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When used to model buildings in model predictive controls (MPCs), artificial neural 

networks (ANNs) have the advantage of not requiring a physical model of the building, thus 

simplifying the development of the MPC. However, if the MPC is intended to operate on 

the HVAC control system of the building to unlock its energy flexibility, some specific 

issues associated to the use of ANNs could arise. Thus, in this work we give an insight on 

the use of ANNs in MPCs, focusing our analysis on some of the most relevant ANN 

architectures that can be used to predict the thermal demand of a building. Furthermore, the 

integration of MPCs in real buildings, along with the possibility to unlock energy flexibility 

by intervening on the comfort band, are discussed. Some issues related to the use of ANN-

based MPCs combined with the activation of energy flexibility (e.g., difficulty in training 

the ANN or in managing flexibility by the MPC) are also investigated.  
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1. INTRODUCTION

In the building sector, the possibility to use advanced 

controls such as model predictive controls (MPCs) allows to 

improve energy management and reduce the consumption of 

primary energy [1]. MPCs are based on dynamic models that 

allow to forecast the energy behavior of a building [2, 3]; in 

this way, an MPC is able to select proper control actions and 

decisions that can hinder future disturbances, while 

maintaining the system constraints [4]. 

Among the possibilities given by the use of MPCs in 

buildings, it should be mentioned the optimized integration 

with renewable energy sources (RESs) or energy storages, and 

in particular thermal energy storages (TESs). But MPCs could 

also be used to unlock the energy flexibility of a building. In 

buildings, energy flexibility can be referred to as a static or 

dynamic function suitable for control [5]. Buildings have the 

opportunity to activate their energy flexibility in two main 

ways: by using their thermal mass or insulation, or by 

operating on their HVAC (Heating, Ventilation and Air-

Conditioning) system. The latter flexibility mode can be 

unlocked by allowing the indoor temperature to vary in a wider 

comfort range, which is regulated on the basis of price signals. 

Based on this assumption, it is evident that if the HVAC 

system is managed by an MPC, then there should be the 

chance to enhance the flexibility unlocking, i.e. to improve and 

optimize the load shifting potential. 

In order to establish an optimal control strategy, an MPC is 

supposed to operate on an accurate representation of the 

building to be controlled [6]. According to the paradigm 

followed to model the building, it is possible to distinguish 

between white [7], grey [8], or black box models [9]. White 

box models (also defined physical-based models) are accurate 

representations of the building being examined, and thus 

require a detailed formulation of the building physical and 

thermal properties by means of energy and mass conservation 

equations. Their complexity is counterbalanced by the fact that 

they do not need training data in order to be developed. 

To reduce the complexity of white box models, grey box (or 

hybrid) models combine a partial theoretical structure, usually 

written in a parametric form, with training data that integrate 

the model itself. Given their hybrid nature, not all the internal 

parameters and equations can be therefore interpreted under a 

physical point of view. 

Black box models (or data-driven models), instead, are a 

pure mathematical formulation of the building, thus they do 

not require a physical knowledge of the building. Differently 

from white box models, however, data-driven models need to 

be trained with a large amount of data collected over a proper 

period, and such data are required to be statistically 

representative of the operation of the building under study. 

Over the last years, a category of black box models that has 

received lots of attention by researchers is that comprising 

artificial neural networks (ANNs). The structure of ANNs is 

inspired to that of a biological brain, i.e. the inputs of an ANN 

correspond to the dendrites of a biological brain, while the 

outputs of an ANN can be imagined as the axons of the same 

brain. The processing of the inputs takes place in the neurons, 

in the same fashion of a biological brain; neurons apply a 

nonlinear activation function on the input data and provide the 

corresponding outputs. Considering the possibilities offered 

by data mining, machine learning and big data [10], MPCs 
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using a building model based on ANNs are expected to 

improve both prediction capability and overall efficiency of 

residential systems. 

