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The modelling of an axisymmetric industrial quenched chromium steel bar AISI-SAE 

5147H, sea water cooled based on finite element method has been produced to investigate 

the impact of process history on metallurgical and material properties. Mathematical 

modelling of 1-Dimensional line (radius) element axisymmetric model has been adopted to 

predict temperature history and consequently the hardness of the quenched steel bar at any 

point (node). The lowest hardness point (LHP) is determined. In this paper hardness in 

specimen points was calculated by the conversion of calculated characteristic cooling time 

for phase  transformation t8/5 to hardness. The model can be employed as a guideline to 

design cooling approach to achieve desired microstructure and mechanical properties such 

as hardness. The developed mathematical model converted to a computer program. This 

program can be used independently or incorporated into a temperature history calculator to 

continuously calculate and display temperature history of the industrial quenched steel bar 

and thereby calculate LHP. The developed program from the mathematical model has been 

verified and validated by comparing its hardness results with commercial finite element 

software results. The comparison indicates reliability of the proposed model. 
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1. INTRODUCTION

Quenching is a heat treatment usually employed in 

industrial processes in order to control mechanical properties 

of steels such as hardness [1]. The process consists of raising 

the steel temperature above a certain critical value, holding it 

at that temperature for a specified time and then rapidly 

cooling it in a suitable medium to room temperature [2]. The 

resulting microstructures formed from quenching (ferrite, 

cementite, pearlite, upper bainite, lower bainite and 

martensite) depend on cooling rate and on chemical 

composition of the steel [3]. 

Quenching of steels is a multi-physics process involving a 

complicated pattern of couplings among heat transfer, because 

of the complexity, coupled (thermal-mechanical-metallurgical) 

theory and non- linear nature of the problem, no analytical 

solution exists; however, numerical solution is possible by 

finite difference method, finite volume method, and the most 

popular one - finite element method (FEM) [4]. During the 

quenching process of the steel bar, the heat transfer is in an 

unsteady state as there is a variation of temperature with time 

[5]. The heat transfer analysis in this paper will be carried out 

in 3- dimensions. The three dimensional analysis will be 

reduced into a 1-dimensional axisymmetric analysis to save 

cost and computer time [4, 6-10]. This is achievable because 

in axisymmetric conditions, there is no temperature variation 

in the theta Ɵ-direction and in z-direction, the temperature 

deviations is only in r-direction. The Galerkin weighted 

residual technique is used to derive the mathematical model. 

In this paper, 1-Dimensional line (radius) element will be 

developed. 

2. MATHEMATICAL MODEL

The temperature history of the quenched cylindrical steel 

bar at any point would like to be calculated; 3-dimensional 

heat transfer can be analyzed using 1-dimensional 

axisymmetric elements as shown in Figure 1.  

 The linear temperature distribution for an element (radius) 

line, T is given by:  

T(R)=a1+a2R (1) 

where, 

T(R)=nodal temperature as the function of R 

a1 and a2 are constants 

R is any point on the (radius) line element  

2.1 Shape function of the axisymmetric triangular element 

The shape functions were to represent the variation of the 

field variable over the element. The shape function of 

axisymmetric 1-Dimensional line (radius) element expressed 

in terms of the r coordinate and its coordinate as shown in 

Figure 2; 

Which are derived to obtain the following shape functions 

as shown; 
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Figure 1. This figure clearly showed the meshing of axisymmetric one dimensional line (radius) element from the entire domain, 

the selected 4 elements with 5 nodes and the boundary at node j [5] for an element 4 
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Thus the temperature distribution of 1-D radius for an 

element in terms of the shape function can be written as: 

 

T(R) = SiTi + SjTj = S(r)] {T} (3) 

 

where, [S(r)] = [Si      Sj] is a row vector matrix and {𝑇} = {
𝑇𝑖

𝑇𝑗
} 

is a column vector of nodal temperature of the element. 

Equation (3) can also be expressed in matrix form as: 
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Thus for 1-dimensional element we can write in general:  
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where, Ψi and Ψj represent the nodal values of the unknown 

variable such as in our case temperature also the unknown can 

be deflection, or velocity etc.   

