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The objectives of the European Energy transition entail an increasing use of electricity 

especially for residential sector. Member states are invited to promote energy policies that 

involve stakeholders directly. Energy Communities (EC) are intended as local institutions 

that could drive this change, creating local-scaled energy entities that cooperate to exchange 

energy. The purpose of this study is to investigate the energy consumption identifying a 

linear regression model to forecast electric energy demand at municipal scale, for residential 

end users. This work analyses electric consumption of 1,201 municipalities in Piedmont 

(north-west of Italy) evaluating the main energy-related variables. Information are obtained 

by online databases and georeferenced with GIS tool. The identified model evidences that 

the most influential variables are the population, the number of members per family, the 

education level, and the income. Regarding building features, the dwelling area and the 

number of occupied dwellings, the age of buildings and their maintenance condition. The 

statistical GIS-based methodology proposed in this study is replicable and can be applied 

to other contexts. A forecasting model to predict the amount of energy demand can support 

preliminary decision-making process defining the scale of ECs and their optimal 

configuration for balancing energy demand and local production.  
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1. INTRODUCTION

Since recent years, global climate change has raised 

concerns about the sustainability of energy supply systems and 

the depletion of resources. The decarbonization objectives [1] 

envisage an increasing use of electric energy in all sectors. 

Especially for residential users, the dependence on electricity 

has been increasing, partly because of the computerization of 

every-day life, partly due to the conversion to this energy 

vector for uses not previously contemplated.  

The residential end-use sector on energy consumption 

impacts largely on the total national electric consumption, 

reaching top percentages in most developed countries [2]. 

However, compared to other end-use sectors, as industrial, 

commercial and transportation, the residential one has been 

described as “largely undefined energy sink” [3]. Swan and 

Ugursal [3] explained that not only building characteristics, 

but also occupant behaviour data are needed to understand 

deeper residential consumption, but privacy issues in 

collecting data and the prohibitive cost of such surveys 

contribute to the poor understanding of this part of electric 

consumption.  

The fulfilment of the European energy transition goals of 

energy savings and security is a current issue in the agenda of 

governments. Local energy policies must consider economics 

and environmental concerns and it is essential to better 

understand residential energy demand characteristics to define 

proper solutions for each territory.  

So far, the main strategies envisaged are based on the 

provision of economic incentives to single user for energy 

efficiency measures and for the installation of renewable 

energy sources (RES) production plants. To foster the 

achievement of these objectives and to make citizens active 

part of change in new ways, strategies have been recently 

implemented and new aggregation models of energy users 

have been defined.  

European Community looks at the municipality as the local 

institutions which could drive this change, with the creation of 

new local-scaled energy entities, as the definition of Energy 

Community (EC) suggests [4]. 

As defined by [4] a local EC is a non-profit organization of 

final customers, which can involve different local stakeholders 

(municipalities, citizens, public and private companies) with 

the aim of achieving energy independence and security, a 

sustainable development and affordable energy costs. These 

objectives can be reached through energy efficiency 

interventions, exploitation of local RES, implementation of 

local energy grids to obtain smarter, flexible, and resilient 

configurations. The recognition of the prosumer is of 

fundamental importance for the optimal configuration of the 

EC. The balanced composition of stakeholders, in terms of 

energy demand amount and production profiles, can ensure the 

optimization of energy exchange between members, with 

economic and environmental advantages for all.  

The Clean Energy Package contains two energy community 

(EC) definitions: Citizen Energy Community (CEC), in 

Electricity Directive 2019/944, and Renewable Energy 

Community (REC), in Renewable Directive 2018/2001. Both 

directives describe EC as a collective cooperation of energy 

related activities around specific ownership, governance, and 

non-commercial purpose. RECs may be considered a subset of 

CECs that promote the use of renewable energy sources. 
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Member States facilitate energy communities in accessing to 

incentives and information, assisting vulnerable and low-

income households, and removing, when possible, regulatory 

and administrative barriers. 

Regardless of the various legal and economic models, ECs 

can be intended as regional developments that involve citizens, 

social entrepreneurs, public authorities, and community 

organizations in producing, selling, and distributing renewable 

energy [5]. As promising social instruments, Ecs can 

participate directly in the energy transition, offering a bottom-

up path to energy efficiency and low-carbon systems [6]. 

To realize EC, considerations in urban planning have to be 

made, and energy consumption has to be investigated at a local 

scale [7].  

This work aims to evaluate the electric energy consumption 

of residential end users at local level, using the main energy-

related variables. The purpose is to define a replicable 

methodology based on multiple linear regression model able 

to predict residential annual electric consumption at municipal 

scale. 

The analysis has been performed using a Geographical 

Information System (GIS) tool and a statistical software. The 

GIS tool has been used for the association of different 

databases, and for calculating climatic and environmental 

variables. The statistical software allowed to implement 

statistical techniques as principal components analysis and 

multiple linear regression to evaluate the main energy-related 

variables and the electric consumption models for 

municipalities. 

 

 

2. LITERATURE REVIEW 
 

Reducing and rationalizing electric consumption for 

residential use is an important issue in the agenda of 

governments and decisions makers, and studies have tried to 

understand the main environmental and socio-demographic 

variables that influence electric energy consumptions at 

different scales.  

In 2009, Olofsson et al. [8] analysed the effect of building-

specific features on both thermal and electric energy 

consumption using analysis of variance (ANOVA) tests. They 

stated that the most important variables were the geometrical 

characteristics and the construction time of the buildings. 

However, Howard et al. [9] in 2012 applied a multiple linear 

regression model that evidenced the higher importance of 

building function than the construction type or age of 

construction. 

Two studies conducted in Rotterdam (Netherlands) [10, 11] 

in recent years, using a multiple linear regression model to 

investigate both natural gas and electric consumption, pointed 

out that for electricity number of occupants, floor surface and 

type of dwelling are the most significant variables. 

Furthermore, Nouvel et al. [11] compared an engineering 

method to a statistical one to predict electric consumption from 

average floor area of dwellings, average number of occupants 

and the share of dwellings. They showed that the deviation 

from real energy consumption data was lower using a 

statistical approach. 