Analyzing the literature associated to the use of ANN-based 

MPCs in building, and to the activation of energy flexibility, 

it is possible to assess that a number of interesting papers has 

been published. For instance, in the work by Ferreira et al. [11] 

a discrete MPC using an ANN with a radial basis function 

architecture is proposed. The model is validated with 

experimental results carried out in a building of University of 

Algarve. According to the authors, the use of the ANN-based 

MPC allows to reach energy savings greater than 50%. In the 

paper by Ruano et al. [12], the authors discuss the 

development of an ANN-based MPC used to manage the 

HVAC system of a University building. Compared to standard 

temperature-regulated controls, the ANN-based MPC seems 

to provide results similar to those provided by Ferreira et al. 

[11]. Afram and Janabi-Sharifi [13] propose a supervisory 

controller based on an MPC to shift the heating and cooling 

loads of a residential building to off-peak hours. Analyzing the 

experimental results determined in a house used as case study, 

the authors show that the flexibility provided by the MPC 

allows to obtain a 16% cost saving compared to the use of 

standard controls based on fixed setpoints. In a review written 

by the same authors [14], another case study is evaluated, and 

it is assessed that cost savings from 6% to 73% can be achieved 

by controlling an HVAC system with an ANN-based MPC 

rather than by using standard thermostats. In the work by 

Mugnini et al. [15], an operative MPC is tested with two 

different building models: a physical-model based on a 

resistance-capacitance network, and a data-driven model 

based on an ANN. Although both models ensure an energy 

cost saving of about 16%, their behavior when actually 

implemented in the HVAC control system of the building is 

different; specifically, the physical-based model seems to 

follow the thermal dynamics of the building better than the 

ANN model, which shows some issues when energy flexibility 

is activated. 

The analysis of the literature reveals that ANN-based MPCs 

used in buildings have been studied in detail. However, 

according to the authors of the present work, there are two 

important aspects that have not been discussed in detail: a) the 

rise of issues associated to the use and training of ANNs in 

MPCs and b) the effects derived by unlocking energy 

flexibility when such MPCs are actually used in real buildings. 

Given the relevance that the two aspects could have on the 

performance of an MPC used in buildings, in this paper they 

will be discussed in detail and some recommendations will be 

provided in order to improve the prediction capability of an 

MPC using an ANN as building model. 

The paper is structured as follows. Section 2 describes some 

architectures of ANNs that could be used to simulate the 

thermal demand of a building, and their advantages and 

disadvantages when implemented in actual MPCs. Section 3 

depicts how energy flexibility can be unlocked in buildings 

when the HVAC system is being controlled by an ANN-based 

MPC. Section 4 highlights the issues that can occur when an 

ANN-based MPC is used to manage energy demand in a 

building. Finally, Section 5 reports the conclusions of the work. 
 

 

2. ARCHITECTURES OF ARTIFICIAL NEURAL 

NETWORK FOR BUILDING MODELS 
 

When an MPC is based on an ANN to predict the thermal 

demand of a building, it is fundamental having the availability 

of a relevant amount of training data that can be used to define 

the ANN itself. Before training, however, it is important 

selecting the proper architecture of ANN that represents the 

energy behavior of the building under study. The scope of the 

next subsections is therefore to provide some useful 

information about the typical ANN architectures that can be 

used as building model. Before examining in more detail such 

architectures, however, some general aspects related to the 

training and functioning of ANNs will be discussed first. 

 

2.1 Training of ANNs 

 

As highlighted in the introduction, artificial neural networks 

(ANNs) are mathematical models that reflect the functioning 

of a biological brain [16]. The inputs of the network (x) are 

processed by neurons, which apply a nonlinear activation 

function, g, and give the outputs of the network (y). Let us 

consider a feedforward multilayer perceptron ANN, consisting 

of one input layer, one output layer, and only one layer of 

neurons. This layer is usually referred to as hidden layer, 

because its activation values are not directly accessible from 

outside the network [16]. If the activation function in the 

output layer is defined by a function h, in general different 

from g, the mapping carried out by the ANN on the input layer 

can be written as: 

 

𝑦𝑘 = h(∑𝑤𝑘𝑗
′′

m

𝑗=0

g(∑𝑤𝑗𝑖
′

d

𝑖=0

𝑥𝑖)) (1) 

 

where, d denotes the number of inputs of the ANN, w’
ji is the 

weight and bias matrix of the inputs, m is the number of 

neurons in the hidden layer, and w’’
kj is the weight and bias 

matrix of the hidden layer. An example of ANN based on a 

feedforward multilayer perceptron architecture is depicted in 

Figure 1. 

