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Traffic flow prediction is popular research of ITS. Traffic flow prediction models based on 

machine learning have recently been widely applied. In this study, we use machine learning 

algorithms, heuristic algorithms, and parallelization technology to propose a traffic flow 

prediction model based on Relevance Vector Machine called Genetic Algorithm and 

Particle Swarm Optimization based on spark parallelization optimized Combined kernel 

RVM (SPGAPSO-CKRVM). First, combined kernel functions are constructed based on 

common kernel functions. Second, a parameter optimization algorithm is proposed to 

optimize the parameters of combined kernel functions by Genetic Algorithm and Particle 

Swarm Optimization. To reduce time consumed by the parameter optimization algorithm, 

we parallel the parameter optimization algorithm by Spark. Finally, the proposed model is 

verified with the real data of Whitemud Drive in Canada. The experimental results indicate 

that SPGAPSO-CKRVM has greater accuracy than other prediction models and 

parallelization technology reduce time consumed by the parameter optimization algorithm 

significantly. 
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1. INTRODUCTION

The predecessor of Intelligent Traffic Systems (ITS) is 

Intelligent Vehicle Highway System (IVHS). ITS combines 

with advanced science and technology such as information 

technology, sensor technology, automatic control theory, 

operational research, and artificial intelligence to improve 

transportation industry. Applications and research of ITS 

involve highway, railway, civil aviation, water carriage and 

other modes of transportation [1-3]. Traffic flow prediction is 

a part of ITS. Travelers and government sectors can receive 

real-time traffic information and basis of decision for traffic 

congestion by accurate and reliable results of traffic flow 

prediction. Sensor systems installed on various road types 

provide traffic network flow, speed, lane occupancy and other 

information to realize short-term traffic flow prediction. How 

to improve the accuracy of traffic flow prediction has always 

been a research focus in ITS [4, 5]. Traffic flow prediction is 

a typical time series prediction problem [6]. Machine learning 

and deep learning provide significant solution for solving 

complicated time series prediction problems. At present, many 

machine learning and deep learning algorithms have been used 

to predict traffic flow, but the accuracy and efficiency of 

algorithms still have room for improvement. Relevance vector 

machine (RVM) has extremely short testing speed and 

excellent generalization ability [7]. RVM is widely used in 

traffic flow prediction due to periodicity, tidal nature and 

nonlinearity of traffic flow and demand for real-time 

prediction [4]. Based on the above reasons, this paper 

combines RVM, heuristic algorithms and parallelization 

technology to construct an accurate and efficient traffic flow 

prediction model called SPGAPSO-CKRVM. The main 

contributions of this paper are summarized as follows:  

• First, we implement RVM based on common kernel

functions and combined kernel functions. A new measurement 

called Peak Hours Accuracy is proposed to evaluate capability 

of kernel function in traffic flow prediction. According to the 

experimental results, we select a combined kernel function 

which combine Polynomial kernel and Gaussian kernel as the 

kernel function of RVM to realize prediction model.  

• Second, for the parameter optimization of combined

kernel functions, Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO) are used to build a hybrid parameter 

optimization algorithm in this paper. Because the parameter 

optimization algorithm is time-consuming, we use 

parallelization technology based on Spark to parallel 

parameter optimization algorithm to improve efficiency of 

algorithm. We name this traffic flow prediction model 

SPGAPSO-CKRVM. This is the first time to introduce Spark 

into parameter optimization of RVM.  

• Third, we proved that SPGAPSO-CKRVM has better

prediction accuracy and efficiency than traditional methods by 

analyzing experimental results. 

The remainder of this paper is organized as follows: the 

related works are discussed in Section 2. Section 3 outlines the 

principle of RVM. Section 4 introduces traffic flow prediction 

model called SPGAPSO-CKRVM. Section 5 carries out 

experiments and analyzes the experimental results. Finally, 

Section 6 draws the conclusion. 

2. RELATED WORK

There are two main types of research about traffic flow 

prediction. One type is driven by models. They predict traffic 

flow by using Auto Regression Moving Average Model 

Revue d'Intelligence Artificielle 
Vol. 34, No. 3, June, 2020, pp. 257-265 

Journal homepage: http://iieta.org/journals/ria 

257

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.340303&domain=pdf


 

(ARMA) [8], Autoregressive Integrated Moving Average 

Model (ARIMA) [9], Kalman Filtering [10] and other models. 

These methods usually assume that time series data is 

generated by a linear process. So, they establish the 

relationship among time series data based on a linear relation. 

Therefore, although the calculation is simple, the accuracy is 

poor.  