In 2019, Mutani et al. [12] evaluated the thermal 

consumption of building in the urban context of Torino (Italy). 

They implemented a multiple linear regression model, using 

building-specific features as well as environmental and socio-

demographic variables, that allowed to highlight major drivers 

of the energy consumption as area of dwellings, number of 

occupants, but also age of the residents and their social 

characteristics. 

Chen et al. [13], used a multiple regression analysis to 

investigate the relationship among household variables and 

residential energy consumption for space heating and cooling. 

Data were obtained from more than 1,500 surveys applied to 

households in the city of Hangzhou (China). The results 

pointed out that up to 28.8% of the energy consumption could 

be explained by socio-economic and behavioural variables, 

and floor area accounts for 44%. 

Bianco et al. [14] analysed residential and non-residential 

annual electric consumption in Italy, during the period 1970–

2007. They implemented simple and multiple regression 

models using historical data on energy consumption, gross 

domestic product (GDP) and GDP per capita and demographic 

data.  

In 2013, Gans et al. [15] used data on real-time usage from 

Continuous Household Survey of Northern Ireland, which 

surveyed about 300 households per month, to investigate the 

effect on residential electric consumption. The surveys 

collected socio-economic data as dwelling, health, education, 

employment, and welfare payments. The regression model 

implemented accounted electricity price, household income as 

well as weather, house-specific features, and type of heating 

system. 

Nie and Kemp [16] investigated trends in energy 

consumption in China during the 2002-2010 years, obtaining 

data from open-access institutional databases. They evaluated 

the effect of changes in demographic parameters, house-

specific characteristics, technology systems and energy 

sources. The key drivers for energy consumption increase 

were appliances, floor space per capita, whereas the energy 

mix and population were the less significant. They tried to 

forecast electric use using the regression method, predicting 

that the electric consumption would continue to rise despite a 

partial saturation of the demand. 

Social, demographic, and economic variables, along with 

environmental and building-specific features are useful to 

understand electric consumption for the residential sector and 

even to forecast future trends. On the other hand, in-field 

collection of data from surveys and measurement are costly 

and time-consuming and cannot be performed on a vast scale. 

Therefore, the aim of this study is to identify the most 

influential variables on electric energy consumption for 

residential sector at a municipal scale, starting from public-

access data. 

 

 

3. THE CASE STUDY 
 

The case study analysed in this work consist in the data 

sample of the 1,206 municipalities in Piedmont Region, in the 

North-West of Italy. The territory is considered according to 

its climatic-environmental, socio-economic characteristics, 

and those related to the built environment. This information 

was georeferenced using the GIS tool and was obtained from 

the online database Geoportale Piemonte (technical regional 

map BDTRE, updated to 2019) [17], the Digital Terrain and 

Surface Models (DTM and DSM), and the Italian census 

database (ISTAT 2011) [18]. For all characteristics 

individuated, in Table 1 are shown the main statistical 

parameters evaluated for each municipality analysed. In the 

pre-processing phase, the presence of incomplete information 
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and outliers has been checked, and the municipalities of which 

has been removed (5 outliers: the city of Turin, the 

municipalities of Novara and Alessandria; 2 municipalities 

with incomplete data: Vercelli and Valpratosoana). The vast 

area of the region (25,387 km2) with its heterogeneous 

morphology, includes different types of environmental context: 

mountains, hills, and plain areas and an altitude that has an 

average value of 421 m asl. From the climatic data provided 

by the Regional environmental protection agency (ARPA), the 

Heating Degree Days (HDD) were obtained from the UNI 

10349-3:2016, and the corresponding climatic zone has been 

assigned to each municipality (E 1-3 and F 1-4, see Table 2), 

according to previous work [19]. There are 892 municipalities 

in the climatic zone E (i.e. HDDE < 3000 °C) and 309 in zone 

F (i.e. HDDF ≥ 3000 C), that respectively represent the 74% 

and the 26% of all municipalities. The total population in 

Piedmont is 4,363,916 inhabitants (ISTAT 2011), with an 

average population density equals to 153 inh/km2. Seven 

categories of population (P) were defined to create 

homogeneous groups between municipalities (LP-Low, MP-

Medium, HP-High). Table 2 shows the number of 

municipalities belonging to population and climatic zones 

categories. 

 

Table 1. Geo-climatic-environmental, socio-economic, built heritage characteristics of the case study 

 
Characteristics Statistical parameters 

Climatic-environmental min max median average 

Area [km2] 0.7 203.7 13.4 21.0 

Altitude [m asl] 76.0 2,035.0 334.0 420.4 

HDD [°C/yr] 2,422 5,165 2,766 2,883 

Socio-economical     

Population [no. inhab] 42 101,952 1,015 2,868 

Density [inhab/ km2] 0.5 2,830.8 81.4 153.0 

Foreigner [% on tot pop] 0 22.3 5.4 6.1 

Age 

[% on tot pop] 

0-19 

/20-69 

/70-99 

16 

/64 

/20 

16 

/64 

/20 

16 

/65 

/19 

16 

/64 

/20 

Education 

Diploma 

[% on tot pop] 

Primary School 

/Jr. High School 

/Sr. High School 

/University 

8 

/18 

/10 

/ 0 

57 

/49 

/50 

/30 

27 

/35 

/30 

/ 7 

28 

/34 

/30 

/ 8 

Occupation 

 

Workforce (W) /NoW 

[% on tot pop] 

22 

/33 

66 

/77 

51 

/49 

51 

/49 

 

Employed (E) 

/NoE 

[% on tot W] 

8 

/ 0 

100 

/ 20 

95 

/ 5 

95 

/ 5 

 

Homemakers 

/Students 

/ Fixed income 

/Others 

[% on tot NoW] 

2 

/ 0 

/24 

/ 0 

38 

/26 

/88 

/31 

16 

/11 

/65 

/ 8 

15 

/11 

/66 

/ 8 

Income [€/yr/n. of taxpayer] 6,737 36,415 19,436 19,367 

Families 

[% on tot n.] 

