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Brain being the most complex organ of human body in which millions of neuron are 

connected to each other, and pass information in processing of thoughts, emotions, motor 

activities and linguistic phenomenon. With the advent of non-invasive neuro-anatomical 

analysis methods like PET scan, fMRI it is now easy to measure neuronal changes in brain. 

This study analyses the neuronal activity in the brain in sentence polarity detection task 

using multilayer perceptron classification methodology. The whole brain is divided into 

almost 5000 three-dimensional volume called voxels from which prominent voxels are 

selected using symmetrical uncertainty based on entropy for the classification of brain state. 

The proposed method achieved significantly higher accuracy in classifying brain state in 

the processing of affirmative and negative sentences. The result obtained also shows that 

certain brain regions like left dorsolateral prefrontal cortex (LDLPFC) and calcarine sulcus 

(CALC) are prominent areas which are deterministic in classification of affirmative and 

negative sentences in brain while right posterior pre-central sulcus (RPPREC) and right 

supramarginal gyrus (RSGA) are less contributing. 
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1. INTRODUCTION

The brain is the most complex organ of the human body, 

responsible for every thought, emotions, feelings, and 

experiences. It has very complicated neuronal connectivity 

where each neuron connects with thousands or ten thousand 

neurons with synapse. The connections and the strength of 

connection change continuously, and our brain forms millions 

of new connections every second, which makes it possible to 

store memories, to learn habits and to shape personalities by 

reinforcing specific patterns of activities and losing some 

others. It is found that no two brains are alike, and grey matter 

in the brain is cell bodies, whereas the white matter is a 

connection of thread-like structure called axons and dendrites, 

which connects cell bodies to other neurons. The signals 

between neurons pass by the release and the capture of 

neurotransmitter and neuromodulator chemicals like 

glutamate, acetylcholine, noradrenaline, dopamine, 

endorphins, and serotonin. The electrochemical signals of 

neuronal activity are recorded on the scalp using 

electroencephalography. 

In contrast, indirect measurement of neuronal activities is 

recorded by PET scan and fMRI, which monitor blood flow 

and CT, and DTI uses the magnetic signature of different 

tissues. These scanning techniques have revealed which parts 

of the brain are associated with which functions. Right handed 

subjects showed right-hemispheric attentional dominance in 

95% of cases, and left-hemispheric language dominance in 

97% of cases. Left-handed subjects displayed right-

hemispheric attentional dominance in 81% of cases, and left-

hemispheric language dominance in 74% of cases [1]. Results 

are in agreement with previous observations ascribing a pre-

eminence of the right hemisphere in the processing of negative 

affective responses in right handed individuals [2]. fMRI study 

of language processing and its various aspects like syntax, 

semantics, morphology, etc. in the brain is analyzed for 

decades. 

The processing of syntax in the brain is quietly different 

from that of –morphology, semantics, etc. [3]. The study and 

the representation of the syntax (sentence structure) in the 

brain based on neuroimaging data are enriched in new 

findings. The research of the syntactic brain grounded on 

fMRI data can be viewed in five types of sentence 

arrangements in literature. A) Syntactic violations B) Complex 

vs. simple sentences C) Sentence vs. word list D) sentences 

containing pseudo words E) sentences having separate 

agreements and types.  

In case of syntactic violation, in which the sentences are 

syntactically correct but semantically incorrect or having some 

grammatical error, or spelling error caused increased 

activation in areas that are involved in syntactic processing due 

to disruption in agreement checking and structure building 

which results in more attentive behavior [4]. More superior 

frontal activity (BA 6, 8) is found for syntactic error compared 

to any other errors. In grammatical vs. ungrammatical 

sentences, both types of sentences were presented to the 

subject, and corresponding fMRI activation was recorded. 

