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The aim of this paper is to investigate the flow, heat, and mass transfer qualities in a 

Casson liquid overflow over a stretching/shrinking sheet in the presence of transverse 

magnetic field by considering diffusion-thermal, thermo-diffusion, chemical reaction, and 

hall effects. This investigation is carried out by studying the influence of selected 

governing parameters, namely, chemical reaction, Hall, suction/blowing, and Soret and 

Dufour number on the respective flow profiles of velocity, temperature, and concentration 

and their corresponding effect on the skin-friction coefficient, local Nusselt number, and 

Sherwood number. The nonlinear governing equations are transformed into nonlinear 

partial differential equations and solved with the efficient paired quasilinearization 

method that seeks to decouple a large system of equations into coupled pairs of equations 

by linearizing two functions and their corresponding derivatives at a time. The study 

reveals that increasing the value of chemical reaction, Hall, Dufour and Soret parameters 

significantly impacted on the flow profiles. The results suggest that while increasing 

chemical reaction and Dufour number decreases velocity and concentration of the liquid, 

the Hall parameter increases them while decreasing the secondary velocity and 

temperature. Applications of the study arise in magnetic field control of materials 

processing systems, electric transformers, manufacture processes in plastic and polymer 

etc. 
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1. INTRODUCTION

Mixed convective heat and mass transfer phenomena in the 

presence of magnetic fields arise in industrial and 

technological applications. Magnetohydrodynamic (MHD) 

flows have received wide attention from many researchers 

due to the significance of such flows which are known to be 

applicable in many devices such as accelerators, 

magnetohydrodynamic (MHD) pumps, MHD power 

generators, electrostatic precipitation, petroleum industry, 

purification of crude oil, aerodynamics heating and fluid 

droplets sprays. For the applications of hydromagnetics, 

however, the current trend is towards a strong magnetic field 

to notice the influence of an electromagnetic force. The Hall 

current is important under these conditions and has a marked 

effect on the magnitude and direction of the current density 

and consequently on the magnetic force term. Various 

researchers [1-8] have examined the channel flows of a 

viscous fluid under the action of a transversely applied 

magnetic field. The role of combined effect of magnetic field 

is significant in increasing or decreasing fluid velocity or 

skin-friction and also in attainment of steady state Oni [2]. 

The influence of a magnetic field reduces both wall heat and 

mass transfer rates on the Hydromagnetic nanofluid flow due 

to a stretching or shrinking sheet Kameswaran et al. [3]. 

When heat and mass transfer occur simultaneously 

between the fluxes, the driving potential is of more intricate 

nature, as energy flux can be generated not only by 

temperature gradients but by composition gradients as well. 

The energy flux caused by the concentration gradient and 

temperature gradient are called the Dufour (diffusion-

thermal) effect and Soret (thermo-diffusion) effect, 

respectively. These effects should be taken into consideration 

when there is a density difference in the flow domain, for 

instance, both Dufour and Soret effects can be created when 

species are introduced at a surface in fluid domain, with a 

different density than the surrounding fluid. Dursunkaya and 

Worek [9] studied diffusion-thermo and thermal-diffusion 

effects in transient and steady natural convection vertical 

surface.  It is show in this study the dimensionless 

temperature ratio is decreased, the nondimensional wall heat 

flux shows a larger dependence on the Grashof number ratio. 

Ahmed [10] studied the effect of both Dufour and Soret on 

free convective heat and mass transfer over a stretching 

surface with suction and injection using scaling 

transformations for similarity solutions to obtain a numerical 

solution. In this study, they showed that for fluids with 

medium molecular weight, (H2, air), there exists significant 

effects of Dufour and Soret. Turkyilmazoglu [11] analyzed 

magnetohydrodynamic fluid flow and heat transfer due to 

two-three dimensional porous and deforming 

(stretching/shrinking) bodies. The influence of thermal 

radiation, Soret and Dufour impacts, heat generation or 

absorption and substance response on blended convection 

stream over a vertical extending sheet in a permeable 

medium with suction/infusion was examined by Pal and 
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Mondal [12]. Mathematical modelling for heat transfer of a 

micropolar fluid along a permeable stretching/shrinking 

wedge with heat generation/absorption was studied by Alam 

et al [13]. The results show that dimensionless temperature 

increases when the shrinking parameter is increased and 

decreases with the increase of stretching parameter, 

unsteadiness parameter and suction/injection parameter.  

From the review above and to the knowledge of the 

authors, the combined convection heat transfer considering 

various parameters have not been examined. The present 

work focuses on the combined Soret and Dufour effects in 

MHD two-dimensional chemically reactive flow over 

stretching/shrinking sheet with suction/injection and Hall 

effect. The modeled partial differential equations are solved 

by a recently developed efficient numerical method named 

the paired quasilinearization method (PQLM) [14].   

The remainder of this paper is organized as follows: 

Section 2 introduces the physical modelling of the problem 

and formulation of the governing equation, Section 3 

describes the numerical scheme, Section 4 represents the 

results and discussion and section 5 presents conclusion. 