The second one such as Support Vector Machine (SVM), 

Recurrent Neural Network (RNN), RVM and other machine 

learning and deep learning algorithms is driven by data. Cao 

and Xu [11] proposed a traffic flow prediction method based 

on SVM optimized by PSO. It is proved that SVM combined 

with intelligent algorithms is suitable for prediction traffic 

flow. Tian et al. [12] proposed a novel approach based on Long 

Short-Term Memory (LSTM) to predict traffic flow. In 

addition, the multiscale temporal smoothing is employed to 

infer lost data in this approach. Fu et al. [13] used LSTM and 

Gated Recurrent Unit (GRU) to forecast traffic flow 

respectively. The experimental results show that GRU 

outperforms LSTM and is significantly better than ARIMA. In 

recent years, deep models based on deep learning gradually 

favored by scholars. The deep models improve capability by a 

new method which extracts the feature of traffic flow 

information before prediction traffic flow. CNN-LSTM is the 

most popular one among the deep models [14]. CNN-LSTM 

extracts the feature such as spatiotemporal feature and periodic 

feature by convolutional layer to generate a new feature data 

set. Then input it into LSTM for prediction traffic flow [15]. 

Liu et al. [16] proposed CNN-Bi-LSTM by replacing LSTM 

in CNN-LSTM with Bidirectional Long Short Memory 

Network(Bi-LSTM). CNN-LSTM has better accuracy than 

other deep learning algorithms based on RNN. Extracting 

feature by convolutional layer can be regarded as reducing 

dimensionality of data. So, CNN-LSTM has better efficiency 

than LSTM and GRU, but the advantage is not significant in 

traffic flow prediction. 

RVM was proposed as a sparse probability model based on 

Bayesian frame in 2000. RVM has extremely short testing 

speed and prediction accuracy similar to SVM, LSTM and 

GRU. Therefore, RVM is often regarded as an optimized 

version of SVM. The parameter optimization of RVM kernel 

functions is an unavoidable problem for every research about 

RVM. Accuracy of RVM without parameter optimization is 

not ideal. For this problem, Jin and Hui [17] used GA to 

optimize RVM to prove that the intelligent algorithms improve 

capability of RVM. Shen et al. [18] proposed a hybrid 

algorithm called Chaos Simulated Annealing Algorithm (CSA) 

and used it to optimize RVM to predict traffic flow. This 

method has better prediction accuracy than model-driven 

methods such as seasonal auto regressive integrated moving 

average (SARIMA). Shen et al. [19] also used CSA to 

optimize RVM. By comparing with RVR-GA, SVR-GA, 

BPNN-GA and other algorithms, Shen et al. proved that their 

method has better capability. They only used the advantage 

that RVM has short testing time in their respective prediction 

models without considering the efficiency of parameter 

optimization algorithms of RVM. In previous research, for 

machine learning algorithms such as SVM and RVM, we 

found that the time consumed by the parameter optimization 

algorithm accounts for 80%-95% of the overall training time 

[4]. The efficiency of parameter optimization algorithms 

greatly affects the efficiency of overall algorithm. 

Currently, the efficiency of parameter optimization 

algorithms in machine learning is researched less. Most of this 

research focus on Grid Search (GS). Wu and Ning [20] used 

Hadoop to parallel GS and used it to optimize SVM. This 

method can only increase the efficiency of GS by 50%. Li et 

al. [21] paralleled GS by Spark, based on this design, proved 

that using of Spark parallelization technology can improve the 

efficiency of parameter optimization algorithms significantly 

without reducing its accuracy. 

 

 

3. PRINCIPLE OF RELEVANCE VECTOR MACHINE 

 

RVM is a supervised learning algorithm proposed by 

Micnacl E. Tipping in 2000. RVM has the advantages of SVM 

and overcomes the disadvantages of SVM such as support 

vectors too many to calculate slowly, long testing time, kernel 

functions must meet Mercer’s theorem [7]. Micnacl E. Tipping 

realize RVM as a sparse model with Automatic Relevance 

Determination (ARD) to reflect the central features of data and 

reduce calculation in testing step. The basic mathematical 

model of RVM can be represented as: 

 

𝑦(𝑥, 𝜔) = ∑𝜔𝑖

𝑁

𝑖=1

𝐾(𝑋, 𝑋𝑖) + 𝜀𝑛 (1) 

 

where, ωi is weight of sample. ωi is non-zero when Xi belongs 

to the relevance vector. K(X, Xi) is kernel function of RVM. N 

is total number of samples. εn is Gaussian noise that follows 

Gaussian distribution (0, σ2). For tn=y(x, ω)+εn, since tn is 

independently distributed, the likelihood function of training 

set as follows:  

 

𝑃(𝑡|𝜔, 𝜎2) ∼ 𝑁(0, 𝜎2) 

𝑃(𝑡|𝜔, 𝜎2) = (2𝜋𝜎2)−
𝑁
2 𝑒𝑥𝑝 (−

1

2𝜎2
‖𝑡 − 𝜙𝜔‖2) 

(2) 

 

If Eq. (2) is directly maximized by Structural Risk 

Minimization (SRM) will cause serious overfitting problems. 