Syntactically correct and incorrect sentences have different 

activation patterns and areas of activation in the brain [5]. For 

complex and simple sentences, the complex sentence involves 

more syntactic operations, i.e., more reconstruction and 

canonical word ordering hence activates more area than simple 

sentences [6]. The enhanced activation in complex sentences 

lies in Broca’s area (BA 44, 45) extended to BA 47, 6, and 9 

[7]. Some additional activation is found in left bilateral 

superior and middle temporal gyri (BA 21, 22) left 

Revue d'Intelligence Artificielle 
Vol. 34, No. 3, June, 2020, pp. 361-368 

Journal homepage: http://iieta.org/journals/ria 

361

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.340315&domain=pdf


 

angular/supramarginal gyri (BA 39, 40) and cingulate gyrus 

(BA 23,24,31,32). In the case of sentence vs. word list where 

a comparison is made between sentence, i.e., syntactic 

structure and a list of unrelated words, an increased activation 

is observed for sentence in the anterior part of the temporal 

lobe, especially temporal pole (BA 38). In addition to this, 

superior and middle temporal gyri (BA 22 and 21) are also 

found activated [8]. The comparison of the simple sentence 

with the pseudoword containing sentences, i.e., sentences that 

are syntactically correct but consisting of meaningless words 

(pseudo-words), yielded activation in the posterior superior 

temporal sulcus (BA 22,41/42). Additionally, anterior superior 

temporal sulcus (BA 38,22) was also found activated. Figure 

1 shows the different brain regions [9] involved in language 

processing tasks.  

However, syntactically and semantically correct sentences 

are studied by altering its structure and agreements. Lots of 

research has been done to date, where different forms of 

sentences are reviewed. Yokoyama et al. [10] have 

demonstrated the mechanism of case processing in our brain, 

and the result found shows that the processing of the genitive 

case activates the left inferior frontal gyrus and posterior part 

of the middle temporal gyrus more than the nominative case 

and accusative case for English native speakers.  

 

 
 

Figure 1. Brain anatomy for language processing 

 

The negative sentences are having more syntactic structure 

than that of affirmative sentences since it contains other 

syntactic entity for negation [11]. Different negative sentences 

have diverse representations in the brain, depending on 

whether these include bipolar predicate or contradictory 

predicate [12]. Processing of negative sentences is assumed to 

be a two-step process in which, at first, the affirmative form is 

processed. Then the negative version of it is represented in the 

brain, whereas affirmative sentences are directly processed in 

the brain [13]. The additional syntactic transformation reflects 

greater cortical activation in the case of negative sentences. 

Higher activation in the left posterior temporal gyrus and the 

bilateral parietal brain is observed in negative sentences 

compared to its affirmative counterpart [14]. In the study of 

Japanese-English sequential bilingual paradigm with target-

probe matching task, a significant activation in left temporal 

and left pre-central gyrus was observed for negative sentences 

in English, which is the second language for the participants 

[15]. Study of action related and abstract sentence polarity 

sentences have revealed a dynamic mental simulation model 

of negative sentence processing. Increased activation in the 

left hemisphere perisylvian and parietal was observed for 

abstract negative sentences, but a partial deactivation was 

found in action related negative sentences in left pallidum [16]. 

For the Danish language, increased activation in the left 

premotor cortex (BA6) for negative sentences was found [17]. 

This study reveals that there are three most grave cortical 

centers for the processing of negative sentences- left premotor 

cortex (BA6) for sentence structure, bilateral inferior parietal 

(SMG, BA 40) for semantic processing, and left inferior 

frontal gyrus dedicated for computation of syntactic 

complexity. The authors examined the neural correlates of the 

differences between negative and affirmative sentences using 

functional magnetic resonance imaging (fMRI), and results 

found showed enlarged activation in left premotor cortex from 

negation companionable with rule-governed memory 

processing and increased activation in the right supramarginal 

gyrus from affirmation, compatible with semantic processing. 

In fMRI study [18] of sentences having single and double 

negation for the German language, it is found that left 

supplementary motor area (SMA(BA6)) left pars triangularies 

(BA 45) left pars opercularies (BA44)) and left superior 

temporal gyrus (STG(BA42)) are functionally associated in 

the processing of main clause negation. IFG (inferior frontal 

gyrus) plays the most crucial role in the co-ordination of the 

cortical areas responsible for language processing and logical 

reasoning in the interpretation of negative sentences. Kumar et 

al. [19] have examined fMRI data for activation pattern of the 

brain in the processing of negative/affirmative sentences of 

Hindi and found that common cortical region involved in 

processing includes-bilateral inferior frontal gyrus(IFG), left 

parietal cortex(BA /40), left fusiform(BA37), bilateral 

supplementary motor area (SMA (BA6)), bilateral temporal 

gyrus( BA21) and bilateral occipital area (BA17/18). In 

addition to this, the study of fMRI data shows that the anterior 

temporal pole is dedicated to the processing of negative 

sentences.  