 

 

2. MATHEMATICAL MODEL 

 

Consider the steady-state boundary layer flow over a 

stretching/shrinking sheet in the presence of transverse 

magnetic field, diffusion-thermal, thermo-diffusion, and 

chemical reaction effects as displayed in Figure 1. The plate 

is inclined from the vertical plane with an acute angle γ and 

considered to be permeable (porous) to allow for possible 

fluid suction or blowing. It is also assumed that a strong 

magnetic field is perpendicular to the flow and the Hall effect 

(induced flow in the z- direction) is considered. To simplify 

the analysis, we assume that there is no variation of flow and 

heat transfer quantities in z-direction, which is valid if the 

plate would be of infinite width in this direction. The sheet 

has constant linear velocity 𝑢𝑤(𝑥) = 𝑐𝑥𝑝  (for stretching 

sheet) and 𝑢𝑤(𝑥) = −𝑐𝑥𝑎 (for shrinking sheet). 

 

 
 

Figure 1. Flow geometry 

 

The rheological equation of state for an isotropic and 

incompressible Casson fluid is given by Prasad et al. [15]: 

 

𝜏𝑖𝑗 = {
2(𝜇𝐵 + 𝑃𝑦/√2𝜋 )𝑒𝑖𝑗                     𝜋> 𝜋𝑐

2(𝜇𝐵 + 𝑃𝑦/√2𝜋𝑐  )𝑒𝑖𝑗                     𝜋< 𝜋𝑐

                           (1) 

Based on Boussinesq approximations, the equations 

governing the steady-state conservation of mass, momentum, 

energy and concentration with the assumptions above are 

given by 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                 (2) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜐 ⟦1 +

1

𝛽
⟧

𝜕2𝑢

𝜕𝑦2 + 𝑔∗[𝛽𝑇(𝑇 − 𝑇∞) +

           𝛽𝑐(𝐶 − 𝐶∞)] cos 𝛾 −
𝜎𝐵0

2

𝜌(1+𝑚2)
(𝑢 + 𝑚 𝑤),                  (3) 

 

𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
= 𝜐 ⟦1 +

1

𝛽
⟧

𝜕2𝑤

𝜕𝑦2 +
𝜎𝐵0

2

𝜌(1+𝑚2)
(𝑚 𝑢 −  𝑤),           (4)  

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 +  
𝐷𝐾𝑇

𝐶𝑠𝐶𝑝
 

𝜕2𝐶

𝜕𝑦2                                            (5)   

  

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2 − 𝐾1(𝐶 − 𝐶∞) +  
𝐷𝐾𝑇

𝑇𝑚
 

𝜕2𝑇

𝜕𝑦2                   (6) 

 

The appropriate boundary conditions on velocities, 

temperature and concentration field are as follows: 

 

𝑢𝑤 = 𝑐𝑥𝑝,       𝑣 = 𝑉𝑤 ,     𝑤 = 0,   𝑇 = 𝑇𝑤 = 𝑇∞ + 𝐴𝑥𝑛,   
 

𝐶 = 𝐶𝑤 = 𝐶∞ + 𝐵𝑥𝑞 ,    𝑎𝑡     𝑦 = 0                                   (7a) 

 

𝑢 → 0,     𝑤 → 0,     𝑇 →  𝑇∞,      𝐶 → 𝐶∞  𝑎𝑠    𝑦 →  ∞      (7b) 

 

Vw is the wall mass flux with Vw < 0 for suction and 

Vw > 0 fluid blowing at the sheet surface. 

We seek similarity solutions to the Eq. (3) to Eq. (6) with 

boundary conditions (7) in the following form: 

 

𝝃 = 𝑮𝒓𝒙 𝑹𝒆𝒙
−𝟐 𝐜𝐨𝐬 𝜸 ,      𝜼 =

𝒚

𝒙
𝑹𝒆𝒙

𝟏/𝟐
,    𝒘 =

𝒚

𝒙
𝑹𝒆𝒙𝒈(𝝃, 𝜼), 

𝜓 = 𝜐𝑅𝑒𝑥
−1/2

𝑓(𝜉, 𝜂),    𝜃(𝜉, 𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
,   𝜙(𝜉, 𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
                                                                                      

(8) 

 

where stream function 𝜓 is defined as 𝑢 =
𝜕𝜓

𝜕𝑦
 and 𝑣 = −

𝜕𝜓

𝜕𝑥
 

which identically satisfies the Eq. (2). We deduce from Eq. 

(8) that 

 

𝑢 =
𝜐

𝑥
𝑅𝑒𝑥𝑓′(𝜉, 𝜂),    

𝑣 = −√𝑐𝜐𝑥𝑝 [
𝑝 + 1

2
𝑓 − 𝜉(𝑛 − 2𝑝 + 1)

𝜕𝑓

𝜕𝜉
+

𝑝 − 1

2
𝜂𝑓′] 

 

Substituting Eq. (8) into Eq. (2) to Eq. (6), we get the 

following equations: 

 

(1 +
1

𝛽
) 𝑓′′′ − 𝑝𝑓′ 2 +

𝑝 + 1

2
𝑓 𝑓′′ + 𝜉(𝜃 + 𝛿𝜙) 