 

 
 

Figure 2. One-dimensional linear temperature distribution 

for an element (radius) line in Global Coordinate system 

2.2 Natural area coordinate 

 

Using the natural length coordinates and their relationship 

with the shape function by simplification of the integral of 

Galerkin solution: 

The two length natural coordinates L1 and L2 at any point p 

inside the element are shown in Figure 3. from which we can 

write: 

 

 

(6a) 

 

 

(6b) 

 

 
 

Figure 3. Two-node line element showing interior point p  

and the two naturals coordinates L1 and L2 

 

Since it is a 1-D element, there should be only one 

independent coordinate to define any point P. This is true even 

with natural coordinates as the two natural coordinates L1 and 

L2 are not independent, but are related as: 
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The natural coordinates L1 and L2 are also the shape 

functions for the line element, thus: 

 

1

2

1 2,  
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2.3 Develop equation for all elements of the domain 

 

Derivation of equation of heat transfer in axisymmetric 1-

D  line (radius) elements by applying the conservation of 

energy to a differential volume cylindrical segment as shown 

in Figure 4; 

 

 
 

Figure 4. Axisymmetric element from an axisymmetric body 

 

Ein – Eout + Egenerated = Estored (12) 

 

The transient heat transfer within the component during 

quenching can mathematically be described by simplifying the 

differential volume term; the heat conduction equation is 

derived and given by;  
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 (13) 

 

kr = heat conductivity coefficient in r-direction, W/m∙°C.  

kθ = heat conductivity coefficient in θ-direction, W/m∙°C.  

kz = heat conductivity coefficient in z-direction, W/m∙°C. 

T = temperature, °C. 

q = heat generation, W/m3. 

ρ = mass density, kg/m3. 

c = specific heat of the medium, J/kg∙K. 

t = time, s. 

 

2.4 The assumption made in this problem was 

 

(1) For axisymmetric situations 1-D line (radius) element, 

there is no variation of temperature in the Z-direction as shown 

in Figure 1, because we already assumed that in steel 

quenching and cooling process of the steel bar is insulated 

from convection at the cross section of the front and back. It 

means that we have convection and radiation at one node only 

which is on the surface [node 5], in our research we focus to 

calculate LHP which is at [node 1], where it is the last point 

will be cooled, this give the maximum advantage to make our 

assumption more safe, because it is the last point which will 

effect by convection and radiation from the front and back 

cross section of the steel bar therefore we can write, (
𝜕𝑇

𝜕𝑧
= 0). 

(2) For axisymmetric situations, there is no variation of 

temperature in the θ-direction, because it is clear from Figure 

1 that the temperature distribution along the radius will be the 

same if the radius move with angle θ, 360o therefore, (
𝜕𝑇

𝜕𝜃
= 0). 

(3) The thermal energy generation rate(Ý) represent the rate 

of the conversion of energy from electrical, chemical, nuclear, 

or electromagnetic forms to thermal energy within the volume 

of the system. Such as conversion is the electric field which 

will be studied with details in the 2nd part of our research, 

however in this manuscript no heat generation therefore, �̇� =
0  

After simplifying, the Eq. (13) become; 
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And also known as residual or partial differential equation 
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  (15) 

 

2.5 Galerkin weighted residual method formulation 

 

From the derived heat conduction equation, the Galerkin 

residual for 1-Dimensional line (radius) element in an 

unsteady state heat transfer by integration the shape functions 

times the residual which minimize the residual to zero 

becomes; 

 

  
(16) 

 

where, [S]T = the transpose of the shape function matrix 

{ℜ}(𝑒) = the residual contributed by element (e) to the final 

system of equations. 

 

 
(17) 

 

2.6 Chain rule 

 

The term 1 and 2 of Eq. (17) can be re-arranged using the 

chain rule which states that; 
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Therefore, 𝑓𝑔− = (𝑓𝑔)− − 𝑓−𝑔 then 
𝜕
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Term 1 of Eq. (17) is rearranged thus; 
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(18) 

 

By substitute Eq. (18) in to Eq. (17), get 
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Term A is the heat Convection Terms and contributes to the 

Conductance and Thermal Load Matrix. Term B is the Heat 

Conduction Terms and contributes to the Conductance Matrix. 