 

 
 

Figure 1. ANN with a feedforward multilayer perceptron 

architecture 

 

Since ANNs are pure mathematical models with no physical 

meaning, they need to be trained with a set of available data. 

The objective of the training consists in determining the 

parameters that actually define an ANN, i.e. its weight and bias 

coefficients. Let us then consider a training dataset defined by 

an input vector xq = (x1
q, …, xd

q), where d denotes the number 
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of inputs of the ANN and q = 1, …, n is an index indicating a 

particular point of each input. Each input vector xq has a 

corresponding target vector tq = (t1
q, …, tc

q), which represents 

the desired values for the output yk (k = 1, …, c is the number 

of outputs in the ANN). In order to find suitable values for the 

weights and biases of the ANN, a good indicator is the square 

error between the desired target value tq
k and the 

corresponding value predicted by the ANN through the output 

yk, which is a function of xq and w, the vector of weights and 

biases. If the square error is summed over all datapoints, it is 

possible to write: 

 

𝐸 =
1

2
∑∑(𝑦𝑘(𝒙

𝑞 ,w) − 𝑡𝑘
𝑞
)
2

c

𝑘=1

n

𝑞=1

 (2) 

 

Eq. (2) represents the error function used in the training of 

the ANN. As can be noted, E is a function of the vector of 

weights and biases, w, so it can be fitted to the training data by 

selecting a value of w that minimizes E. The minimization of 

E can be carried out in an efficient way using a technique 

called error backpropagation [16]. 

The set of available data for the system under study needs 

to be studied carefully, in order to train the ANN only with the 

inputs that mostly influence the objective targets. If the 

physics of the building under study is not simple, statistical 

approaches based on factor analysis can be used to select the 

most relevant inputs. If, instead, the thermal dynamics of the 

building is not entirely unknown, then the operator can 

manually select the variables that, based on proper evaluations, 

are supposed to be the most relevant for the building dynamic 

evolution. Usually, input variables that can be easily measured 

or collected from typical meteorological years, and that 

directly influence the thermal load of a building, are the 

outdoor temperature, the relative/absolute humidity of the air, 

wind speed, and solar radiation. Other inputs that influence 

thermal load, but related to the indoor environment, are the 

indoor temperature, the indoor relative/absolute humidity, and 

the internal gains (lightning, presence of occupants, appliances, 

etc.). 

Once the inputs (and the output, which in the present case is 

the thermal load of the building) have been defined, it is 

necessary to choose a proper amount of data to be used for the 

ANN training. This procedure requires great care, because if 

the dataset is too small, this could lead to a poor interpolating 

performance of the network. If the dataset is too large, on the 

other hand, an overfitting issue could occur. Overfitting 

amplifies the interpolating capacity of the network, and as a 

result the trained ANN could provide inadequate performance 

when processing new input data. A simple way to avoid 

overfitting lies in the use of a reduced dataset that can be 

considered statistically representative of the building behavior. 

For instance, if the thermal behavior in the cooling season has 

to be investigated, a dataset collected for a week and with at 

least an hourly resolution (for a total of 168 datapoints) could 

represent a good compromise. Datasets with a higher hourly 

resolution, on the other hand, could improve the dynamic 

response of the ANN. 

When the ANN has the purpose to represent a building 

model in an MPC to be used to activate energy flexibility in 

the real building, the dataset provided to the network should 

be representative of the flexibility condition in the building. In 

other words, if the MPC operates on the HVAC control system 

to modify the indoor setpoint temperature in order to unlock 

flexibility, then the dataset used to train the ANN should not 

refer to a standard, fixed setpoint condition. In this case, in fact, 

the performance of the ANN under a flexibility condition 

would be poor, as during the training process the ANN would 

not be able to “see” a correlation between the output (i.e., the 

thermal load) and the input variable (the indoor temperature). 

To overcome this issue, the ANN needs therefore to be trained 

with a dataset obtained with variable indoor setpoint 

temperatures, belonging to a comfort band that is specifically 

defined for the problem under evaluation.  