−
𝑀

1+𝑚2
(𝑓′ + 𝑚𝑔) = 𝜉(𝑛 − 2𝑝 + 1) (𝑓′ 𝜕𝑓′

𝜕𝜉
− 𝑓′′

𝜕𝑓

𝜕𝜉
)        (9) 

 

(1 +
1

𝛽
) 𝑔′′ − 𝑝𝑔 𝑓 +

𝑝 + 1

2
𝑓 𝑔′ 

 +
𝑀

1+𝑚2
(𝑚 𝑓′ − 𝑔) = 𝜉(𝑛 − 2𝑝 + 1) (𝑓′ 𝜕𝑔 

𝜕𝜉
− 𝑔′

𝜕𝑓

𝜕𝜉
)     (10) 

 
1

𝑃𝑟
𝜃′′ +

𝑝+1

2
𝑓 𝜃′ − 𝑛 𝜃 𝑓′ + 𝐷𝑓𝜙′′ = 𝜉 (𝑓′ 𝜕𝜃 

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
)    (11) 
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𝜙′′ + 𝑆𝑐
𝑝 + 1

2
𝑓 𝜙′ − 𝑆𝑐 𝑞 𝜙 𝑓′ 

       + 𝑆𝑐 𝑆𝑡 𝜃′′ − 𝑆𝑐 𝐾 𝜙 = 𝑆𝑐 𝜉 (𝑓′ 𝜕𝜙 

𝜕𝜉
− 𝜙′

𝜕𝑓

𝜕𝜉
)            (12) 

 

where the prime denotes differentiation with respect to 𝜂. The 

boundary conditions now take the form 

 

𝑓(𝜉, 0) =
2

𝑝 + 1
𝑓𝑤 ,    𝑓′(𝜉, 0) = 1, 𝑔(𝜉, 0) = 0,  

              𝜃(𝜉, 𝜂) = 1,          𝜙(𝜉, 𝜂) = 1                            (13a) 

 

 𝑓′ → 0,      𝑔 → 0,        𝜃 → 0,    𝜙 → 0      𝑎𝑠     𝜂 → 0    (13b) 

 

where     

 

 𝑓𝑤 = −
𝑥𝑉𝑤𝑅𝑒𝑥

−
1
2

𝜐
,     𝑅𝑒𝑥 =

𝑢𝑤(𝑥)𝑥

𝜐
,         𝑀 =

𝜎𝐵0
2

𝜌𝑢𝑤

 ,          

 𝐺𝑟𝑥 = 𝑔∗𝛽(𝑇𝑤(𝑥) − 𝑇∞)𝑥3/𝜐 ,  𝐷𝑓 =
𝐷𝐾𝑇𝐵𝑥𝑞

𝜐𝐴𝑥𝑛 =
𝐷𝐾𝑇(𝐶𝑤−𝐶∞)

𝐶𝑝𝜐(𝑇𝑤−𝑇∞)
,       

 𝑆𝑡 =
𝐷𝐾𝑇(𝑇𝑤−𝑇∞)

𝜐𝑇𝑚(𝐶𝑤−𝐶∞)
 

 

The nondimensional local shear stress components, 

Nusselt number and Sherwood number are given by 

 

𝜏𝑤𝑥 = −
𝜇𝑢𝑤

𝑥
𝑅𝑒𝑥

1

2𝑓′′(𝜉, 0),       𝜏𝑤𝑧 = −
𝜇𝑢𝑤

𝑥
𝑅𝑒𝑥

1

2𝑔′(𝜉, 0) 

𝑁𝑢𝑥𝑅𝑒𝑥

−
1

2 = −𝜃′(𝜉, 0),          𝑆ℎ𝑥𝑅𝑒𝑥

−
1

2 = −𝜙′(𝜉, 0)  

 

 

3. NUMERICAL SCHEME 

 

To solve the nonlinear system of partial differential Eq. (9) 

to Eq. (12), we apply the method of decoupling large systems 

into coupled pairs of equations called the ''Paired 

Quasilinearisation Method'' (PQLM) [14, 15]. The underlying 

idea of the PQLM is the quasilinearization method, 

introduced by Bellman and Kallaba [16], which works by 

linearizing a nonlinear system of equations using the Taylor 

series approach and discretising the linearized pairs of 

equations using spectral method. We elect to apply 

quasilinearization on the nonlinear functions f, g, and their 

corresponding derivatives and we obtain the linearized pair 

of equations. 

 

(1 +
1

𝛽
) 𝑓𝑟+1

′′′ + [𝑎1]𝑓𝑟+1
′′ + +[𝑎2]𝑓𝑟+1

′ + [𝑎3]𝑓𝑟+1 

      + (−2𝑚)𝑔𝑟+1 = [𝑎4]
𝜕𝑓𝑟+1

′

𝜕𝜉
+ [𝑎5]

𝜕𝑓𝑟+1

𝜕𝜉
+ 𝑎6 

[𝑏1]𝑓𝑟+1
′ + [𝑏2]𝑓𝑟+1 + (1 +

1

𝛽
) 𝑔𝑟+1

′′ + [𝑏3]𝑔𝑟+1
′ + [𝑏4]𝑔𝑟+1 

= [𝑏5]
𝜕𝑓𝑟+1

𝜕𝜉
+ [𝑏6]