Therefore, 𝜔𝑖 should be defined to satisfy the Gaussian prior 

probability distribution. It is as follows: 

 

𝑃(𝜔|𝛼) = ∏ 𝑁(𝜔𝑖|0, 𝛼𝑖
−1)

𝑁

𝑖=0

= ∏ √
𝛼𝑖

2𝜋

𝑁

𝑖=0

𝑒𝑥𝑝 (−
𝛼𝑖

2
𝜔𝑖

2) 

(3) 

 

where, α=[α0, α1, α2, …, αN]T is hyperparameter that 

determines the prior distribution of ωi. The posterior 

distribution of ωi can be calculated by Bayesian formula as 

follows:  

 

𝑃(𝜔|𝑡, 𝛼, 𝜎2) =
𝑃(𝑡|𝜔, 𝜎2)𝑃(𝜔|𝛼)

𝑃(𝑡|𝛼, 𝜎2)
 (4) 

 

where, P(ω|t, α, σ2) follows Gaussian distribution. It’s mean 

value and covariance can be represented as: 

 

𝜇 = 𝜎-2𝜌𝜙𝑇𝑡 (5) 

 

𝜌 = (𝜎-2𝜙𝑇𝜙 + 𝐴)-1, 𝐴=diag(𝛼0, 𝛼1, … , 𝛼𝑁) (6) 

 

For estimating weights of the model, the optimal value of 
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hyperparameters should be estimated firstly. Suppose α 

follows the Gamma Distribution, the likelihood distribution of 

hyperparameters can be represented as:  
 

𝑃(𝑡|𝛼, 𝜎2) = ∫𝑃(𝑡|𝜔, 𝜎2) 𝑃(𝜔|𝛼)𝑑𝜔 (7) 

 

We can calculate an approximate solution (𝛼𝑀, 𝜎𝑀
2 )  by 

maximizing P(t|α, σ2). Then, repeat Eq. 8 by MacKay [22] and 

update µ and ρ simultaneously until meet the convergence 

condition.  
 

𝛼𝑖
𝑛𝑒𝑤 =

𝛾𝑖

𝜇𝑖
2 , (𝜎2)𝑛𝑒𝑤 =

‖𝑡 − 𝜌𝜇‖2

𝑁 − 𝜌𝑖𝛾𝑖

 (8) 

 

Most of αi tend to infinity and ωi corresponding to αi tend to 

zero during the iteration. That is why RVM is a sparse 

probability model. Where, samples learned by non-zero ωi 

called relevance vector. After the convergence process, we can 

estimate xp by Eq. (9) and Eq. (10).  

 

𝑃(𝑡𝑝|𝑡, 𝛼𝑀, 𝜎𝑀
2 ) = 𝑁(𝑡𝑝|𝑦𝑝, 𝜎𝑝

2) (9) 

 

𝑦𝑝 = 𝜇𝑇𝜙(𝑥𝑝), 𝜎𝑝
2 = 𝜎𝑀

2 + 𝜙(𝑥𝑝)
𝑇
𝜌𝜙(𝑥𝑝) (10) 

 

where, xp is the data to be tested. yp is predictive value of RVM.  

RVM has same functional form as SVM and deal with 

nonlinear problems by Kernel Trick. But RVM has shorter 

testing time than SVM because it is a sparse probability model 

and the accuracy is similar to SVM. So RVM is more suitable 

for predicting traffic flow.  
 

 

4. TRAFFIC FLOW PREDICTION MODEL BASED ON 

SPGAPSO-CKRVM 

 

4.1 Combined kernel  

 

In the current study, most of RVM used single kernel 

functions such as Linear kernel, Polynomial kernel, Gaussian 

kernel, Sigmoid kernel, and Laplace kernel to complete the 

mapping process in feature space. Where, Linear kernel and 

Polynomial kernel have better capability in single-dimensional 

and low-dimensional problems. Gaussian kernel and Sigmoid 

kernel are used widely in high-dimensional problems and 

classification problems. Single kernel functions have poor 

capability when the samples are large and distributed unevenly 

in the high-dimensional space [23, 24]. So, we combine single 

kernel functions to construct a combined kernel function. 