1 member 

/ 2 members 

/ 3 members 

/ 4 members 

/ 5 members 

/ 6 or more members 

16 

/12 

/ 1 

/ 0 

/ 0 

/ 0 

81 

/41 

/ 32 

/ 24 

/ 10 

/ 4.8 

35 

/29 

/19 

/12 

/ 2.6 

/ 0.7 

38 

/28 

/18 

/12 

/ 2.6 

/ 0.8 

Residential Built Heritage     

Year of construction [% on tot 

buildings] 

Before 1918 

1919 – 1945 

1946 – 1960 

1961 – 1970 

1971 – 1980 

1981 – 1990 

1991 – 2000 

2001 – 2005 

After 2005 

0 

/ 0 

/ 0 

/ 0 

/ 0 

/ 0 

/ 0 

/ 0 

/ 0 

98 

/91 

/63 

/44 

/59 

/46 

/25 

/18 

/21 

34 

/12 

/ 8 

/10 

/10 

/ 5 

/ 4 

/ 2 

/ 2 

37 

/16 

/10 

/11 

/11 

/ 6 

/ 4 

/ 3 

/ 2 

Number of floors [% on tot 

buildings] 

1 floor 

/ 2 floors 

/ 3 floors 

/ 4 or more floors 

0 

/ 1 

/ 0 

/ 0 

97 

/96 

/82 

/72 

7 

/ 62 

/24 

/ 2 

9 

/61 

/25 

/ 4 

Maintenance condition 

[% on tot buildings] 

Optimal 

/ Good 

/ Mediocre 

/ Worst 

0 

/ 1 

/ 0 

/ 0 

98 

/99 

/80 

/23 

29 

/50 

/14 

/ 1 

31 

/51 

/16 

/ 2 
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Table 2. Municipalities in P and climatic zone categories 

 
Climatic 

Zone 

LP MP HP 

p<350 350<p<750 750<p<1500 1500<p<3000 3000<p<5000 5000<p<50000 p>50,000 

E1 2 3 14 8 4 5 1 

E2 32 68 92 86 38 65 3 

E3 65 110 125 80 47 44 - 

F1 77 49 33 25 16 12 1 

F2 37 18 11 1 1 - - 

F3 12 4 1 - 1 - - 

F4 7 1 2 - - - - 

The average age of the population is 48 years and foreigners 

represent on average the 6.1% of the total municipal 

population. On average, there are 2.15 persons per family. 

Residential buildings in each municipality represent 91% of 

the total number of buildings and 66% of them is occupied, 

with an average total floor area of 106.63 m2 and an average 

floor area for each person equal to 49.6 m2. 

In this work, the energy data refer to the annual electricity 

consumption of the residential sector of the 1,206 Piedmont 

municipalities. Considering the ones with complete 

information, 1,201 municipalities were selected with annual 

energy consumption data, from 2010 to 2016. 
 

 

4. MATERIAL AND METHODS 
 

To investigate major drivers of residential electric 

consumption, a GIS-based methodology with the 

implementation of statistical techniques has been developed in 

this study. The achievement of the best accuracy depends on 

the reliability of data and databases. In this study, to enhance 

pragmatism and ensure reproducibility, variables were 

obtained from institutional open-access databases [17-19], 

geographical and environmental data were calculated using 

well established procedure with GIS software [20, 21], while 

electric consumption observations were obtained from the 

database provided by the Piedmont Region technical office, 

which collects energy data directly from the Distribution 

System Operators (DSOs) [22]. 

The software used was R version 4.0.0 with a database 

composed by 1,201 observations and 117 variables related to 

residential electric consumptions. The observations consist in 

the yearly consumption of 1,201 municipalities from 2010 to 

2016 (6 years), excluding the year 2011 because of missing 

data. Variables were collected only once for each municipality, 

assuming that during the time span considered they did not 

vary significantly. The methodological framework of this 

study can be summarized in the following steps: 

1. Description of the statistical distribution of energy 

consumption data. 

2. Identification of the independent variables. 

3. Utilization of univariate and multivariate analysis 

technique (principal component analysis) to improve data 

quality. 

4. Identify a linear regression model. 

5. Evaluation of the influence of independent variables 

on the electric consumption. 
 

4.1 Statistical distribution of energy consumption data 

 

Considering 1,201 municipalities, statistical analysis was 

performed to evaluate the frequency distribution of energy 

consumption data separately for each of the six-year span. 

Anomalous observations were individually evaluated, 

comparing the consumption of each year to the previous and 

the next ones. Cut-off for maximum variation was set 

arbitrarily to 0.3. Observation that varied more than 30% were 

eliminated. The final database consists of 1,186 municipalities 

selected. Cullen and Frey chart has been used to inspect 

plausible probability distribution.  

The Normal and Log-Normal distributions were checked by 

graphically evaluating the goodness of fit, drawing probability 

density functions and histogram together [23]. The ANOVA 

test has been used for evaluating whether the electric 

consumption differs significantly among years.  

 

4.2 Identification of independent variables 

 

Residential electric energy consumption of 1,186 

municipalities were georeferenced using a GIS tool, to 

combine the energy consumption data with the socio-

demographic and environmental characteristics of the 

municipalities. The socio-economic and built environment 

characteristics refer spatially to the census sections, which 

represent the territorial units commonly used to collect data. 

In this work, the 2011 ISTAT census database has been 

managed using GIS tool referring all available information to 

the municipal area. Some variables have been transformed: the 

values of some observations (absolute values) have been 

calculated in percent of the total value, new variables were 

created from the former variables.  

 

4.3 Univariate and multivariate analysis techniques 

 

First, univariate statistical methods were used to describe 

and investigate variables and their relationship with the 

outcome. Pearson’s rho [] was used to assess the level of 

correlation among variables and between each variable and the 

electric consumption data. A correlation matrix was used to 

identify collinear variables and remove them from subsequent 

analysis to avoid singularity of the correlation matrix itself. 

The principal component analysis (PCA) was used to 

identify variables that are able to explain the majority of data 

variability and to divide observations into homogeneous 

groups. The Kaiser-Meyer-Olkin factor has been referred as a 

measure of adequacy of PCA. Hierarchical clustering has been 

performed using on the selected principal components the 

criterion of Ward that is based on the multidimensional 

variance. To obtain homogeneous groups the cluster 

dendrogram, obtained from the PCA, has been cut off at the 

height of 1.0. The contribution of variables to main principal 

components was graphically evaluated to identify 

uninfluential variables. 
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Multiple linear regression models  

 

The linear regression model is the most used statistical 

technique for investigating and modelling the relationship 

between a dependent and two or more independent variables. 