𝜕𝑔𝑟+1

𝜕𝜉
+ [𝑏7],                                    (14) 

 

where 

 

𝛼1 =
𝑝+1

2
,   𝛼2 =

𝑀

1+𝑚2 ,    𝛼3 = 𝑛 − 2𝑝 + 1,                      (15) 

 

𝑎1 = 𝛼1 𝑓𝑟 + 𝜉 𝛼3
𝜕𝑓𝑟

𝜕𝜉
, 𝑎2 = −2𝑝𝑓𝑟

′ − 𝛼2 − 𝜉𝛼3
𝜕𝑓𝑟

′

𝜕𝜉
          (16) 

 

𝑎1 = 𝛼1 𝑓𝑟
′′,       𝑎4 = 𝛼1 𝜉 𝛼3𝑓𝑟

′,     𝑎5 −𝛼3 𝜉 𝛼3𝑓𝑟
′′,           (17) 

𝑎6 = −𝑝 𝑓𝑟
′2 +

𝑝+1

2
𝑓𝑟𝑓𝑟

′′ − 𝜉(𝜃𝑟 + 𝛿𝜙𝑟) 

             −𝜉𝛼3𝑓𝑟
′ 𝜕𝑓𝑟

′

𝜕𝜉
+ 𝜉𝛼3𝑓𝑟

′ 𝜕𝑓𝑟

𝜕𝜉
,                                     (18) 

 

𝑏1 = −𝑝 𝑔𝑟 + 𝛼2 𝑚 − 𝜉𝛼3
𝜕𝑔𝑟

𝜕𝜉
,   𝑏2 = 𝛼1𝑔𝑟

′                      (19) 

 

𝑏3 =
𝑝+1

2
𝑓𝑟 +  𝜉 𝛼3

𝜕𝑓𝑟

𝜕𝜉
,      𝑏4 = −𝑝𝑓𝑟

′ − 𝛼2                      (20) 

 

𝑏5 = 𝜉 𝛼3 𝑔𝑟
′ ,   𝑏6 = 𝜉 𝛼3 𝑓𝑟

′,      

 𝑏7 = 𝑝 𝑓𝑟
′𝑔𝑟  + 𝛼1 𝑓𝑟𝑔𝑟

′ − 𝜉𝛼3 (𝑓𝑟
′ 𝜕𝑔𝑟

𝜕𝜉
− 𝑔𝑟

′ 𝜕𝑓𝑟

𝜕𝜉
),         (21) 

 

where […] are vector representations and terms with r+1 and 

r subscripts are at current and previous iteration levels, 

respectively. Updated solutions for f, g, and their 

corresponding derivatives are used in the subsequent pair of 

equations which is linear and we obtain 

 
1

𝑃𝑟
𝜃𝑟+1

′′ + [𝑐1]𝜃𝑟+1
′ + 𝑐2𝜃𝑟+1 + 𝐷𝑓𝜙𝑟+1

′′ = [𝑐3]
𝜕𝜃𝑟+1

𝜕𝜉
     

  

 𝑆𝑐 𝑆𝑟 𝜃𝑟+1
′′ + 𝜙𝑟+1

′′ + [𝑒1]𝜙𝑟+1
′ + 𝑒2𝜙𝑟+1 = [𝑒3]

𝜕𝜙𝑟+1

𝜕𝜉
    (22) 

 

where      

 

𝑒1 = 𝑆𝑐 (
𝑝 + 1

2
𝑓𝑟 , 𝜉

𝜕𝑓𝑟

𝜕𝜉
) ,        𝑒2 = −𝑆𝑐(𝑞𝑓𝑟

′ + 𝐾),  

      𝑒2 = 𝑆𝑐𝜉𝑓𝑟
′                                                                    (23)  

                                                            

The linearized pairs of Eq. (14) and Eq. (22) are now 

solved using the bivariate spectral collocation method with 

Chebyshev-Gauss-Lobatto nodes. Before discretizing the 

spacial η and time ξ domains, we first transform the original 

semi-infinite domains using linear transformations from η ∈ 

[0, ∞) and 𝜉 ∈ [0, ∞ ) to 𝑥 ∈ [−1, 1]and 𝑡 ∈ [−1, 1].  𝜂∞ and 

𝜉∞ are finite values that are appropriately chosen to be large 

values that properly approximates the characteristics of the 

flow quantities close to infinity. It is necessary to introduce 

these values to apply the spectral method at the infinity 

boundary. We define the discretization nodes as 

 

𝑥𝑖 = cos (
𝜋 𝑖

𝑀𝑥
),   𝑡𝑗 = cos (

𝜋 𝑗

𝑀𝑡
) ,    𝑖 = 1,2, … , 𝑀𝑥  

 𝑗 = 1,2, … , 𝑀𝑡                                                                (24) 

 

An assumption is made that the approximate solutions are 

defined using the bivariate Lagrange interpolation 

polynomial of the form 

 

𝐸(𝜂 𝜉) ≈ ∑ ∑ 𝐸(𝑥𝑚, 𝑡𝑗)𝐿𝑗(𝑡),    𝐸 = 𝑓, 𝑔 , 𝜃, 𝜙
𝑀𝑡
𝑗=0

𝑀𝑥
𝑚=0       (25) 