During the training process, overfitting issues can be further 

reduced by dividing the chosen starting dataset into three 

subsets: a training set, a validation set, and a test set. While the 

subdivision of datapoints is usually random, there is no general 

rule to choose a priori the best percentage size of each subset. 

Generally, a good choice is to assign to the training set a 50-

60% of the entire dataset, while the remaining points can be 

assigned equally to the validation and the test sets. The 

parameters of the ANN, i.e. the values used for its weight and 

bias coefficients, are determined through the error 

minimization process described by Eq. (2), which uses for xq 

and tq only the values contained in the training set. The 

datapoints provided with the validation set, instead, are used 

during the training process as an internal interrupt criterium to 

stop the training if overfitting occurs. Basically, when the 

minimization algorithm verifies that the square error for the 

validation set stops to decrease and begins to increase, the 

training process is interrupted and the ANN coefficient values 

corresponding to the last error minimization iteration are 

selected. It is important to note that, differently from the error 

for the validation set, the error for the training set can never 

increase, thanks to the backpropagation algorithm. The test set 

is finally used to evaluate the ANN performance after training, 

in order to determine its prediction capability with new input 

data. To study energy flexibility in a building, a good 

prediction capability of the network with new data is 

fundamental, as the thermal behavior of the building could be 

rather different even for small variations of the variable 

controlled by the MPC (as seen, indoor temperature, usually). 

To conclude this subsection, it should also be noted that a 

reasonable and representative amount of data in the training 

dataset cannot be sufficient to avoid overfitting. A last, 

additional precaution lies in choosing an appropriate number 

of neurons and hidden layers. As it was proved that even one 

hidden layer of neurons is sufficient to fit complicated, non-

linear problems [16], additional hidden layers should only be 

used for particular applications. As regards the correct number 

of neurons to be used in the hidden layer, a general rule does 

not exist; thus, a good approach consists in training several 

ANNs with a different number of neurons, and check which 

configuration represents the best compromise between 

interpolating performance of the network and overfitting. 

 

2.2 Fitting ANNs 

 

When the goal of an ANN used in an MPC is to estimate the 

thermal demand of a building, a so-called fitting ANN 

represents a good choice. Fitting ANNs generate a map 

between the input set and the output set, resulting in a complex 

correlation that can be used to determine thermal demand with 

new data. 

Generally, fitting ANNs have a feedforward architecture 

and the error backpropagation is solved with the Levenberg-

Marquardt algorithm. To evaluate the performance of the 
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network, indicators such as regression analysis and RMSE 

(Root Mean Square Error) are typically used. 

The neurons in the hidden layer use a hyperbolic tangent 

sigmoid as activation function, or similar curves, while in the 

output layer a linear activation function is generally used. 

 

2.3 Pattern-recognition ANNs 

 

If the thermal demand of a building is being satisfied with 

an HVAC device based on a traditional (ON/OFF logic) local 

control, such device generally works at its design nominal 

capacity. In this case, the modeling of the thermal demand 

basically consists in determining when the building needs to 

be heated or cooled, while the exact amount of energy 

transferred is of secondary importance. This kind of situation 

can be regarded as a Boolean problem. When a Boolean 

problem needs to be solved, a specific ANN architecture 

dedicated to classification problems can represent a good 

choice. 

ANNs dedicated to the resolution of classification problems 

are generally referred to as pattern-recognition networks. 

Pattern-recognition networks are feedforward networks that 

can be trained to classify inputs according to a set of target 

categories. 

The activation function used in the hidden layer of a pattern-

recognition ANN is usually a hyperbolic tangent sigmoid (or 

similar functions), while a convenient activation function to be 

used in the output layer is the softmax [17]. 

A good minimization algorithm that can be used for the 

training of the network is the scaled conjugate gradient 

backpropagation [18], while the evaluation of the ANN 

performance is generally carried out by means of a cross-

entropy approach [19]. 

 

2.4 Dynamic ANNs 

 

When the input data are time dependent, the function that 

describes the problem is dynamic, i.e. it has memory of what 

occurred in the past. In these situations, past information can 

be used to predict the future behavior of the dynamic system. 

Regarding the thermal demand of a building as a dynamic 

function, it is possible to predict its behavior in the future by 

training a so-called dynamic ANN. 

