9H12) (See Akinbo and Olajuwon [30]). 

Large values of (Sc) due to low molecular diffusivity 

compresses the concentration of fluid of which its aftermath 

declines the concentration layer thickness. Furthermore, the 

presence of (𝑆𝑐 > 0)  enhances the Sherwood number that 

consequently strengthens the rate of mass transfer. (see Table 

2) 

Figure 9 shows the behavior of the Eckert number (Ec) on 

the temperature profile. Eckert number expresses the 

relationship between a flow’s kinetic energy and the boundary 

layer enthalpy. The fluid temperature rises to its peak value 

within the boundary layer and suddenly falls monotonically 

satisfying the far-field boundary conditions. This 

consequently strengthens the thermal boundary layer thickness. 

Figure 10 elucidates the behavior of the Radiation 

parameter (K) on the temperature profile. It is noticed that 

large values of K suggest heat from radiation processes in the 

operational fluid that consequently increases the temperature 

profile and boosts thermal layer thickness. 

 

 
 

Figure 9. Temperature profiles for different values of 𝐸𝑐 

 

 
 

Figure 10. Temperature profiles for different values of 𝐾 

 

 
 

Figure 11. Temperature profiles for different values of 𝐷𝑢 

 

Figures 11-12 show the behaviors of Dufour and Soret 

numbers (𝐷𝑢, 𝑆𝑟) on temperature and concentration profiles. 

Increase in (𝐷𝑢, 𝑆𝑟)  due to the energy flux payable to the 

concentration gradient and the mass flux produced by the 

temperature gradient demonstrate the similar increasing effect 

on temperature and concentration profiles respectively and 

thus strengthen thermal and concentration boundary layers 

thicknesses. 
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Figure 12. Concentration profiles for different values of Sr 

 

The influence of heat absorption (Q) in temperature profile 

is illustrated in Figure 13. As expected, the presence of Q in 

the boundary layer is to absorb energy which in turn reduces 

the temperature of the fluid of which its aftermath reduces the 

thermal boundary layer thickness.  

Figure 14 shows the effect of a chemical reaction (𝛽) on the 

concentration profile. Large values of R deteriorate the 

concentration buoyancy effect of which the resulting effect 

lower the concentration profile as well as its layer thickness. 

 

 
 

Figure 13. Temperature profiles for different values of Q 

 

 
 

Figure 14. Concentration profiles for different values of 𝛽 

 

 

 
 

Figure 15. Effect of 𝐷𝑢 against 𝑃𝑟 on Nusselt number 

−𝜃′(0) 

 

 
 

Figure 16. Effect of 𝑆𝑟 against 𝛽 on Nusselt number −∅′(0) 

 

The interaction between the Dufour number (𝐷𝑢)  and 

Prandtl number (𝑃𝑟) is reported in Figure 15. An increase in 

𝑃𝑟  significantly improves the Nusselt number and this 

consequently strengthens the rate of heat transfer. However, 

the Nusselt number fall as the Dufour number increases 

against the Prandtl number which in turns lower the rate of 

heat transfer. A similar phenomenon is observed between 

Soret number (𝑆𝑟) and chemical reaction (𝛽) (See Figure 16). 

It is observed that large values of 𝛽 enhance the Sherwood 

number which in turns boost the rate of mass transfer with a 

reverse phenomenon as 𝑆𝑟 increases. 

 

 

6. CONCLUSION  

 

In this paper, a computational study has been carried out to 

analyze thermal and thermo diffusion effects on the heat and 

mass transfer in a viscous fluid over an exponential Stretching 

Surface in the presence of heat absorption. The resulting 

partial differential equations which describe the problem are 

transformed to dimensionless equations using the Similarity 

method with the corresponding dimensionless variables. The 

results of the investigation solved by the Homotopy Analysis 

Method (HAM) show a perfect agreement when compared 

with the existing literature. The effect of Lorentz force due to 
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the magnetic interaction in the presence of heat absorption 

causes frictional heating thereby results in an increase in fluid 

temperature. A rise in heat absorption leads to a reduction of 

fluid temperature of which its aftermath effect results in a 

decrease in thermal boundary layer thickness. A similar 

phenomenon is also on temperature profile as large values of 

𝑃𝑟  rapidly fall the layer thickness, indicating that smaller 

values of 𝑃𝑟 possess high thermal conductivity that causes the 

heat to diffuse away quickly from the surface than higher 

values. 
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NOMENCLATURE 

 

M Magnetic field parameter 

K radiation parameter 

Pr 

Ec 

prandtl number 

Eckert number 

β 

Q 

Sr 

Du 

Sc 

Reaction rate parameter 

Heat Absorption parameter 

Soret Number 

Dufour Number 

Schmidt number 

 

Greek symbols 

 

ղ Similarity variable 

ψ Stream function 
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