The electric energy consumption was estimated using a linear 

regression, which is expressed by Eq. (1): 

 

Yi = β0  + β1 · xi1 + ⋯ +βp · xip + εi  (1) 

  

where, Yi is the annual electric consumption (dependent 

variable), xij are the independent variables, βj are the estimated 

coefficients and εi correspond to the random errors of each 

observation i, i=1, …, N. The standard errors must be 

independent and normally distributed with mean 0 and 

constant variance: εi ~IIND (0, σ2).  

The Ordinary Least Squares (OLS) method was used to 

identify the model express by Eq. (1). The observed values yi 

(i=1, …, N) can be written as Eq. (2): 

 

yi =  𝑏0 + b1 · xi1 + ⋯ +bp · xip +ei (2) 

 

where, bj are the least squares estimates of βj (j=0,1, …, p) and 

ei (i=1, …, N) are the residuals. Predicted values yi are 

computed as b0 + b1 ∙ xi1 + ⋯ + bp ∙ xip (i=1, …, N).  

Linear dependency, no multicollinearity among variables, 

normality of εi, and homoscedasticity among εi are the 

conditions on a multiple linear regression model.  

The stepwise method in both directions (backward and 

forward) was performed to identify the linear model 

minimizing the Akaike information criterion (AIC), that is 

asymptotically equivalent to cross validation, and selecting the 

most influential variables. The stepwise method is an 

automatic selection procedure which combines backward 

elimination steps (computing the t-ratio for each regressor in a 

subset and eliminating the ones that have absolute value of the 

t-ratios smaller than a prespecified value) and forward 

selection steps (adding a new variable if the corresponding t-

ratio is the largest and its value is greater than a prespecified 

value). 

The models resulted from the stepwise must be checked, 

evaluating the residuals for their normality and 

homoscedasticity, and the variables for multicollinearity by 

their Variance Inflation Factor (VIF).  

Homoskedasticity (homogeneous variance for residuals) is 

a crucial assumption in regression analysis. It was tested 

through the scatter plot of residuals predicted values, 

normality, and probability graphs (Q-Q-plot). The outlier and 

leverage diagnostic graphs have been used to identify 

observations that are influential points. Observations, whose 

residuals (Student residuals) and leverage values were higher 

than 2 standard deviations, have been selected and removed 

from the dataset and the analysis was performed again.  

The appropriate diagnostics (e.g., Breusch–Pagan test and 

White test) were performed to check the accuracy of the model 

prediction. To evaluating homoscedasticity of residuals the 

White test has been conducted, considering the following 

hypotheses: 

 

𝐻0: 𝜎𝑖
2 = 𝜎2 (3) 

 

𝐻1: ∃𝑖,𝑗  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜎𝑖
2 ≠ 𝜎𝑗

2 (4) 

 

where, the null hypothesis (Eq. 3) implies that residuals have 

constant variance (σ2) and it is similar across all the values 

without showing any pattern, while the alternative hypothesis 

(Eq. 4) signifies a different variance among them. In this latter 

case a variance-stabilizing transformation is required to obtain 

more accurate variables estimators of the model.  

The presence of heteroscedasticity in the final model was 

reduced through Heteroskedasticity-Consistent Standard 

Errors (HCSE or White correction), that allowed the fitting of 

a linear regression model that contains heteroscedastic 

residuals [24]. 

The multicollinearity of a multiple regression model makes 

difficult to understand how much the dependent variable is 

affected by the independent variables since they are all 

influencing each other. The validity of the multiple regression 

was assessed by the Variance Inflation Factors (VIF). It is 

calculated as the reciprocal of the inverse of Rj
2 (where R2 is 

the coefficient of determination) of an independent variable xj 

as it is expressed by Eq. (5): 

 

𝑉𝐼𝐹𝑗 =  
1

1 −  𝑅𝑗
2 (5) 

 

The VIF gives the proportional increase in the variance of 

βj with respect to what it would have been if the explanatory 

variables were completely uncorrelated. The evaluation 

criterion refers to the threshold calculated as Eq. (6)  

 

𝑉𝐼𝐹 < max  (  10,
1

1 −  𝑅𝑚𝑜𝑑𝑒𝑙
2 ) (6) 

 

where, R2
model is the usual R-squared of the regression model. 

Variables with high VIF have been transformed or redefined 

and analysis was performed again. 

The coefficient of determination R2 correspond to the 

proportion of the variance in the dependent variable that is 

predictable from the independent variables and it was used to 

evaluate the adequacy of the model. The adjusted R2 (Adj R2) 

has been adjusted for the number of predictors in the model. 

R2 increases with the addition of variables in the model, while 

Adj R2 increases only if that addition improves the model more 

than would be expected by chance.  

In this study, the transformation of variables in order to 

improve the accuracy of the model consisted in three types of 

intervention.  

(1) Some absolute variables have been normalized 

according to Eq. (7): 

 

𝑧𝑖𝑗 =  
𝑥𝑖𝑗 − 𝑥�̅� 

σ𝑗
 (7) 

 

where, �̅�𝑗  is the mean of the jth variable and σj its standard 

deviation {xij: i=1, …, N}; 

(2) Some variables were squared; 

(3) Some variables have been transformed and redefined. 

Particularly, this latter is the case for the variables related to 

three characteristics of the population (Education degree, 

Family members and Age) and one characteristic of residential 

building (Building Construction Year). 