Dynamic systems can be influenced either or not by external 

input signals. If the input signal is absent, the problem is 

referred to as a time-series prediction problem, and the system 

is defined as noise driven, since its output can be only 

influenced by external disturbances. Models having no input 

signals are called autoregressive (AR). When, instead, there is 

at least one input signal that influences the system, the model 

is referred to as autoregressive with extra input signals (ARX). 

ANNs dedicated to the resolution of AR and ARX problems 

are generally defined as, respectively, NAR (Neural 

AutoRegressive) and NARX (Neural AutoRegressive with 

eXtra input signals). 

NAR(X) models can be linear or nonlinear, depending on 

the choice of the mapping type, and are based on a feedforward 

architecture. The remaining aspects related to NAR(X) models 

can be generally regarded as discussed previously for fitting 

ANNs. 

NAR(X) models can be very attractive to simulate the 

dynamic of a building, and in particular its thermal demand, 

but their use can be difficult when energy flexibility is taken 

into account. The response of the building when energy 

flexibility is activated, in fact, can be rather variable, and the 

past information could worsen the performance of the network 

instead of improving its prediction capability. 

 

 

3. INTEGRATION OF MPCS IN BUILDINGS AND 

UNLOCKING OF ENERGY FLEXIBILITY 

 

The typical structure of an MPC used to control the HVAC 

system of a building is composed of two parts: the building 

predictive model and the optimizer (Figure 2). The building 

predictive model must be able to forecast the building dynamic 

energy response in a certain period defined prediction horizon. 

It should be noted that there is no general rule to select the 

optimal prediction horizon; however, it is simple realizing that 

while a too short prediction horizon could lead to a poor 

performance of the MPC, because its field of action is too 

limited, a too long prediction horizon could be unreliable, due 

to the degree of uncertainty associated to all prediction data. 

Thus, the best prediction horizon can be usually found through 

a trial-and-error technique. As discussed in the introduction, 

the use of a black box model based on an ANN allows, respect 

to white and grey box models, to take advantage of the 

availability of data, and to perform a continuous improvement 

of the model itself when new data become available. 

 

 
 

Figure 2. MPC used to control the HVAC system of a 

building 

 

The optimizer has the goal to solve the optimization 

problem related to the system under study. In order to have a 

valid solution for the problem, and to allow the optimizer to 

determine the best control actions that maximize the 

performance, it is important defining a proper objective 

function and respecting all the system constraints, which are 

generally extended respect to traditional comfort bands to 

improve the activation of energy flexibility. Another way to 

incentivize the use of flexibility is linked to the objective 

function, which can include penalty signals defined by the user 

(usually according to a dynamic energy cost tariff or other 

similar conditions). Since the ANN mapping of the thermal 

demand is nonlinear, the optimization algorithm should use a 

solver based on gradient methods, that use an initial value for 

the thermal demand as first attempt of solution. 

Once, at the first timestep, the initial solution of the 

optimization problem has been found, the MPC moves 

forward the prediction horizon and repeats the optimization, 

updating the best control action at each timestep by following 

a receding horizon logic [20]. When the entire prediction 

horizon has been evaluated, the control action chosen by the 

MPC is sent to the HVAC control system; this operation is 
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usually being repeated for a time resolution equal to that of the 

available data. 

The performance of the MPC can be evaluated by means of 

statistical indicators such as RMSE, which is generally 

calculated between the results of the model and the 

performance provided by the reference case. 

 

 

4. ISSUES IN MPC USING ANNS AS BUILDING 

MODELS 

 

The use of black box models such as ANNs as building 

models in MPCs has considerable advantages, and among 

them it is worth remarking the possibility of using data 

provided by field measurements, as well as no need to define 

a thermal model of the building. These advantages, however, 

are strictly correlated to other issues that often occur when 

ANNs are used to model the thermal behavior of a building. 

Specifically, three different issues can be found for an ANN 

dedicated to the aforementioned purpose: a) difficulty in the 

training of the ANN; b) errors in the prediction of the thermal 

demand; c) difficulty in managing energy flexibility with the 

MPC used in the real building. 