Combined kernel functions as shown in the Eq. (11) and Eq. 

(12). 

 

𝑓(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (−
‖𝑥 − 𝑥𝑖‖

2

2𝜎2
) 𝜆

+ (1-𝜆)[𝛾(𝑥𝑥𝑖 + 1)𝑑 + 𝑐] 

(11) 

 

𝑓(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (−
‖𝑥 − 𝑥𝑖‖

2𝜎2
)𝜆

+ (1-𝜆)[𝛾(𝑥𝑥𝑖 + 1)𝑑 + 𝑐] 

(12) 

 

There is no need to prove availability of the combined 

kernel functions shown in Eq. (11) and Eq. (12), because 

kernel functions of RVM do not need to meet Mercer’s 

theorem. The combined kernel functions make RVM get local 

learning ability of Gaussian kernel and Laplace kernel and 

generalization of Polynomial kernel. Where, σ is width of 

kernel function. γ determines the distribution of the data in 

high-dimensional space. λ is weight coefficient. It meets 

0≤λ≤1.  

 

4.2 Input of model  

 

In the current study, the time span of short-term traffic flow 

prediction is not shorter than 10 min. The shorter the time span, 

the more valuable the model. So, we deal with traffic flow data 

into 5 min time span. The input of the prediction model 

designed in this paper is: 

 

𝑋 = [

𝑥1⃗⃗  ⃗

𝑥2⃗⃗⃗⃗ 
⋯
𝑥𝑁⃗⃗ ⃗⃗  

] =

[
 
 
 
 𝑥1

𝑖−7𝑛,𝑗

𝑥2
𝑖−7𝑛,𝑗

…

𝑥𝑁
𝑖−7𝑛,𝑗

𝑥1
𝑖−7𝑛+7,𝑗

𝑥2
𝑖−7𝑛+7,𝑗

…

𝑥𝑁
𝑖−7𝑛+7,𝑗

…
…
…
…

𝑥1
𝑖−7,𝑗

𝑥2
𝑖−7,𝑗

…

𝑥𝑁
𝑖−7,𝑗

𝑥1
𝑖,𝑗−𝑚

𝑥2
𝑖,𝑗−𝑚

…

𝑥𝑁
𝑖,𝑗−𝑚

…
…
…
…

𝑥1
𝑖,𝑗−1

𝑥2
𝑖,𝑗−1

…

𝑥𝑁
𝑖,𝑗−1

𝑥1
𝑖,𝑗

𝑥2
𝑖,𝑗

…

𝑥𝑁
𝑖,𝑗

]
 
 
 
 

 (13) 

 

where, (𝑥1
𝑖,𝑗

, 𝑥2
𝑖,𝑗

, … , 𝑥𝑁
𝑖,𝑗

)
𝑇
 is the prediction target. i represents 

the date. j represents the time points. (xi,j-m, xi,j-m-1, …, xi,j-1) 

represents the traffic volume at 𝑚 time points before the jth 

time point in the ith day. (xi-7n,j, xi-7n+7,j, …, xi-7,j) represents the 

traffic volume at the jth time point in 𝑛 days before the ith day. 

The reason for this is, the traffic volume at a certain time is 

often affected by the traffic volume at the same time in the 

previous n weeks. m is often called “training step” or “time-

window”. m and n are positive integers. According to the 

experimental data we used, we set m=10, n=3. 

 

4.3 Parameter optimization algorithm of RVM based on 

combined kernel  

 

Parameter optimization problem of RVM based on 

combined kernel is different from general parameter 

optimization problem of RVM. λ in the combined kernel 

function as shown in Eq. (11) and Eq. (12) is also 

hyperparameter which need to be optimized. The 

mathematical model of the parameter optimization algorithm 

proposed in this paper as follows: 

 

𝑃 = {𝜎𝑏𝑒𝑠𝑡 , 𝜆𝑏𝑒𝑠𝑡 , 𝛾𝑏𝑒𝑠𝑡} (14) 

 

We design the parameter optimization algorithm of RVM 

with GA and PSO. First, initialize two populations randomly 

and run GA and PSO respectively based on the two 

populations to generate next generation population. A 

population represents many P. Then, choose the better one of 

the two populations by calculating the individual fitness in 

each iteration. Use the population which is chosen as input for 

the next iteration. Where, the update formula of σbest as follows:  

 

𝜎𝑏𝑒𝑠𝑡 = {
𝜎𝑔𝑎𝑏𝑒𝑠𝑡 , 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑔𝑎 ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑝𝑠𝑜

𝜎𝑝𝑠𝑜𝑏𝑒𝑠𝑡 , 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑔𝑎 ≤ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑝𝑠𝑜
 (15) 
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The update formulas of γbest and λbest are similar to Eq. (15). 