Education degree variables. The 4 initial variables selected 

for the linear model consisted of the percentage of the 

population with different education levels: primary school 

diploma (P), junior high school diploma (JH), senior high 

school diploma (SH) or university degree (U); these variables 

were calculated as % values relative to the total population 
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Ptot of each municipality. Each of them has been associated 

with the total number of years of study envisaged by the Italian 

school system, respectively: 5, 8, 13 and 18 years. Then the 4 

variables have been redefined in a single variable (EDU) that 

expresses the average number of years of education of the 

population of the municipality, calculating the weighted 

average as Eq. (8):  

 

𝐸𝐷𝑈 =  
𝑃𝑡𝑜𝑡 ∗ [(𝑃 ∗ 5) + (𝐽𝐻 ∗ 8) + (𝑆𝐻 ∗ 13) + (𝑈 ∗ 18)]

𝑃𝑡𝑜𝑡
 (8) 

 

Family members variables. The 5 initial variables selected 

consisted of the percentage of the families with 1, 2, 3, 4, or 5 

members per family relative to the total number of families 

(Ftot) of each municipality. Then the 4 variables have been 

redefined in a single variable (FAM) that expresses the average 

number of members per family for each municipality, 

calculating the weighted average. 

Age variables. The 3 initial variables selected for the initial 

model consisted of the percentage on the total population (Ptot) 

that had 0-19, 20-69 or 70-99 years old. Then the 4 variables 

have been redefined in a single variable (AGE) that expresses 

the average age of the population in each municipality, 

considering the median value for each of the 3 starting age 

categories and calculating the weighted average. 

Building Construction Year variables. The 9 initial 

variables selected for the initial model consisted of the 

percentage on the total number of residential building in each 

municipality that have been built respectively before 1918, 

1919-1945, 1946-1960, 1961-1970, 1971-1980, 1981-1990, 

1991-2000, 2001-2005, after 2005. Then the 9 variables have 

been redefined in a single variable (BCY) that expresses the 

average age of residential buildings in each municipality. The 

oldness of building has been identified as the difference 

between the corresponding year of energy data (2015) and the 

median value for each of the 9 starting categories, then the 

weighted average has been calculated. 

 

4.4 Influence of independent variables  

 

A further verification of the validity of the model took place 

by checking whether the observed values fall within the 

interval of the predicted values. Firstly, the predicted values 

for the year 2015 and the respective 95% confidence interval 

were calculated. The prediction interval was then calculated. 

This information was graphically evaluated in comparison 

with the observed values of the annual electricity consumption 

for the year 2010, 2012, 2013,2014,2016. For each of the 5 

years, the observations that fell outside the prediction interval 

were identified. The information relating to them (e.g., 

belonging to the clusters and other variables) was obtained and 

their distribution was assessed. 

 

 

5. RESULTS 

 

In this paragraph the results are presented according to the 

steps of the methodological framework previously described. 

 

5.1 Statistical distribution of energy consumption data 

 

The statistical distribution of raw energy consumption data 

was not normal. Therefore, electric consumption has been log-

transformed. Logarithmic distribution was evaluated 

approximately normal by the goodness of fit graph (Figure 1a), 

comparing the histogram of the outcome distribution with the 

probability density function (red line) of a normal distribution.  

 

 
(a) 

 
(b) 

 

Figure 1. Goodness of fit graph(a) and Cullen-Frey chart(b). 

 

The Cullen and Frey chart (Figure 1b) confirms the Log-

normal distribution of the outcome (blue point) as it is 

compared to several theoretical distributions (asterisk). The 

log of the annual electric consumption is not significantly 

different among the six years (p-value: 0.271). Distribution of 

each year has been evaluated, Figures 1 (a, b) show the results 

of 2015. 

 

5.2 Identification of independent variables 

 

The variables identified and used to describe the electric 

consumption of residential users at municipal scale were 117 

(114 numerical and 3 categorical) and they were synthesized 

in Table 3: for each characteristic is indicated the number of 

variables evaluated in the subsequent analysis; the asterisk 

indicates variables for which percentage has been calculated. 

 

5.3 Univariate and multivariate analysis techniques 

 

The trend of the socio-economic variables corresponds to a 

linear association to the electric consumption, and the same 

happens evaluating the number of occupied dwellings (Od) 

(Figure 2a). The electric consumption of municipalities in 

climatic zone E and F is significantly different (p-value< 

0.0001), according to results of the Wilcoxon rank sum test 

with continuity correction. The difference of the energy 

consumption among municipalities in the same climatic zone 

is less than the one between the two zones. It means that the 
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belonging to climatic zone affects significantly and not 

accidentally the energy consumption. In Figure 2b is evident 

that municipalities in zone F have a higher electric 

consumption than the ones in zone E. 

 

Table 3. Characteristic considered in the database and number of variables selected for each feature 

 

Climatic-Environmental Socio- economic Residential built heritage 

Area 1 Population 7 Geometrical features 16 

Altitude 1 Density 8 Construction year* 16 

HDD 1 Foreigners* 2 Number of floors* 8 

Climatic zone 7 Education* 8 Maintenance conditions* 8 

 Occupation* 16  

 Income 5  

 Families* 13  

 
(a) 

 
(b) 

 

Figure 2. Linear association between energy consumption 

and number of occupied dwelling (a), boxplot of energy data 

of the two climatic zone E and F (b) 

 

Assignment to climatic zone was done based on HDD, 

therefore that value was retained in the model definition. 

Starting from the 117 variables, only non-collinear (|| < 

0.95) ones have been selected and reported. 67 variables were 

removed, particularly for socio-economic ones the percentage 

values have been preferred to the absolute ones. The heatmap 

in Figure 3 represents the correlation matrix of variables tested 

in the PCA. For each variable (Var 1) it is possible to identify 

which other variable (Var 2) is directly (red scale) or inversely 

(violet scale) collinear with.  

The results of the PCA analysis are shown in Figures 4 (a, 

b). The first ten principal dimensions explained the 74% of the 

variability of data. The variables that mainly contribute to the 

definition of each dimensions have been evaluated and 

compared to remove the one that are less influent in all the 

principal components. Of the 50 input variables, 9 variables 

were discarded because their contribution was assessed as 

uninfluential. The Figure 4a represents the cluster dendrogram 

of PCA: according to the characteristics expressed by the 

selected variables, the outcome observations can be 

subdivided in several groups; cutting off at the height of 1.0 

six homogeneous groups (cluster) were obtained. The 

coloured points in the score plot (Figure 4b) represents 

observations of the six clusters depending on their eigenvalues 

for the first two principal dimensions: the nearest the points 

the more similar are the energy consumption observed.  

The belonging to clusters has been coded as a factor variable 

to be included in further analysis.   