 

 

2. DATA SET DESCRIPTIONS 
 

The data set used in this paper is known as the Star Plus [20] 

data set, which was collected by Marcel Just and his colleagues 

at Carnegie Mellon University. The fMRI signals were 

collected over a grid of 64*64*8 voxel throughout the 

experiment. The data was collected from six healthy subjects. 

Each subject was performing a sequence of activities during 

the entire session of fMRI recording. Activities include 

showing a picture and descriptions of it in sequence and then 

pressing a button of yes or no depending upon whether the 

sentence correctly describe the picture or not. This event-

related experiment consists of trials. One trial of experiments 

lasts for 27 seconds, and at every 500ms interval, fMRI data 

was recorded for whole-brain; hence a total of 54 images of 

the brain were recorded in a specific trial of the experiment. 

At the start of the experiment, a picture or sentence was 

presented on the screen for 4 sec, and then after for another 

4sec, a blank screen was shown. After that, a picture or 

sentence was shown again for 4 sec, in which a button was to 

be pressed for yes or no whether the sentence correctly 

describes the picture or not. If the first stimulus is shown as a 

picture, then the second item displayed was a sentence and 

vice versa. The picture first and sentence after was termed as 
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PS data set, and in the case where the sentence was the first 

stimulus, the data was termed as SP data set.  

In half of the trial, the picture was presented first, and the 

remaining half trial consists of presenting sentences as the first 

stimulus. The picture presented in this experiment were 

geometrical arrangements of $,*, and +. Whereas the sentences 

presented were a description of picture and half of the 

sentences were affirmative sentences, and the remaining half 

were negative sentences. The sentences were just a description 

of the picture like “it is true that the dollar is above the star” or 

“it is not true that star is above the plus.” A total of 40 trials 

were presented to each subject. Each trial consists of around 

5000 voxels for one image, so a total of 270000 voxels for one 

trial of the experiment. The whole brain is divided into 25 

ROIs (region of interests) into which different voxel activity 

pattern resides. 

 

 

3. MODEL AND RESULT DISCUSSION 

 

The proposed model utilises correlation based subset 

evaluator feature selection techniques and multilayer 

perceptron classification approach in classifying the cognitive 

state [21] using fMRI data in affirmative and negative sentence 

processing in the brain. The work flow diagram of the 

proposed model is represented in Figure 2. 

 

 
 

Figure 2. Work-flow diagram of proposed model 

 

 

3.1 fMRI data acquisition 

 

T2 weighted -fMRI data were collected from 6 healthy 

people at the interval of every 500ms. In this experiment a 3.0 

T GE Sigma scanner was used, having TE=18ms and a flip 

angle of 50°. The resulting images captured approximately 

5000 voxels per subjects in 8 oblique axial slices in two 

separate non-contiguous four-slice volumes [22]. 

 

3.2 Pre-processing 

 

FIASCO program [23] was used in pre-processing of fMRI 

images to remove artifacts, i.e., head motion and signal drift, 

and to correct slice timing. Talairach co-ordinate was used for 

the normalization of data. 25 anatomical region of 

interests(ROIs) were selected after pre-processing which 

includes calcarine sulcus (CALC), left dorsolateral prefrontal 

cortex (LDLPFC) and right dorsolateral prefrontal 

cortex(RDLPFC), left inferior parietal lobule (LIPL), left 

frontal eye fields (LFEF), left intraparietal sulcus (LIPS), right 

frontal eye fields (RFEF), left inferior frontal gyrus (LIFG), 

right intraparietal sulcus (RIPS) right inferior parietal 

lobule(RIPL), supplementary motor areas (SMA), left 

opercularis (LOPER), right opercularis (ROPER), left and 

right posterior pre-central sulcus (LPPREC, RPPREC), left 

and right inferior temporal lobule (LIT, RIT), left temporal 

(LT) lobe, right temporal lobe, (RT)left and right 

supramarginal gyrus (LSGA, RSGA), left superior parietal 

lobule(LSPL), and right superior parietal lobule (RSPL) left 

and right triangularis (LTRIA, RTRIA). 