Because both GA and PSO optimize parameter with iteration, 

the parameter optimization algorithm designed by us takes 

advantages of GA and PSO simultaneously. Input {σbest, λbest, 

γbest} obtained by updating of σbest, γbest and λbest as parameters 

of RVM to calculate the accuracy pAccuracy of prediction model. 

Define pAccuracy as the objective function of the parameter 

optimization problem. We get:  

 

max𝑝𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = RVM{𝜎𝑏𝑒𝑠𝑡 , 𝜆𝑏𝑒𝑠𝑡 , 𝛾𝑏𝑒𝑠𝑡} 

𝑠. 𝑡. {
2𝜎𝑚𝑖𝑛 ≤ 𝜎𝑏𝑒𝑠𝑡 ≤ 2𝜎𝑚𝑎𝑥

𝛾𝑚𝑖𝑛 ≤ 𝛾𝑏𝑒𝑠𝑡 ≤ 𝛾𝑚𝑎𝑥

0 ≤ 𝜆𝑏𝑒𝑠𝑡 ≤ 1
 

(16) 

 

where, 2σmin and 2σmax mean variation range of σbest. Generally, 

2σmin=-8 and 2σmax =8. γmin and γmax mean variation range of γbest. 

Generally, γmin=0 and γmax=+∞. Terminate iteration of 

parameter optimization algorithm until the termination 

condition is met. The termination condition as follows:  

 

𝑚𝑖𝑛{𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑔𝑎 , 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑝𝑠𝑜} ≤ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑖𝑛 

𝑜𝑟 𝑇 ≤ 𝑇𝑚𝑎𝑥 
(17) 

 

where, fitnessmin is minimum fitness (i.e. acceptable minimum 

error of prediction model). T is times of iteration. Tmax is 

maximum times of iteration.  

 

4.3.1 Details of GA  

For parameter optimization algorithm of RVM, Binary 

encoding is the most common coding method. GA evaluates 

each P by fitness function to guide parameter optimization into 

a good direction. We use mean-square error (MSE) of RVM 

as fitness function.  

After calculating fitness, choose individuals in population 

by Roulette Wheel Selection. Then, use selected individuals to 

generate a new population with crossover and mutation [25]. 

 

4.3.2 Details of PSO  

PSO evaluates each P by MSE of RVM similarly as GA. 

Find individual extremum and global extremum by the results 

of calculating fitness [26]. Then update the speed and position 

of each particles by Eq. (18) and Eq. (19). 

 

𝑣 = 𝑣𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖) (18) 

 

𝑥 = 𝑥𝑖 − 𝑣𝑖  (19) 

 

where, v is updated velocity of particle. x is updated position 

of particle. vi is current velocity of particle. xi is current 

position of particle. c1 and c2 are called learning factor and 

determine the learning step. r1 and r2 are random numbers 

from zero to one. pbest is individual extremum. Gbest is global 

extremum.  

 

4.4 Time-consuming analysis of parameter optimization 

algorithm  

 

GA and PSO in parameter optimization algorithm designed 

in this paper can be divided into three parts—population 

initiation, population update and fitness calculation. The 

structure of parameter optimization algorithm is shown in 

Figure 1. 

 

Parameter optimization 

algorithm

Fitness 

calculation

population 

update

Population 

initiation

Speed update

Position update

Initialize population 

randomly

Calculate fitness of  

initial population

Calculate fitness of all 

individuals in updated 

population

PSO

Calculate fitness of  

initial population

Initialize population 

randomly

Roulette wheel 

selection

Crossover

Mutation

Calculate fitness of all 

individuals in updated 

population

GA

Divide Divide

 
 

Figure 1. The structure of parameter optimization algorithm 

 

As Figure 1 shows that population initiation includes two 

parts—initialize the population randomly and calculate fitness 

of the initial population. Population update includes five 

parts—roulette wheel selection, crossover, mutation, speed 

update and position update. Fitness calculation is responsible 

for calculating the fitness of all individuals in the updated 

population.  

Run parameter optimization algorithm designed in this 

paper twenty times to collect the time consumed by each part 

in the algorithm. Where, Tmax=20 and population size is 10. 

The results are shown in Figure 2.  

 

 
 

Figure 2. Time consumed by each part in parameter 

optimization algorithm 

 

The Figure 2 shows that fitness calculation consumes the 

most time and accounts for more than 90% of the total time. 

The time spends on population update with complex 

calculation logic only accounts for about 0.1% of the total time. 