 

 
 

Figure 3. Correlation matrix 
 

 
(a) 
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(b) 

 

Figure 4. Cluster dendrogram (a) and score plot (b) 

 

5.4 Multiple linear regression models 

 

The model was assessed on the observations referring to 

2015, selected as the most recent year whose observations can 

be compared with those of consecutive years.  

 

 
(a) 

 
(b) 

 

Figure 5. First model: Probability graph (a) and variance 

distribution of residuals (b)  

The initial model (41 variables, AIC = 347.30) has a R2 

value of 0.7469 and an adjusted R2 value of 0.7378, showing 

that the selected variables can explain the 74% of the variance 

in the annual electric consumption of municipalities. Table 4 

shows the information on variables and their respective values 

for the standard error, t value and their variance inflation factor; 

9 variables do not satisfy this latter criterion.  

In Figures 5(a,b) are reported the results about analysis of 

residuals for this first model: the probability graph (Figure 5a) 

shows that errors are not normally distributed. The scatterplot 

in Figure 5b exposed a pattern, meaning that the variance of 

residuals tends to increase with an increasing of the predicted 

value. The Breusch–Pagan test evidences that the residuals are 

heteroskedastic (p-value < 0.001). 

 

 

(a) 

 
(b) 

 

Figure 6. Second model: Probability graph (a) and Outliers 

and leverage diagnostic graph (b) 

 

As the assumptions of a multiple lineal regression analysis 

were rejected, transformations on the independent variables 

were performed. Education degree, Family members, Age and 

Building Construction Year (Bcy) were redefined as explained 

in paragraph 4.5, becoming respectively EDU, FAM, AGE 

and BCY. Ten variables (HDD, Ptot, Density, EDU, FAM, 

AGE, inc_Taxp, Od, Avg. area of Od and BCY) were 

normalized according to Eq. (7); then other ten variables were 

created by squaring the previous ones.  
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Table 4. First model information 

 

Variable Parameter Estimate Standard Error 
T 

Value 
Pr > |T| VIF 

Intercept 8.73e+00 1.73e+00 5.031 <0.0001 - 

HDD -8.99e-05 3.88e-05 -2.313 0.020 1.79 

Total Population (Ptot) -5.96e-04 1.61e-04 -3.695 <0.0001 122.41 

Density 1.13e-05 5.71e-05 0.200 0.841 1.77 

Age 0-19 (% on Ptot) 8.64e-01 5.94e-01 1.455 0.145 2.39 

Age 20-69 (% on Ptot) -5.45e-02 4.46e-01 -0.122 0.902 1.79 

University degree (% Ptot) 2.33e-04 2.35e-04 0.989 0.322 17.98 

Sr.H.S. Diploma (%Ptot) 6.41e-04 2.05e-04 3.115 0.0018 45.05 

Jr.H.S. Diploma (%Ptot) 5.21e-04 2.63e-04 1.981 0.047 60.39 

Primary Diploma (%Ptot) 1.30e-03 2.01e-04 6.445 <0.0001 29.45 

WorkForce (W- %Ptot) -9.90e-02 3.02e-01 -0.327 0.743 1.91 

Employment rate (%Wtot) -8.27e-02 4.04e-01 -0.205 0.837 1.09 

Homeworker (% on NoW) 3.37e-01 3.65e-01 0.923 0.356 2.09 

Students (% on NoW) 8.76e-01 4.73e-01 1.849 0.064 2.00 

Fixed income (% on NoW) -4.36e-01 2.94e-01 -1.486 0.137 2.64 

Taxpayers Incavg,y(inc_Taxp) 4.24e-05 3.78e-06 11.24 <0.0001 1.51 

Fam of 1 member (%Ftot) -4.29e+00 1.51e+00 -2.836 0.004 19.38 

Fam of 2 member (%Ftot) -3.45e+00 1.52e+00 -2.271 0.023 7.68 

Fam of 3 member (%Ftot) -3.76e+00 1.55e+00 -2.424 0.015 8.06 

Fam of 4 member (%Ftot) -3.27e+00 4.54e+00 -2.116 0.034 7.16 

Fam of 5 member (%Ftot) -4.97e+00 1.81e+00 -2.739 0.006 2.93 

Occupied dw. (tot Od) 4.32e-05 1.10e-04 0.390 0.696 36.33 

Occupied dw. (%RESb) 7.35e-02 7.85e-02 0.936 0.349 2.24 

Avg. Area of Od (supm_Od) -5.47e-03 9.08e-04 -6.030 <0.0001 1.68 

Bcy < 1918 8.51e-01 4.20e-01 2.024 0.043 11.2 

1919< Bcy < 1945 1.01e+00 4.27e-01 2.379 0.017 6.21 

1946< Bcy < 1960 8.14e-01 4.40e-01 1.847 0.065 4.19 

1961< Bcy < 1970 1.21e+00 4.54e-01 2.668 0.007 3.60 

1971< Bcy < 1980 1.28e+00 4.55e-01 2.829 0.004 3.82 

1981< Bcy < 1990 9.70e-01 4.97e-01 1.952 0.051 2.73 

1991< Bcy <2000 1.13e-01 5.36e-01 0.211 0.832 2.45 

2001< Bcy < 2005 1.91e+00 7.46e-01 2.561 0.010 2.42 

2 Floors (%on RESb) 2.78e-02 9.27e-02 0.300 0.764 1.99 

3 Floors (%on RESb) 1.41e-01 1.02e-01 1.374 0.169 1.90 

Optimal BMS (% RESb) 1.95e-01 4.22e-01 0.463 0.643 10.01 

Good BMS (% RESb) 1.29e-01 4.14e-01 0.312 0.755 8.26 

Bad BMS (% RESb) -6.90e-03 4.76e-01 -0.014 0.988 6.04 

Cluster 1 (ref.) - - - - 1.45 

Cluster 2 -2.76e-02 4.76e-02 -0.580 0.561 1.45 

Cluster 3 7.08e-03 4.83e-02 0.146 0.883 1.45 

Cluster 4 8.06e-03 5.69e-02 0.142 0.887 1.45 

Cluster 5 -6.69e-03 6.61e-02 -0.101 0.919 1.45 

Cluster 6 1.20e-01 6.55e-02 1.836 0.066 1.45 

Note 1. HDD=Heating Degree Days; Ptot = Total population; Age=people age; H.S.=High School; NoW= No Workforce people; Fam= number of families; Ftot= 

Total families; Od= Occupied dwellings; BCY= Building Construction Year (% on total number of residential buildings- RESb); BMS= Building Maintenance 

Status.  