 

3.3 Voxel distribution area wise 

 

The data was collected from six persons, and each person 

has its own identifier id or subject id. For all six persons, their 

identifiers are following- Subject 04799, Subject 04820, 

Subject 04847, Subject 05675, Subject 05680, and Subject 

05710. The data set comprises of fMRI signal distributed over 

24 different anatomical regions of the brain. The analysis of 

the data set reveals that for the same task, the numbers of 

voxels involved differ not only anatomical area-wise but 

subject-wise also. The region-wise distribution of voxel 

activities is presented in Table 1, which shows the distribution 

of signal data into different regions of the brain. 

 

3.4 Data extraction and averaging 

 

The data corresponding to the sentence processing is 

extracted according to the Eq. (1).  

The extracted data for classifier training takes the form- 

 

:f fMRI-sequence →+ )8,( tt

{Affirmative/Negative sentence} 
(1) 

 

from star plus data-set. The symbol t denotes time. Here 8 

sec duration is chosen to capture maximum effective 

activation signal pattern from data set. 16 images are extracted 

for 8 sec duration. We calculate the mean of these signals for 

all voxels. The mean of the extracted data is calculated in 

accordance with Eq. (2). 

 

,j ,columnj ∑ 𝑥 ij
𝑛
𝑖=1 /𝑛 Where xij is an ith row 

and jth column entry. 
(2) 
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Table 1. Number of voxels in each anatomical region of the brain 

 

RIO Subject 04799 Subject 04820 Subject 04847 Subject 05675 Subject 05680 Subject 05710 

CALC 255 408 318 399 334 219 

LDLPFC 498 501 440 504 614 478 

LFEF 97 128 109 30 71 124 

LIPL 299 62 133 263 286 264 

LIPS 147 155 235 197 196 226 

LIT 366 225 286 233 173 197 

LOPER 145 103 169 261 235 101 

LPPREC 13 190 153 26 53 110 

LSGA 104 55 7 119 95 127 

LSPL 171 290 308 265 274 137 

LT 340 484 305 476 472 445 

LTRIA 190 175 113 136 93 150 

RDLPFC 468 374 349 382 453 419 

RFEF 81 142 68 45 40 73 

RIPL 287 46 90 244 215 213 

RIPS 118 65 166 158 237 185 

RIT 285 187 277 267 151 209 

ROPER 88 140 180 194 255 108 

RPPREC 59 124 144 50 72 43 

RSGA 71 41 34 54 71 57 

RSPL 213 238 252 254 213 119 

RT 356 440 286 325 346 357 

RTRIA 144 213 57 146 42 118 

SMA 154 229 215 77 71 155 

Whole brain 4949 5015 4698 5135 5062 4634 

 

Table 2. Subject wise selected voxels 

 
Subject Selected feature vectors 

04799 

59, 188, 198, 316, 326, 370, 392, 426, 434, 449, 546, 553, 732, 855, 866, 944, 971, 1042, 1068, 1090, 1366, 1446, 1452, 1470,  

1532, 1551, 1566, 1742, 1803, 2274, 2401, 2402, 2501, 2505, 2803, 2876, 2889, 2896, 2923, 2947, 2956, 3113, 3159, 3213, 

3271, 3286, 3341, 3390, 3403, 3417, 3594, 3609, 3614, 3630, 3657, 3706, 3908, 4105, 4390, 4432, 4717, 4758 

04820 

291, 331, 348, 1156, 1361, 1369, 1476, 1542, 1571, 1609, 1692, 1722, 1873, 1925, 1932, 1933, 1934, 2000, 2075, 2239, 

2422,2552,2892,2909, 3140, 3182, 3278, 3397, 3414, 3430, 3544, 3576, 3614, 3783, 3810, 3877, 4082, 4162, 4173, 4311, 4349, 

4398, 4435, 4459, 4698, 4841 

04847 
67, 148, 202, 281, 342, 520, 917, 1205, 1307, 1440, 1453, 1566, 1604, 1616, 1660, 1740, 1917, 2034, 2088, 2226, 2891, 2984, 

3114, 3340, 3545, 3645, 3713, 3716, 3881, 4030, 4180, 4380, 4385, 4412, 4547, 4582, 4684 

05675 

208, 221, 364, 438, 441, 456, 524, 758, 817, 859, 932, 950, 991, 1007, 1065, 1241, 1282, 1535, 1561, 1565, 1583, 1617, 1653, 