                   

that interpolates 𝐸(𝜂 𝜉)  at the Gauss-Lobatto collocation 

points. The Chebyshev pseudo-spectral method is applied on 

the pairs Eq. (14) and Eq. (22) with derivatives of the 

unknown functions with respect to η and ξ at the collocation 

points 𝑥𝑘  and 𝑡𝑖 defined as: 

 

 
𝜕𝑛𝐸

𝜕𝜂
|(𝑥𝑘  𝑡𝑖) =  𝑫𝑛𝑬𝑖 ,      𝑛 = 1, 2, 3                                    (26) 

 

 
𝜕𝐸

𝜕𝜂
|(𝑥𝑘  𝑡𝑖) =  ∑ 𝒅𝑖 𝑗𝑬𝑗     

𝑀𝑡
𝑗=0                                                 (27) 
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where 𝒅𝑖 𝑗 = (
2

𝑥𝑒
) 𝑑𝑖 𝑗     (𝑖, 𝑗 = 0,1, … , 𝑀𝑡)  with 𝑑𝑖 𝑗  being 

entries of the standard Chebyshev differentiation matrix 𝑑 =

[𝑑𝑖 𝑗] of size (𝑀𝑡 + 1)𝑋(𝑀𝑡 + 1) (see, for example Trefethen 

[17]). Similarly, 𝐷 = (
2

𝜂𝑐
) [𝐷𝑟,𝑠]  (𝑟, 𝑠 = 0,1 2, … , 𝑀𝑡)  with 

[𝐷𝑟,𝑠]  being an (𝑀𝑥 + 1)𝑋(𝑀𝑥 + 1)  Chebyshev derivative 

matrix, and the vector 𝑬𝑖 is defined as 

 

𝑬𝑖 = [𝐸𝑖(𝑥0), 𝐸𝑖(𝑥1), … , 𝐸𝑖(𝑥𝑀𝑥)]𝑇 .                                  (28) 

 

The discretized forms of the pairs of Eq. (14) and Eq. (22) 

are 

 

𝑨1,1
(𝑖)

𝑭𝑟+1,   𝑖 + 𝑨1,2
(𝑖)

𝑮𝑟+1,   𝑖 + 𝑎5 ∑ 𝒅𝑖 𝑗𝑭𝑟+1,   𝑗    

𝑀𝑡

𝑗=0

 

 + 𝑎4 ∑ 𝒅𝑖 𝑗𝑫𝑭𝑟+1,   𝑗   = 𝑹1,   𝑖  
𝑀𝑡
𝑗=0                                  (29) 

 

𝑨2,1
(𝑖)

𝑭𝑟+1,   𝑖 + 𝑨2,2
(𝑖)

𝑮𝑟+1,   𝑖 + 𝑏5 ∑ 𝒅𝑖 𝑗𝑭𝑟+1,   𝑗    

𝑀𝑡

𝑗=0

 

   + 𝑏6 ∑ 𝒅𝑖 𝑗𝑮𝑟+1,   𝑗   = 𝑹2,   𝑖 
𝑀𝑡
𝑗=0                                       (30) 

 

 𝑨3,3
(𝑖)

𝜣𝑟+1,   𝑖 + 𝑐4 ∑ 𝒅𝑖 𝑗𝜣𝑟+1,   𝑗 = 𝑹3,   𝑖    
𝑀𝑡
𝑗=0                     (31) 

 

 𝑨4,4
(𝑖)

Ф𝑟+1,   𝑖 + 𝑒2 ∑ 𝒅𝑖 𝑗Ф𝑟+1,   𝑗 = 𝑹4,   𝑖     
𝑀𝑡
𝑗=0                     (32) 

 

for 𝑖 = 0, 1, … , 𝑀𝑡  where the matrix coefficients and right 

hand side vectors are defined as 

 

𝑨1,1
(𝑖)

= (1 +
1

𝛽
) 𝑫3 + [𝑎1]𝑫3 + [𝑎2]𝑫 + [𝒂𝟑] − [𝑎𝟒]𝒅𝒊,𝒋 

    −[𝑎𝟓]𝒅𝒊,𝒋                                                                     (33) 

 

𝑨1,2
(𝑖)

= −𝛼2𝑚𝑰,       𝑨2,1
(𝑖)

= [𝑏1]𝑫 + [𝒃𝟐] − [𝑏5]𝒅𝒊,𝒋 ,        (34) 

 

𝑨2,2
(𝑖)

= (1 +
1

𝛽
) 𝑫2 + [𝑏3]𝑫 + [𝑏4] − [𝑏𝟔]𝒅𝒊,𝒋,                  (35) 

 

𝑨3,3
(𝑖)

=
1

𝑃𝑟
𝑫2 + [𝑐1]𝑫 + [𝑐2] − [𝑐3]𝒅𝒊,𝒋,                             (36) 

 

𝑨4,4
(𝑖)

= 𝑫2 + [𝑒1]𝑫 + [𝑒2] − [𝑒3]𝒅𝒊,𝒋,                                (37) 

 

𝑨3,4
(𝑖)