 

A new initial model (55 variables) has been identified and 

the stepwise method was performed. The resulting model 

(second model) consisted in 18 variables and it has a R2 value 

of 0.7644 and an adjusted R2 value of 0.7607; the selected 

variables can explain the 76% of the variance. In Table 5 are 

reported the values for the standard error, t value and VIF of 

the selected variables. The results of residuals analysis for the 

second model are displayed in Figures 6(a,b). Looking at the 

probability graph (Figure 6a), the residuals cannot be 

considered as normally distributed. The variance of the 

residuals is not constant, going against to homoscedasticity 

assumption, confirmed by both the Breusch–Pagan and White 

test (p-value < 0.001). Considering the results of the outliers 

and leverage diagnostic graph (Figure 6b) a cut off at 2 times 

the standard deviation for both leverage and studentized 

residuals has been used and 68 observations (5.7% of total 

observations) that represent influential points were eliminated 

from the database. 

The stepwise method resulted in an improvement in 

comparison to the previous models. The third model (17 

variables) achieves a R2 of 0.8909 and an Adj R2 of 0.8892, 

other information is reported in Table 6. Variables have an 

acceptable VIF, therefore there is not multicollinearity.  

Figures 7 displays probability graph of residuals: it shows a 

better result, although their distribution is not normal and there 

are still some difficulties for predicting highest and lowest 

values. The results of the Breusch–Pagan and the White test 

still does not accept the null hypothesis of having 

homoscedastic residuals (p-value <0.0001). 
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Figure 7. Third model: Probability graph of residuals 

 
 

Figure 8. Last model: variance distribution of residuals 

 

Table 5. Second model information 

 

Variable Parameter Estimate Standard Error 
T 

Value 
Pr > |T| VIF 

Intercept 6.45e+00 1.13e-01 56.88 <0.0001 - 

nHDD -1.51e+01 5.57e+00 -2.70 0.006 3.91 

nHDD2 1.07e+03+06 5.52e+02 1.94 0.051 2.48 

nPtot2 -1.61e+00 9.94e+04 -16.22 <0.0001 5.54 

nDens 7.60e+02 5.07e+00 1.49 0.134 7.18 

nDens2 -3.94e-02 1.48e+02 -2.65 0.008 4.35 

nEDU -1.21e-03 7.71e-03 -1.57 0.116 2.93 

n.EDU2 -6.66e-01 1.56e-03 -4.27 <0.0001 1.17 

Students (% on NoW) 5.84e-01 3.70e-01 1.57 0.114 2.70 

Fixed income (% on NoW) -6.21e+01 1.45e-01 -4.28 <0.0001 1.87 

Taxpayers Incavg,y(inc_Taxp) 3.88e+02 4.00e+01 9.70 <0.0001 2.69 

nFAM 1.40e-02 3.68e-03 3.82 <0.0001 4.2 

nFAM2 -8.22e-04 3.22e-04 -2.55 0.010 1.69 

nOd 1.39e+03 5.71e+01 24.49 <0.0001 8.14 

nsupm_Od -7.94e-01 1.88e-01 -4.22 <0.0001 2.76 

nBCY -2.73e-01 1.29e-01 -2.11 0.034 1.89 

nBCY2 -3.14e+00 1.01e+00 -3.10 0.002 1.19 

3 Floors (%on RESb) 1.39e-01 5.84e-02 2.38 0.017 1.28 

Optimal BMS (% RESb) 7.80e-02 4.39e-02 1.77 0.076 1.19 
Note 2. n= normalized; BCY= Building Construction Year (% on total number of residential buildings- RESb). 

 

Table 6. Third model information 

 
Variable Parameter Estimate Standard Error T Value Pr > |T0.505| VIF 

Intercept 6.53e+00 7.05e-02 92.62 <0.0001 - 

nHDD -7.41e+00 3.52e+00 -2.10 0.035 3.33 

nHDD2 -1.15e+03 4.59e+02 2.50 0.012 2.16 

nPtot2 8.51e+06 3.10e+05 -27.38 <0.0001 5.00 

nDens -4.36e+00 4.31e+00 -1.01 0.311 6.72 

nDens2 -3.23e+02 2.68e+02 -1.23 0.215 3.89 

n.EDU2 -7.06e-03 1.28e-03 -5.49 <0.0001 1.14 

Students (% on NoW) 1.51e-01 2.26e-01 0.66 0.505 2.46 

Fixed income (% on NoW) -4.53e-01 8.80e-02 -5.15 <0.0001 1.62 

Taxpayers Incavg,y(inc_Taxp) 3.00e+02 2.19e+01 13.68 <0.0001 1.94 

nFAM 1.34e-02 2.14e-03 6.24 <0.0001 3.47 

nFAM2 -1.50e-03 2.16e-04 -6.95 <0.0001 1.62 

nOd 2.63e+03 6.29e+01 41.84 <0.0001 7.73 

nsupm_Od -4.87e-01 1.15e-01 -4.23 <0.0001 2.45 

nBCY -1.07e-01 8.10e-02 -1.32 0.186 1.85 

nBCY2 -9.93e-01 6.42e-01 -1.54 0.122 1.20 

3 Floors (%on RESb) 5.63e-02 3.69e-02 1.52 0.127 1.30 

Optimal BMS (% RESb) 5.97e-02 2.80e-02 2.12 0.033 1.17 

 

394



 

Table 7. Last model information 

 