1656, 1790, 1824, 1849, 1875, 2059, 2164, 2252, 2306, 2384, 2393, 2453, 2573, 2601, 2633, 2975, 3021, 3059, 3097, 3102, 

3123, 3137, 3138, 3197, 3532, 3580, 3621, 3827, 3840, 3932, 4086, 4390, 4538, 4567, 4585,4696, 4845 

05680 
45, 123, 611, 786, 935, 939, 1051,1217, 1342, 1351, 1378, 1449, 1866, 1915, 1990, 2021, 2098, 2135, 2281, 2487, 2516, 2531, 

2539, 2557, 2883, 2912, 2959, 3331, 3697, 3756, 3879, 4081, 4161, 4176, 4448, 4592, 4772, 4920, 5048, 5061 

05710 

35, 242, 344, 529, 598, 711, 751, 832, 847, 886, 1075, 1252, 1277, 1479, 1488, 1542, 1552, 1560, 1756, 1938, 2091, 2233, 

2379, 2441, 2643, 2792, 2967, 3009, 3038, 3075, 3431, 3542, 3622, 3656, 3693, 3715, 3807, 3841, 4070, 4118, 4165, 4253, 

4261, 4309 

 

3.5 Feature selection  

 

For classification, the feature which is highly correlated 

with the class and having minimal correlation with the other 

feature is selected considering correlation as goodness 

measure in feature selection [24]. This feature selection 

technique works in two steps- first the features are selected 

relevant to the class and second, iteratively eliminate other 

features based on the selected feature. Feature which is 

relevant to the class concept and not redundant to other 

relevant feature assumed to be good. Correlation measure 

based on information theoretical concept of entropy for 

variable x is given by 

 

))((log)()( 2

1

i

m

i

i xPxPXH 
=

−=  (3) 

The range of i is from 1 to number of classes (M) The 

entropy of X after observing the variable Y is represented by 

 

 
= =

−=
N

j

M

i

jijij yxPyxPyPYXH
1 1

2 ))/((log)/()()/(  (4) 

 

The range of j varies from 1 to N, where N is number of 

voxels(n). 

Where, P(xi) are the prior probability for all values of X and 

𝑃(𝑥𝑖/𝑦𝑖) is the posterior probabilities of X given the values of 

Y. The information gain is the decrease in entropy of X 

provided by Y and is given by amount by  

 
)/()()/( YXHXHYXIG −=  (5) 

 

Correlation being biased in favour of features having more 
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value symmetry becomes a measure of correlation between 

features. Symmetrical uncertainty is represented as 

 

]
)()(

)/(
[2),(

YHXH

YXIG
YXSU

+
=  

(6) 

 

Taking symmetrical uncertainty as goodness measure, 

relevant features are selected. The range of SU lies between 0 

and 1. After finding the values of SU for all features we have 

selected the top dominating voxels based on the threshold 

value of SU. For data set S containing N features and C classes, 

symmetrical uncertainty is denoted as SUic for correlation 

between Fi and class C. 

Then  

 

)(,,1,, thresholdSUNiSF ii →   

 

The highly correlated features which are obtained by 

minimizing the redundancy are summed up in in Table 2. The 

procedure recursively eliminates the irrelevant feature from 

the fMRI data and selects only those which are correlated.  

The region wise distribution of selected features in different 

bran regions is shown in the Table 3. Region-wise number of 

voxel selected in the determination of sentence classification 

from all six subjects when summed up category wise becomes 

-CALC(28), LDLPFC(24), LFEF(10), LIPL(21), LIPS(6), 

LIT(19), LOPER(5), LPPREC(7), LSGA(7), LSPL(11), 

LT(17), LTRIA(7), RDLPFC(19), RFEF(6), RIPL(19), 

RIPS(9), RIT(10), ROPER(8), RPPREC(2), RSGA(4), 

RSPL(16), RT(23), RTRIA(5), SMA(8). 