= 𝐷𝑓𝑫2,     𝑨4,3
(𝑖)

= 𝑺𝒄 𝑺𝒓𝑫2 ,                                     (38) 

 

𝑹1,𝑖 = [𝑎4]𝒅𝑖,𝑀𝑖+1𝑫𝑭𝑖,   𝑀𝑖+1 + [𝑎5]𝒅𝑖,𝑀𝑖+1𝑭𝑖,   𝑀𝑖+1 + 𝑎6 

                                                                                            (39) 

 

𝑹2,𝑖 = [𝑏5]𝒅𝑖,𝑀𝑖+1𝑫𝑭𝑖,   𝑀𝑖+1 + [𝑏6]𝒅𝑖,𝑀𝑖+1𝑮𝑖,   𝑀𝑖+1 + 𝑏7(40) 

 

𝑹3,𝑖 = [𝑐3]𝒅𝑖,𝑀𝑖+1 𝜣𝑖,   𝑀𝑖+1,                                               (41) 

 

𝑹4,𝑖 = [𝑒3]𝒅𝑖,𝑀𝑖+1 Ф𝑖,   𝑀𝑖+1,                                               (42) 

 

where I is an identity matrix of size (𝑀𝑥 + 1)𝑋(𝑀𝑥 + 1). 

 

 

4. RESULTS AND DISCUSSION 

 

We present the results generated for the system of partial 

differential Eq. (9) to Eq. (12) using the PQLM. We note that 

these results were generated using 80 grid points in space and 

10 grid points in time as they were observed to be sufficient 

in obtaining convergent and accurate solutions. Convergence 

and accuracy were tested using solution error and residual 

error, respectively. 

Figures 2a to 2d display the effect of iterations on the 

solution errors of the various functions f, g, 𝜽 and ϕ. These 

solution errors are obtained as the difference between 

successive iterations. We remark that these graphs were 

obtained when P = 0.1, n = 0.1, fw = -1, m = 0.5, df = 0.1, 

sr= 0.6, k = 4, 𝜹 = 1, sc = 0.22, pr = 0.7, and 𝜷 = ∞.  

We observe from Figures 2a and 2c that as the number of 

iterations increase, the error between successive functions 

gets smaller. By the 14th iteration, we see that the error is at 

10-14 which implies that the difference between solutions of f 

and 𝜃 subsequently are negligible since the error is minimal. 

This indicates that the solutions can be said to converge if we 

set our tolerance level to be 10-14. We observe from Figures 

2b and 2d that the difference between solutions for the 

functions g and 𝜙 remains relatively constant and very small 

implying that convergence occurs immediately we begin 

iterating. This indicates that our method is convergent for 

models similar to ours. 

 

 
(a) Effect of iterations on the solution error norm for F 

 

 
(b) Effect of iterations on the solution error norm for G 

 

 
(c) Effect of iterations on the solution error norm for 𝛩 
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(d) Effect of iterations on the solution error norm for Ф 

 

Figure 2. Solution errors 

 

To test for accuracy, we make use of the residual error. 

This is defined as the error obtained after representing the 

original system of differential equations with the approximate 

solutions produced using a numerical method. We define the 

residual errors as 

 

Res(F)=
𝑚𝑎𝑥

0≤𝑖≤𝑀𝑖
|| (1 +

1

𝛽
) 𝑓𝑖

′′′ − 𝑝𝑓𝑖
′2 +

𝑝+1

2
𝑓𝑖𝑓𝑖

′′ 

     +𝜉(𝜃𝑖 + 𝜙𝑖) −
𝑀

1+𝑚2
(𝑓𝑖

′ + 𝑚 𝑔𝑖)                                  

     −𝜉(𝑛 − 2𝑝 + 1) (𝑓𝑖
′ 𝜕𝑓𝑖

′

𝜕𝜉
− 𝑓𝑖

′ 𝜕𝑓𝑖

𝜕𝜉
) ||∞                           (43) 

 

Res(G)=
𝑚𝑎𝑥

0≤𝑖≤𝑀𝑖
|| (1 +

1

𝛽
) 𝑔𝑖

′′ − 𝑝𝑔𝑖𝑓𝑖
′2 +

𝑝+1

2
𝑓𝑖𝑔𝑖

′ 

    +
𝑀

1+𝑚2
(𝑚𝑓𝑖

′ − 𝑔𝑖) − 𝜉(𝑛 − 2𝑝 + 1) (𝑓𝑖
′ 𝜕𝑔𝑖

𝜕𝜉
− 𝑔𝑖

′ 𝜕𝑓𝑖

𝜕𝜉
) ||∞ 

                                                                                            (44) 

            

Res(𝛩)=
𝑚𝑎𝑥

0≤𝑖≤𝑀𝑖
||

1

𝑃𝑟
𝜃𝑖

′′ + 𝑆𝑐 
𝑝+1

2
𝑓𝑖𝜃𝑖

′ 

    −𝑛𝑓𝑖
′𝜃𝑖 + 𝐷𝑓𝜙𝑖

′′ − 𝜉 (𝑓𝑖
′ 𝜕𝜃𝑖

𝜕𝜉
− 𝜃𝑖

′ 𝜕𝑓𝑖

𝜕𝜉
) ||∞                    (45) 