The first issue a) has been already discussed in Section 2.1, 

when some aspects related to the training process of an ANN 

have been analyzed. Referring to the specific case of a building 

model that should be able to take into account energy 

flexibility, a critical aspect lies in the use of an adequate 

dataset, which should highlight a clear correlation between the 

controlled variable (e.g., indoor temperature) and the output of 

the model (thermal demand, with its curve modified according 

to the unlocking of energy flexibility). It is therefore important 

training the network with a dataset that already accounts for 

the effects of flexibility in the building; otherwise, the ANN 

would not be able to simulate such effects. If the dataset is only 

referred to a building controlled by means of standard 

thermostatic controls, additional measurements or simulation 

should be carried out in order to detect and collect the effects 

associated to energy flexibility. 

Provided that issue a) is dealt with correctly, there always 

exists the possibility that the ANN is not able to evaluate 

thermal demand properly (issue b). When we say “errors in the 

prediction of the thermal demand”, we do not refer to the fact 

that there is a certain deviation between the results of the ANN 

and the training dataset. This deviation, in fact, could be 

opportunely reduced by modifying the architecture of the 

ANN or by changing the training parameters. Instead, with 

regards to issue b), we mean that the prediction capability of 

the ANN could result in amplified deviations when new 

situations (combinations of outdoor and indoor variables for 

the building) are provided to the network. This issue cannot be 

solved easily and requires a careful evaluation of the 

performance of the MPC when integrated in the real building. 

In extreme cases, the ANN should be trained again (perhaps 

with a reinforcement learning approach [21]) with new data 

that take into account behaviors of the building that the 

network fails to predict correctly. 

The last issue c) is directly related to the unlocking of 

energy flexibility in the building. In fact, the possibility given 

to the optimizer to work in a larger comfort band could result 

in an MPC that tends to operate often near the boundaries of 

the defined comfort band. As a consequence, the thermal 

comfort quality in the building could be significantly 

worsened respect to the reference case, and in some scenarios 

this could not be acceptable. In the same fashion of issue b), 

there is no simple solution for this problem, which is likely 

dependent on the fact that a black box model, having no 

information on the thermo-physics of the building as well as 

no details on the behavior of the occupants, struggles to 

simulate energy flexibility properly. As indicated for issue b), 

reinforcement learning could represent a valid technique to 

bypass the problem. 

 

 

5. CONCLUSIONS 

 

In this paper, the role of artificial neural networks (ANNs) 

as building models of model predictive controls (MPCs) has 

been investigated. Specifically, an insight on several issues 

that could occur when training the ANN to predict thermal 

demand and using the ANN-based MPC to unlock the energy 

flexibility of a building has been provided. 

Based on the analysis of some relevant architectures of 

ANNs and their implementation in MPCs operating in real 

buildings, the following three issues have been outlined. 

a) Difficulty in training the ANN. The dataset used to train 

the network should already account for the effects of energy 

flexibility in the building, otherwise the ANN will not likely 

be able to simulate the corresponding effects. 

b) Errors in the prediction of the thermal demand. New 

situations, intended as new combinations of indoor and 

outdoor variables of the building, could significantly worsen 

the prediction capability of the ANN. This issue could be 

solved by training the ANN again with the new data, or by 

using a reinforcement learning approach. 

c) Difficulty in the management of energy flexibility by the 

MPC in real buildings. Working near the boundaries of the 

defined comfort band, the thermal comfort quality of the 

building could result in unacceptable conditions for its 

occupants. This is the most challenging issue to be solved, and 

reinforcement learning could represent a practical solution. 
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NOMENCLATURE 

 

ANN artificial neural network 

c number of outputs 

d number of inputs 

E error function 

g activation function in the hidden layer 

h activation function in the output layer 

HVAC heating, ventilation and air-conditioning 

m number of neurons 

MPC model predictive control 

n number of datapoints 

NAR neural autoregressive 

NARX neural autoregressive with extra inputs 

RES renewable energy source 

RMSE root mean square error 

t target vector 

TES thermal energy storage 

w vector of weights and biases 

x input variable 

x input vector 

y output variable 

Y 

 

output vector 

Subscripts 

 

 

i i-th input 

j j-th neuron 

k k-th output 

q n-th datapoint 
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