So, for fitness calculation is the most time-consuming, we 

parallel parameter optimization algorithm to reduce runtime of 

calculation fitness by Spark.  

 

4.5 Parallel design 

 

Spark is a fast and universal computing engine designed for 

processing largescale data [27]. Spark can operate algorithms 

which require iterative calculation such as data mining 

algorithms and machine learning algorithms better than other 

computing engines. Parallel design of SPGAPSO-CKRVM 

depends on Resilient Distributed Datasets (RDD) in Spark 
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mainly [28]. The overall process of SPGAPSO-CKRVM is 

shown in the Figure 3. 

Step 1. Initialize parameters of Spark such as 

default.parallelism, executor.cores and num-executors. 

Default.parallelism is the default number of partitions in RDD. 

Executor-cores controls the number of cores occupied by each 

executor. Num-executors is total number of executors. Read 

experimental data from external files and normalize 

experimental data based on extremum to compress the data 

into [0, 1]. Normalized calculation as follows:  

 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (20) 

 

After normalizing data, generate multiple groups of {σbest, 

λbest, γbest} randomly as the initial population and create RDD 

with the initial population.  

Step 2. Divide the initial population into multiple 

subpopulations. Calculate the individual fitness of each 

subpopulation in parallel by map(). According to laziness of 

RDD, trigger the calculation of map() by collect() to convert 

subpopulations to lists. Then, operate SP-GA with some 

subpopulations and operate SP-SPO with others.  

Step 3. In SP-GA, choose individuals based on the 

calculation results of individual fitness and principle of 

roulette wheel selection. The probability that an individual is 

selected as:  

 

𝑃(𝑥𝑖) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑗)
𝑁
𝑗=1

 (21) 

 

It means that the better the individual, the greater 

probability that the individual is selected. Then, use selected 

individuals to generate a new population with crossover and 

mutation.  

In SP-PSO, update the speed and position of each particle 

according to Eq. (18) and Eq. (19) to generate a new 

population. Then, recalculate individual fitness in parallel by 

the method in Step2. Compare the individual fitness of 

individual in the two next-generation populations and keep the 

better one.  

Step 4. Decode the results obtained in STEP 3 to {σ, λ, γ}. 

Use the {σ, λ, γ} as parameters of RVM to verify pAccuracy of 

the model. If pAccuracy less than fitnessmin, output the {σ, λ, γ} as 

{σbest, λbest, γbest}. If pAccuracy more than fitnessmin, repeat Step 3. 
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Figure 3. Algorithm flow chart of SPGAPSO-CKRVM 
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5. EXPERIMENTS AND RESULTS ANALYSIS 

 

5.1 Experimental data  

 

The traffic flow data employed in the experiments were 

collected by the Intelligent Transportation Research Center at 

university of Alberta which used ground induction coils to 

collect data from Whitemud Drive motorway in Canada. 

Collection frequency of the data is 20s. The traffic flow data 

were obtained from 6 August 2015 to 27 August 2015 to 

construct a training set to train SPGAPSO-CKRVM and 

predict the traffic flow at 0:00 to 24:00 on 28 August 2015. 

The information for the selected traffic sections in the 

experiments is as follows:  

Sections 1: The eastbound lane of Whitemud Drive, station 

ID 1027 

Sections 2: The westbound lane of Whitemud Drive, station 

ID 1036 

Sections 3: The ramp of the westbound lane of Whitemud 

Drive, station ID 1042 

Use historical trend method and exponential smoothing 

method to repair data missed by fault of equipment [29]. Part 

of the experimental data after repairing as shown in Figure 4. 

As the Figure 4a shows, the experimental data has obvious 

continuity, periodicity, and tidal nature. As the Figure 4b 

shows, daily peak of traffic flow is from 7:00 to 9:00 and from 

16:00 to 19:00.  

 

 
 

(a) Data from August 6 to 19 at station ID 1027

 
(b) Data of three days at station ID 1027 

 

Figure 4. Part of the experimental data 

5.2 Experimental environment and related parameter  

 

We verify SPGAPSO-CKRVM with an 8-node Spark 

cluster built by virtual machines. The cluster includes CentOS-

6.10-x64, Spark2.1.1-bin-hadoop2.7, hadoop-2.7.2.tar, 

pyspark-2.3.2 and py4j-0.10.8.1. The parameters of 

SPGAPSO-CKRVM are shown in Table 1. 