Term C is the transient equation and contributes to the 

Capacitance Matrix. 

where,  
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Note: term (1) and term (3) contributed to the conductance matrix since 

they contains the unknown temperature {T}. Term (2) and (4) contributed to 
the thermal load matrix as Tf is the known fluid temperature. Term (3) and 

term (4) heat radiation very important if our heat treatment is Annealling 

[cooling in the furnace] or Normalizing [cooling in air or jet air], but can be 
ignore if the cooling is quenching in sea water as in our work. 

 

From earlier explanations derivation and after 

simplification we can formulate the conductance matrix in the 

r-direction for term B finally we get: 

Term B (the conduction term) contributes to the 

conductance matrix 
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(20) 

 

Similarly, Term C, the unsteady state (transient) which 

contributes to the Capacitance Matrix becomes: 

Term C (heat stored) contributes to the Capacitance Matrix 
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2.7 Construct the element Matrices to the Global Matrix 

 

The global, conductance, capacitance and thermal load 

matrices and the global of the unknown temperature matrix for 

all the elements in the domain are assembled i.e. the element's 

conductance, capacitance and thermal load matrices have been 

derived. Assembling these elements is necessary in all finite 

element analysis [11-13].  

Constructing these elements will result into the following 

finite element equation: 

 

 
( )
 

( )
 

( )  
( )

 
( )GG GG G

K T C T F+ =   (24) 

 

where: 
[𝐾] = [𝐾𝑐] + [𝐾ℎ] : is conductance matrix due to 

Conduction (Elements 1 to 4) and heat loss  through convection 

at the element’s boundary (element 4 node 5) as shown in 

Figure 1. 

{T}: is temperature value at each node, °C. 

[C]: is capacitance matrix, due to transient equation (heat 

stored) 

{�̇�}: is temperature rate for each node, °C/s. 

{𝐹} = {𝐹ℎ} + {𝐹�̇�}: is heat load due to heat loss through 

convection at the element’s boundary (element 4 node 5) and 

internal heat generation (element 4 node 5). 

 

2.8 Euler’s method 

 

Two point recurrence formulas will allow us to compute the 

nodal temperatures as a function of time. In this paper, Euler’s 

method which is known as the backward difference scheme 

(FDS) will be used to determine the rate of change in 

temperature, the temperature history at any point (node) of the 

steel bar [5, 14-17]. 

If the derivative of T with respect to time t is written in the 

backward direction and if the time step is not equal to zero 

(t0), we have; 
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With; 

�̇�= temperature rate (°C/s); T(t)= temperature at t s (°C); 

T(t-t)=temperature at (t-t) s, (°C) 

t = selected time step (s) and t=time (s) (at starting time, t-

0) 

By substituting the value of {�̇�}  into the finite element 

global equation, we have that; 
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From Eq. (27) all the right hand side is completely known 

at time t, including t = 0 for which the initial condition apply. 

Therefore, the nodal temperature can be obtained for a 

subsequent time given the temperature for the preceding time.  

Once the temperature history is known the important 

mechanical properties of the chromium steel bar can be 

obtained such as hardness and strength. 

 

 

3. APPLICATION 

 

3.1 Calculation the temperature history   

 

The present developed mathematical model is programmed 

using MATLAB to simulate the results of the temperature 

distribution with respect to time in transient state heat transfer 

of the industrial quenched chromium steel bar. The cylindrical 

chromium steel bar has been heated to 850°C. Then being 

quenched in sea water with Tsea-water = 32°C and convection 

heat transfer coefficient, hsea-water = 1250 W/m2∙°C [18]. The 

temperature history for the selected nodes of the cylindrical 

chromium steel bar after quenching is being identified in 

Figure 5 and Figure 6. The cylindrical bar was made from 

chromium steel 5147H, with properties as mentioned below 

[8-10, 18, 19]. 