 

Res(Ф)=
𝑚𝑎𝑥

0≤𝑖≤𝑀𝑖
||

1

𝑆𝑐
𝜙𝑖

′′ +
𝑝+1

2
𝑓𝑖𝜙𝑖

′ 

    −𝑞𝜙𝑖𝑓𝑖
′ − 𝐾𝜙𝑖 − 𝜉 (𝑓𝑖

′ 𝜕𝜙𝑖

𝜕𝜉
+ 𝑆𝑡 𝜃𝑖 − 𝜙𝑖

′ 𝜕𝑓𝑖

𝜕𝜉
) ||∞          (46) 

 

From Figures 3a to 3d, we observe that the accuracy of the 

PQLM is relatively high as we observe that the error is 

smaller than 10-30 after 30 iterations for all the equations. We 

also observe that the Figure 2a does not attain convergence 

after 40 iterations. This is as a result of the number of 

different functions that are present in Eq. (9) hence the need 

to iterate further to attain convergence. Nonetheless, we 

observe that the error after the 30th iteration is sufficient to 

conclude that the PQLM is a highly accurate method for 

solving similar problems. 

 

 
(a) Effect of iterations on the residual error norm for F 

 
(b) Effect of iterations on the residual error norm for G 

 

 
(c)  Effect of iterations on the residual error norm for 𝛩 

 

 
(d) Effect of iterations on the residual error norm for Ф 

 

Figure 3. Residual errors 

 

The influence of some parameters on the various flow 

profiles are investigated using specific values of other 

parameters. The value of the Schmidt number (Sc) is chosen 

to be more realistic, 0.22 water, at 25 0C at 1 atmospheric 

pressure and Prandtl number Pr=0.7 throughout the study 

unless stated otherwise. 

 

4.1 Skin friction 

 

In this section, we present the skin friction, local Nusselt 

number and local Sherwood number at selected time levels. 

We begin by validating our results by comparing to results 

obtained using the bivariate spectral quasilinearization 

method (BSQLM). Table 1 displays the comparison of the 

skin friction obtained using the PQLM and the BSQLM when 

fw=1,  Df = 0.3, p = 0.1, 𝛽 = ∞, M = 0.5, 𝛿 = 1, n = 0.1, K = 

4, q = 0.1, Pr = 0.7, St = 7.5, Sc = 0.22, and m = 2.  

We observe from Table 1 that the results are in excellent 

agreement with those obtained using the BSQLM. This 
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indicates that the PQLM produces the true approximate 

solutions to the problem under investigation. 

Table 2 displays the effect of Dufour, Soret and chemical 

reaction on the skin friction, Nusselt number and Sherwood 

number. 

 

Table 1. Comparison of skin friction -f''(ξ,0) obtained using 

the BSQLM and PQLM at different time levels (ξ) 

 
ξ BSQLM PQLM 

0.1 1.20896  1.208965 

0.3 0.863117 0.863117 

0.5 0.547564 0.547564 

0.7 0.287002         0.287002 

0.9 0.027817         0.027817 

 

Table 2. Effect of parameters on f''(ξ,0), g'(ξ,0), 𝜃′(ξ,0) and 

𝜙′(ξ,0) 

 
Df St K f''(ξ,0) g'(ξ,0) 𝜃′(ξ,0) 𝜙′(ξ,0) 

0.01 6 1 0.337433 0.24442 -1.09904 0.326587 

0.1 0.6 1 0.006082 0.21150 -1.02429 -0.58531 

0.2 0.3 1 0.000193 0.21076 -0.98630 -0.63456 

0.3 0.2 1 0.007583 0.21160 -0.95028 -0.65135 

0.1 0.6 0 0.189086 0.25041 -1.06529 -0.31612 

0.1 0.6 2 -0.07883 0.19752 -0.99988 -0.76640 

0.1 0.6 3 -0.13320 0.18993 -0.98192 -0.91167 

0.1 0.6 4 -0.17250 0.18511 -0.96754 -1.03614 

 

From Table 2, we observe that while keeping chemical 

reaction constant, increasing the effect of Dufour and 

decreasing Soret leads to decrease of the skin friction and 

Sherwood number while increasing the Nusselt number. We 

also observe that when the value of Dufour gets larger than 

the value of Soret, skin friction also increases. As chemical 

reaction parameter increases, we observe that the skin friction 

and Sherwood number decreases while the Nusselt number 

increases. 

 

4.2 Boundary layer distribution of velocities, temperature 

and concentration 

 

4.2.1 With varying of chemical reaction parameter K 

From Figures 4a to 4d, it is seen that both the primary and 

secondary flow decreases with increase in chemical reaction 

parameter. It is also observed that the temperature of the fluid 

increases due to increase in the chemical reaction while 

concentration of the fluid decreases. We also note that 

temperature decreases as chemical reaction increases when 

η>4 for blowing and η>6 for suction. We observe that the 

trends of the different profiles are similar regardless of the 

presence of suction or blowing. Figure 4c represents the 

temperature profiles for different values of K. In the 

neighborhood of the surface, the temperature profiles become 

maximum and then decrease and finally take asymptotic 

values. The decrease in the concentration profile in Figure 4d 

as the chemical reaction parameter is increased is due to the 

depletion of the chemical in the fluid. 