 

Table 1. The parameters of SPGAPSO-CKRVM 

 
Parameter Value 

Population size 

Maximum times of iterations 

Minimum fitness 

Crossover rate 

Mutation rate 

Learning factor 

Particle velocity 

Particle position 

10 

20 

10−5 

0.6 

0.2 

1.5 

[-0.2,0.2] 

[-8,8] 

 

5.3 Experimental results analysis 

 

Because traffic congestion, travel delay, and road accidents 

mostly occur in daily peak of traffic flow, predicting the traffic 

flow in daily peak is more meaningful than predicting the 

traffic flow in other time [30-32]. For traffic flow prediction, 

a kernel function which predicts traffic flow in daily peak 

accurately should be considered to have greater performance. 

First, we use accuracy (i.e. 1-MAPE) to verify kernel function 

performance. In addition, we define Peak Hour Accuracy 

(PHA) (i.e. accuracy of predicting traffic flow from 7:00 to 

9:00 and from 16:00 to 19:00) to verify kernel function 

performance. The experimental results are shown in Table 2. 

Because the traffic data of ramp is more random and 

difficult to predict than the traffic data of general road, the 

accuracy of all kernel functions on Sections 1 and Sections 2 

are greater than that of Sections 3. As shown in Table 2, the 

performance of combined kernel functions (i.e. No.5 and No.6 

kernel functions) are generally better than the performance of 

the single kernel functions (i.e. kernel functions from No.1 to 

No.4.). Except in Sections 1, the accuracy of No.6 kernel 

function is always greater than that of No.5 kernel function. In 

all Sections, PHA of No.6 kernel function is always greater 

than that of No.5 kernel function. Therefore, we use No.6 

kernel function as the kernel function of RVM for subsequent 

experiments. 

Different prediction models based on machine learning and 

deep learning, namely the proposed SPGAPSO-CKRVM, 

SPGAPSO-SVM, GA-CKRVM, PSO-SVR, LSTM, CNN-

LSTM, CNN-GRU, CNN-Bi-LSTM were applied herein. 

Where, SPGAPSO-SVM represents SVM optimized by the 

same parameter optimization algorithm as SPGAPSO-

CKRVM. GA-CKRVM represents RVM based on combined 

kernel function optimized by GA. PSO-SVR represents a 

model based on SVM optimized by PSO. CNN-GRU 

represents a deep model based on CNN and GRU. Table 3 lists 

the RMSE, MAE and MAPE for the different prediction 

models. 

As shown in Table 3, PSO-SVR has the worst performance. 

Deep learning models based on RNN such as LSTM, CNN-

LSTM, CNN-GRU and CNN-Bi-LSTM are significantly 

better than models based on SVM. SPGAPSO-SVM and GA-

CKRVM are slightly better than the above models in certain 

sections. In all sections, SPGAPSO-CKRVM is always 

superior to other comparison models. Figure 5 clearly illustrate 
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MAPE and RMSE of the various prediction models on different traffic sections. 

 

Table 2. Experimental results of kernel function performance 

 

NO. kernel function 
Sections 1 Sections 2 Sections 3 

Accuracy PHA Accuracy PHA Accuracy PHA 

1 𝑒𝑥𝑝 (−
‖𝑥 − 𝑥𝑖‖

2𝜎2 ) 0.8084 0.8717 0.7964 0.8576 0.7131 0.8187 

2 𝑒𝑥𝑝 (−
‖𝑥 − 𝑥𝑖‖

2

2𝜎2 ) 0.8520 0.9292 0.8355 0.9057 0.7452 0.8515 

3 𝑥𝑇𝑥𝑖 0.8529 0.9282 0.8310 0.9011 0.7472 0.8508 

4 𝛾(𝑥𝑥𝑖 + 1)𝑑 + 𝑐 0.8514 0.9272 0.8367 0.9056 0.7544 0.8502 

5 𝑒𝑥𝑝 (−
‖𝑥 − 𝑥𝑖‖

2𝜎2 )𝜆 + (1-𝜆)[𝛾(𝑥𝑥𝑖 + 1)𝑑 + 𝑐] 0.8529 0.9301 0.8368 0.9059 0.7554 0.8521 

6 𝑒𝑥𝑝 (−
‖𝑥 − 𝑥𝑖‖

2

2𝜎2 )𝜆 + (1-𝜆)[𝛾(𝑥𝑥𝑖 + 1)𝑑 + 𝑐] 0.8535 0.9333 0.8387 0.9061 0.7555 0.8538 

 

Table 3. Experimental results of algorithm accuracy 

 