Thermal capacity, ρc (J/m3∙°C) 

 
6

6

6

6

0 650 , (0.004 3.3) 10

650 725 , (0.068 38.3) 10

725 800 , ( 0.086 73.55) 10

800 , 9.55 10

T C c T

T C c T

T C c T

T C c

















  = + 

  = − 

  = − + 

 = 

， 

 

Thermal conductivity, k (W/m∙°C) 

 

0 900 , 0.022

48, 900 , 28.4
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In our case Eq. (27) becomes;  
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And their respective equation; 
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 
( )

 
( )4G

hF F=   (30) 

 

With the input data and boundary conditions provided, a 

sensitivity analysis is carried out with the developed program 

to obtain the temperature distribution at any point (node) of the 

quenched chromium steel bar. As an example, the transient 

state temperature distribution results of the selected five nodes 

from the center [W1] to the surface [W5] of the quenched steed 

bar which were computed are shown in Figure 5 and Figure 6. 

 

 
 

Figure 5. The axisymmetric one dimensional line (radius) 

element from the domain when the radius equal 12.5mm, the 

selected 4 elements with 5 nodes and the boundary at node j 

[2] for an element 4 

 

 
 

Figure 6. Graph of temperature history along WW cross-

section from MATLAB program 
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3.2 LHP Calculation 

 

3.2.1 Calculating the cooling time required 

In this study, we choose to calculate the cooling time 

between 800oC and 500oC [14, 20-26]. Where, the 

characteristic cooling time, relevant for phase transformation 

in most structural steels is the time of cooling from 800 to 

500°C (time t8/5) [7, 11-13, 27-29, 30]. 

tc= t800-t500 

From Figure 6 we can determine the time taken for node W1 

to reach 800oC,  

t800°C=9.216 sec. 

By the same way the time taken for node W1 to reach 500oC 

is t500°C=33.639 sec. 

So the Cooling time tc for node W1; 

tc=t500°C-t800°C=33.639–9.216 = 24.423 sec 

For nodes W2 to W5, the cooling time tc calculated by the 

same way, the final results shown in Table 1. 

 

3.2.2 Calculating the Jominy distance from Standard Jominy 

distance versus cooling time curve 

Cooling time, tc obtained will now be substituted into the 

Jominy distance versus cooling time curve to get the 

correspondent Jominy distance. Jominy distance can also be 

calculated by using polynomial expressions via polynomial 

regression via Microsoft Excel. 

In this paper the standard Table [30] will be used. Then 

Jominy distance of nodes W1 to W5 will be calculated by using 

the data from [30], the final results shown in Table 1, where 

the Rate of Cooling, ROC, was defined by; 

 

( )
500 800

800 -500 800 -5 0
/

0

c C C

C
C s

C C C
ROC

t t t 

   
= =

−
  

 

3.2.3 Predict the hardness of the quenched steel bar 

 

 
 

Figure 7. Hardness distribution along WW cross section for 

the nodes W1 to W5 from the centre to the surface 

respectively at half the length at the centre of the quenched 

steel bar 

 

Table 1. Cooling time, Cooling rate, Jominy distance and 

HRC for the nodes W1 to W5, sea water cooled 

 

Node tc (s) 
ROC (°C 

/s) 

Jominy-distance 

(mm) 

Hardness 

(HRC) 

W1 24.423 12.2835 15.594 48.360 

W2 24.369 12.3107 15.574 48.385 

W3 23.961 12.5203 15.426 48.571 

W4 22.295 13.4559 14.821 49.332 

W5 18.194 16.4889 13.345 51.486 

The HRC of chromium steel AISI-SAE 5147H can be 

calculated by using the relation between the J-Distance and the 

HRC from the Practical date Handbook, the Timken Company 

1835 Duebex Avenue SW Canton, Ohio 44706-2798 1-800-

223, the final results shown in Figure 7 and Table 1. 

 

 

4. MATHEMATICAL MODEL VERIFICATION  
 

The same data input for the steel properties and boundary 

condition used in the mathematical model is applied to the 

ANSYS software to verify the temperature simulation results. 