 

 
(a) Effect of K on the velocity profile 

 

 
(b) Effect of K on secondary velocity profile  

 
(c) Effect of K on temperature profile  

 
(d) Effect of K on concentration profile  

 

Figure 4. Effect of K 

 

4.2.2 With varying of Dufour Df and Soret St numbers 

Figures 5a to 5d display the combined influence of Dufour 

Df and Soret St on the velocity profiles, temperature profile 

and concentration profile. The variations are performed such 

that the differing values of Df and St give a constant value 
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when multiplied. The specified values of the other parameters 

are p=0.1, 𝛽=∞,  M=0.5, 𝛿 =1, n=0.1, K=4, q=0.1, Pr=0.7, 

Sc=0.22, and m=2. 

The available studies on the Dufour and Soret effects show 

that Df and St are arbitrary constants, which provides that 

their product is constant. It is observed from Figures 5a and 

5b that both primary and secondary velocities increase when 

there is an increase in the Dufour number and a 

corresponding decrease in the Soret number. An increase in 

Df causes a concentration gradient, and this concentration 

gradient plays an important role in the transportation of the 

heat energy from the solid boundary into the fluid, which 

results in an increase in the temperature as shown in Figure 

5c. The effect of Dufour and Soret numbers on the 

concentration field is found in Figure 5d. Increasing the 

Dufour number (while decreasing the Soret number) leads to 

a decrease in the concentration boundary layer thickness. 

 

 
(a) Effect of Df and St on the velocity profile 

 
(b) Effect of Df and St on secondary velocity profile 

 
(c) Effect of Df and St on temperature profile  

 
(d) Effect of Df and St on concentration profile  

 

Figure 5. Effect of K 

 

4.2.3 With varying of Hall parameter m 

Figures 6a to 6d display the effect of the Hall parameter m 

on the various profiles when p=0.1, 𝛽=∞, M=0.5, 𝛿=1, n=0.1, 

Df=0.4, q=0.1, Pr=0.7, St=7.5, Sc=0.22, and K=4. 

 

 
(a) Effect of m on velocity profile 

 
(b) Effect of m on secondary velocity profile  

 
(c) Effect of m on temperature profile  
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(d) Effect of m on concentration profile  

 

Figure 6. Effect of m 

 

We observe that an increase in the Hall parameter 

increases the primary velocity but decreases the secondary 

velocity as shown in Figures 6a and 6d. In Figures 6c and 6d, 

we observe that blowing has no effect on the temperature and 

concentration profiles as the Hall parameter is increased. 

During suction, however, we observe that the temperature 

cools down while concentration increases when the Hall 

parameter is increased.  

 

 

5. CONCLUSION 

 

In this paper, investigation was conducted on the combined 

effect of Hall, suction/blowing parameter, chemical reaction 

parameters, Dufour and Soret number on flow over a 

stretching/shrinking sheet. The PQLM was used to obtain 

some useful results needed to illustrate the flow 

characteristics of the fluid and their dependence on some 

certain parameters. 

 

• It was observed that increasing the chemical 

reaction parameter and Dufour number has a 

retarding effect on the velocity of flow field as well 

as concentration distributions. 

• The hydrodynamic and concentration boundary 

layer thickness were observed to decrease as a 

result of increasing chemical reaction or Dufour 

effect. 

• Velocity and temperature profiles with suction 

parameter (fw) were greater than velocity and 

temperature profiles of blowing parameter whereas 

the reverse effect is seen for concentration profile. 

• Increasing the Hall parameter retards the secondary 

velocity and temperature profiles while enhancing 

the primary velocity and concentration profiles. 

• The hydrodynamic and concentration boundary 

layer thickness were observed to decrease as a 

result of increasing chemical reaction. 

 

Future studies will consider the porous medium flow and 

deception effects where the fluid is polar fluids (fluids with 

local rotary inertia and couple stresses). The governing 

equations will be solved by a new numerical approach and 

numerical simulations will be performed.   
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NOMENCLATURE 

 

u, v, w Velocity components 

CP specific heat, J. kg-1. K-1 

g* gravitational acceleration, m.s-2 

Nu 

Sh 

local Nusselt number along the heat source 

Sherwood number 

T Temperature 

C 

n, p, q, A, B  

x, y, z 

D                  

M 

 

Greek symbols 

 

Concentration 

are positive constants 

axes  

species diffusivity   

magnetic parameter 

 

 thermal diffusivity, m2. s-1 

T thermal expansion coefficient, K-1 

𝛽 Casson parameter 

 solid volume fraction 

Ɵ dimensionless temperature 

µ dynamic viscosity, kg. m-1.s-1 

𝜌 

𝛽𝐶  

fluid density 

coefficient of expansion with concentration 

 

Subscripts 

 

 

p nanoparticle 

f fluid (pure water) 

fw nanofluid 

Grx local Grashof number 

Df Dufour number 

St Soret number 

Rex Local Reynolds number 

B0 strength of the magnetic field 

Tm mean fluid temperature 
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