Algorithm 
Sections 1  Sections 2 Sections 3 

MSE RMSE MAPE MSE RMSE MAPE MSE RMSE MAPE 

PSO-SVR [33] 564.06 23.75 0.1624 251.54 15.86 0.1724 48.86 6.99 0.2701 

LSTM  493.13 22.21 0.1435 234.37 15.31 0.1689 82.88 9.10 0.2702 

CNN-LSTM [15] 483.18 21.92 0.1438 235.89 15.36 0.1663 82.43 9.08 0.2659 

CNN-GRU [34] 487.46 22.07 0.1429 229.62 15.15 0.1648 84.10 9.17 0.2852 

SPGAPSO-SVM 551 23.47 0.1577 210 14.49 0.1638 45.08 6.71 0.2368 

GA-CKRVM [23] 433.53 20.82 0.1412 161.56 12.71 0.1616 62.24 7.76 0.2347 

CNN-Bi-LSTM [16] 477.35 21.84 0.1396 227.11 15.07 0.1622 81.79 9.04 0.2600 

SPGAPSO-CKRVM 392.43 19.81 0.1383 161.1 12.69 0.1589 41.09 6.41 0.2232 

 

 
 

(a) MAPE of various prediction models  

 

 
 

(b) RMSE of various prediction models 

 

Figure 5. Experimental results of algorithm accuracy 

 

The experiment of algorithm scalability is used to test 

whether it is possible to increase the algorithm efficiency by 

adding additional nodes. We calculate speedup to evaluate the 

effect of parallelization. Run SPGAPSO-CKRVM ten times 

based on a single node, double nodes, four nodes and eight 

nodes respectively. Record the experimental results and 

calculate speedup of SPGAPSO-CKRVM. Speedup defined as 

follows: 

 

𝑆𝑛 =
𝑇1

𝑇𝑛

 (22) 

 

where, T1 is sequential calculation time of model. Tn is parallel 

calculation time of model based on 𝑛 nodes. Ideally, speedup 

is equal to the number of nodes. The experimental results are 

shown in Figure 6.  

Population size determines the calculation of SPGAPSO-

CKRVM. As the Figure 6a shows, the training time of 

SPGAPSO-CKRVM increases linearly with the calculation 

increasing gradually. The gap of training time of SPGAPSO-

CKRVM based on different number of nodes is small when 

the calculation is little. As the calculation increasing, the 

training time of SPGAPSO-CKRVM based on eight-nodes is 

much lower than the training time of SPGAPSO-CKRVM 

based on four-nodes, double-nodes and single-node. The 

reason is that each calculation node is responsible for few 

calculations when the number of calculation nodes is large. 

As the Figure 6b shows, the acceleration effect of the cluster 

is not obvious when the calculation is little. The reason is that 

the basic operations such as starting cluster, dividing tasks and 

allocating resources of the cluster are time-consuming. At this 

moment, the cluster has not achieved deserved effect. As the 

calculation increasing, the advantages of parallel calculation 

are becoming more and more obvious. The speedup is 

increasing and approaching gradually the ideal value. The 

experimental results verify that SPGAPSO-CKRVM proposed 

in this paper has good scalability.  
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(a) Training time of SPGAPSO-CKRVM                       (b) Speedup of SPGAPSO-CKRVM 

with different number of nodes                                    with different number of nodes 

 

Figure 6. Experiment results of algorithm scalability 

 

 

6. CONCLUSIONS 

 

To construct a prediction model for traffic flow, RVM based 

on a combined kernel function and heuristic algorithms were 

employed. Parameter optimization algorithm of RVM was 

parallelized by Spark. SPGAPSO-CKRVM is proposed. The 

real data of Whitemud Drive in Canada were utilized to verify 

the prediction model. Experimental results show that the 

model called on SPGAPSO-CKRVM is superior to other 

methods in accuracy. In addition, SPGAPSO-CKRVM has 

less time consumption of parameter optimization than other 

models. Further research will include:  

• Consider more factors affecting traffic flow such as 

average speed, lane occupancy rate and traffic flow on the 

adjacent roads.  

• We use the original GA and PSO in this paper. For 

parameter optimization of RVM, most of heuristic algorithms 

have the problem that the convergence speed is too fast in early 

period of iterations, which leads to decrease of the population 

diversity in later period of iterations. In further research, we 

will try to combine RVM with complex heuristic algorithms 

such as Adaptive Genetic Algorithm (AGA) and Quantum 

Particle Swarm Algorithm (QPSO).  

• Although the testing speed of RVM is extremely fast, the 

training speed is not ideal. We will use parallelization 

techniques to reduce training time of RVM. 

• We will research the combination of RVM and deep 

learning algorithms. Deep learning algorithms such as DBN 

and CNN are used to extract traffic data features and RVM is 

used to predict traffic flow to construct a deep prediction 

model. 
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