Variable Parameter Estimate Standard Error 
T 

Value 
Pr > |T| VIF 

Intercept 6.53e+00 7.62e-02 85.65 <0.0001 - 

nHDD -7.41e+00 3.46e+00 -2.13 0.032 3.33 

nHDD2 1.15e+03 5.33e+02 2.15 0.031 2.16 

nPtot2 -8.51e+06 5.63e+05 -15.11 <0.0001 5.00 

nDens -4.36e+00 3.73e+00 -1.16 0.242 6.72 

nDens2 -3.32e+02 2.29e+02 -1.44 0.147 3.89 

n.EDU2 -7.06e-03 1.46e-03 -4.82 <0.0001 1.14 

Students (% on NoW) 1.51e-01 2.49e-01 0.60 0.544 2.46 

Fixed income (% on NoW) -4.53e-01 9.94e-02 -4.56 <0.0001 1.62 

Taxpayers Incavg,y(inc_Taxp) 3.00e+02 2.51e+01 11.93 <0.0001 1.94 

nFAM 1.34e-02 2.33e-03 5.73 <0.0001 3.47 

nFAM2 -1.50e-03 2.48e-04 -6.06 <0.0001 1.62 

nOd 2.63e+03 8.03e+01 32.81 <0.0001 7.73 

nsupm_Od -4.87e-01 1.17e-01 -4.15 <0.0001 2.45 

nBCY -1.07e-01 8.44e-02 -1.26 0.204 1.85 

nBCY2 -9.93e-01 6.10e-01 -1.62 0.103 1.20 

3 Floors (%on RESb) 5.63e-02 3.90e-02 1.44 0.149 1.30 

Optimal BMS (% RESb) 5.97e-02 2.77e-02 2.15 0.031 1.17 

 

Not wanting to further reduce the number of observations, 

removing others influential points, nor the number of variables 

in the model, it has been chosen to apply the 

Heteroskedasticity-Consistent Standard Errors (HCSE or 

White correction).  

Finally, a more stable model was found with uncorrelated 

independent variables and all other assumptions achieved. The 

last model counts of 17 variables whit both linear and 

quadratic predictors. Table 7 present the information about the 

last model, Table 8 reports values of R2 and Adj R2 comparing 

all the model evaluated in this study. The scatterplot in Figure 

8 shows an acceptable distribution of the variance of residuals 

if we consider the different scale on the y-axis with respect to 

Figure 5; the presence of a quadratic trend has been adjusted 

with the White correction. 

 

Table 8. Value of R2 and Adj-R2 of the evaluated models 

 
 R2 Adj R2 

First model 0.7469 0.7378 

Second model 0.7644 0.7607 

Third model 0.8909 0.8892 

Last model 0.8909 0.8892 

 

5.5 Influence of independent variables  

 

To verify the validity of the last predicting model, the 

observed values of the annual electricity consumption of the 

1186 municipalities have been observed in comparison to the 

graph representing the confidence and prediction interval of 

the last model. This check has been done for all the six years 

whose data were available. Figure 9 reports the results for the 

observed values (violet points) referred to the year 2015, in 

relation to the number of occupied dwellings. As shown in 

Figures 9, only few observed values (59 observations, 5 %) 

fall outside the prediction interval, and some of them (yellow 

points) are highlighted and named, this sustain the capacity of 

the model to predict annual electric energy consumption of 

municipalities except for very small (e.g. Sale, Saluggia) or 

large ones (e.g. Verbania, Novi Ligure, Bra). The observed 

values that the model cannot predicted have been identified 

and descripted in Table 9 according to some significant 

variables. For each of the six years is reported the total number 

of observed values that cannot be predicted by the model, the 

main statistical parameters about their electric consumption 

and their total population, and the number of observations for 

each cluster.  

Table 9. Description of the observed values outside the prediction interval of the predicting model 
 

Year N. 
Electric Consumption 

[MWh/yr] 

Total Population 

[n] 
Cluster  

  Min Max Median Min Max Median 1 2 3 4 5 6 

2010 59 71,268 32,242,421 489,058 52 25,986 350 21 13 7 4 6 8 

2012 57 72,074 30,783,835 332,997 52 25,986 323 19 15 7 4 5 7 

2013 59 71,255 30,183,758 316,550 52 25,986 323 21 14 7 4 5 8 

2014 60 70,938 28,586,741 281,745 52 25,986 251 18 14 6 6 6 10 

2015 62 70,959 39,169,077 317,418 52 25,986 326 17 13 6 9 6 11 

2016 61 67,692 28,433,423 257,178 52 25,986 250 16 13 8 8 6 10 

 

 

6. CONCLUSIONS 

 

The model for predicting the residential annual electric 

consumption at municipal scale points out that the most 

influential variables comprehend climatic-environmental, 

socio-economic, and building characteristics. Regarding to the 

climatic features the model evidences that the HDD is 

associated with an increase on energy consumption, as the 

population density, but these variables does not show a 

stronger influence. The number of total population and the 

occupied dwellings is positively correlated and significantly 

predicting. About the socio-economic variables, the most 

significant variables are the education degree, the yearly 

average income, and the average number of members in a 
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family. Also, the number of students and owners of fixed 

income shows a stronger influence on energy consumptions, 

the first is positively correlated but less significant, while the 

second is negatively correlated and very significant.  

Regarding to the building geometry, the average surface of 

occupied dwellings is significant, but at contrary is negatively 

correlated with the electric consumption, as it is for the 

average age of buildings.  

 

 
 

Figure 9. Observed values of electricity consumption of 

2015 inside (violet points) and outside (yellow points) the 

confidence (blue lines) and prediction (red lines) intervals.  

 

In conclusion, the resulted models evidenced the most 

important variables that affect the electric consumption of 

residential users depends on the characteristics of the building 

itself but also on the characteristics of the socio-economic 

environment of each municipality.  

The model can predict consumption in the majority of 

municipalities, with the exception of very small and very large 

municipalities. It has to be considered that in 2018 a regional 

administrative reorganization brought together about 80 

municipalities considered too small. Metropolitan cities and 

densely populated municipalities require different assessments.  

The statistical methodology used in this study could be used 

for evaluating the energy consumption at municipal scale in 

another Italian region, starting from the available ISTAT 

databases. It can support urban planners and decisions makers 

for evaluating energy consumption at territorial scale and 

contribute identifying possible aggregation of neighbouring 

municipalities interested in creating Energy Communities.   

The methodology presented in this work can implemented 

and used in evaluating variables that influenced electric 

consumption of other energy users involved in the EC: 

municipal buildings and service and companies.  
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