The temperature distribution from the ANSYS analysis is 

depicted figuratively as shown in Figure 8a and Figure 8b; 

 

 
 

Figure 8a. The temperature distribution just before the steel 

bar becomes completely cooled 
 

 
 

Figure 8b. The temperature distribution at the moment that 

the entire steel bar becomes completely cooled after 1511s 

 

The temperature time graph from the ANSYS analysis is 

depicted as shown in Figure 9; 

From the graphs shown in Figure 6 by mathematical model 

and Figure 9 by ANSYS, it can be clearly seen that the 

temperature history of the quenched steel bar have the same 

pattern. The heat transfer across the steel bar is uniform. From 

Figure 7 the cooling time, Jominy-distance and consequently 

the hardness of the quenched chromium steel 5147H at any 

point (node), even the lowest hardness point (LHP) is 

determined by ANSYS too, the final results shown in Table 2 

and Figure 10. 
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Figure 9. Temperature-time graph from ANSYS 

 

Table 2. Cooling time, Cooling rate, Jominy distance and 

HRC for the nodes A1 to A5, sea water cooled by ANSYS 

 

Node 
Cooling 

time, 

Cooling 

rate 

J-distance 

(mm) 
HRC 

A1 32.596854 9.20334 18.937 46.071 

A2 32.519782 9.22515 18.913 46.086 

A3 31.558004 9.50630 18.618 46.272 

A4 29.663021 10.1136 18.038 46.636 

A5 23.618155 12.7020 15.302 48.357 

 

 
 

Figure 10. Hardness distribution by ANSYS along AA cross 

section for the  nodes A1 to A5 from the centre to the surface 

respectively at half the length at the centre of the quenched 

steel bar 

 

From our results we found that in the mathematical model 

for the 1st node with W1 in the center, we found that 

HRC=48.360. While in ANSYS for the same node A1, we 

found that HRC=46.071. And for the nodes on the surfaces W5 

and A5, it was found that HRC=51.486 and 48.357 for the 

mathematical model and ANSYS respectively. From the 

above, it can be seen that there is a strong agreement between 

both results. The difference between all the results of the 

mathematical model and the ANSYS simulations can be 

accounted due to the fact that the ANSYS software is 

commercial purpose, and thereby has some automated input 

data. But the developed mathematical model is precisely for a 

circular steel bar axisymmetric cross section. 

However, there is strong agreement between both results 

and thereby the result is validated where, the comparison 

indicated reliability of the proposed model. Also the results 

showed that the node on the surface will be the 1st which 

completely cooled after quenching because it is in the contact 

with the cooling medium then the other nodes on the radial 

axis to the centre respectively and the last point will be 

completely cooled after quenching will be at half the length at 

the centre. Hence LHP will be at half the length at the centre 

of the quenched industrial chromium steel bar. It will be more 

important to know LHP once the radius of the quenched steel 

bar is large because LHP will be low, in other words will be 

lower than the hardness on the surface, that means increasing 

the radius of the bar inversely proportional with LHP. 

LHP calculation experimentally is an almost impossible 

task using manual calculation techniques also the earlier 

methods only used hardness calculated at the surface, which is 

higher than LHP, this has negative consequence which can 

result to the deformation and failure of the component. 

 

 

5. CONCLUSION  

 

A mathematical model of steel quenching has been 

developed to compute LHP of the quenched chromium steel 

5147H at any point (node) in a specimen with cylindrical 

geometry. The model is based on the finite element Galerkin 

residual method. The numerical simulation of quenching 

consisted of numerical simulation of temperature transient 

field of cooling process. This mathematical model was verified 

and validated by comparing the hardness results with ANSYS 

software simulations. From the mathematical model and 

ANSYS results, it is clear that the nodes on the surface [W5 

and A5] respectively cools faster than the nodes on the center 

[W1 and A1] because tCW5 less than tCW1 and tCA5 less than tCA1, 

this means that the mechanical properties will be different such 

as hardness where the hardness on the surface nodes [W5 and 

A5] will be higher than the hardness on the center nodes [W1 

and A1]. 
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