Table 3. Region-wise distribution of selected feature 

 
Area Sub1 Sub2 Sub 3 Sub 4 Sub 5 Sub 6 

CALC 8 4 4 8 2 2 

LDLPFC 3 5 1 5 5 5 

LFEF 3 3 1 0 1 2 

LIPL 3 1 2 10 5 0 

LIPS 2 0 0 3 0 1 

LIT 2 1 3 5 3 5 

LOPER 0 1 3 0 1 0 

LPPREC 0 2 0 1 1 3 

LSGA 1 1 2 2 0 1 

LSPL 2 2 2 1 3 1 

LT 3 3 2 2 3 4 

LTRIA 2 1 1 0 1 2 

RDLPFC 5 2 2 2 4 4 

RFEF 2 2 0 1 0 1 

RIPL 9 0 1 4 2 3 

RIPS 3 0 0 3 1 2 

RIT 4 1 1 2 0 2 

ROPER 1 1 2 2 2 0 

RPPREC 1 0 0 1 0 0 

RSGA 0 1 2 0 1 0 

RSPL 2 2 4 4 2 2 

RT 4 5 5 3 3 3 

RTRIA 0 5 0 0 0 0 

SMA 2 3 1 1 0 1 

 

From this discussion it’s clear that the most contributing 

voxels comes from region CALC and LDLPFC. Figure 3 

represents the total number of features selected from different 

region of brain for all subjects. 

 

 
 

Figure 3. Region-wise total number of selected features from all subject 

 

3.6 Classification using multilayer perceptron 
 

A multilayer perceptron (MLP) [25, 26] is a class of feed 

forward artificial neural network. MLP consists of at least 

three layers of nodes: an input layer, a hidden layer and an 

output layer. Figure 4 represents the architecture of MLP. 

Except for the input nodes, each node that uses a nonlinear 

activation function. MLP utilizes a supervised learning 

technique called back propagation [27] for training: 
 

 

Figure 4. Multilayer perceptron 

Single-hidden-layer MLP function can be seen as f: RD→RL, 

where the size of input vector x is D, and the size of the output 

vector f(x) is L,  

The matrix notation is given as 

 

)))((()( )1()1()2()2( xWbsWbGxf ++=  (7) 

 

With b(1), b(2) are bias vectors; W(1), W(2) are weight matrices, 

and, G and s are activation functions. 

The hidden layer is 

 

)()()( )1()1( xWbsxxh +==  (8) 

 

where, 𝑊(1) ∈ 𝑅𝐷∗𝐷ℎ is the weight matrix connecting the input 

vector to the hidden layer. Each column Wi(1) represents the 

weights from the input units to the ith hidden unit.  

The choice for S is given by 

 

)/()()tanh( aaaa eeeea −− +−=  (9) 
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The output vector is then obtained as: 

 

))(()( )2()2( xhWbGxo +=  (10) 

 

The selected feature vectors are fed to the classifier. The 

classifier is trained to classify the brain state in the processing 

of affirmative sentences and negative sentences with the 

assumption that- a) fMRI data has sufficient information to find 

out the state of the brain corresponding to specific sentence type 

b) Machine learning algorithm is well efficient to learn the 

particular temporal pattern to distinguish between the 

processing of negative vs. affirmative sentences. MLP 

classification technique is applied to classify the selected feature 

vectors. In this paper, gradient descent method is used for 

updating weights and bias during the training of the MLP. Bias 

nodes are added to increase the flexibility of the model to fit 

the data by allowing the activation function to be shifted to the 

left or right. At the beginning, network is initialised with small 

random weights and then gradient descent is used to tune the 

weighs into optimized values. Initially, the value of bias is set 

to 0 and later gradient descent optimizer is used to tune the 

bias. After the training the model can detect the brain state 

corresponding to affirmative or negative sentences.  

 The performance of a classifier is judged upon the number 

of wrongly classified instances, i.e., the error rate or 

misclassification. The goal of the classification model is the 

determination of its ability to correctly classifying or predicting 

the class of instances. The confusion matrix explores the error 

and correctly classified test data in terms of true positive, false 

positive, etc. The number of correct and incorrect predictions is 

displayed by the confusion matrix in Table 4. The column 

entries represent the predicted class value, and rows display the 

actual class values.  

The metrics used in the study are given below- 

•TP Rate stands for the rate of true positives, i.e., correctly 

classified instances as a given class. 

•FP Rate means the rate of false positives, i.e., falsely 

classified instances as a given class. 

•Precision: the proportion of instances that are true of a class 

divided by the total cases classified as that class 

•Recall: the proportion of instances classified as a given class 

divided by the actual total in that class (equivalent to TP rate) 

•F-Measure is the harmonic mean of recall and precision and 

defined as 2 * Precision * Recall / (Precision + Recall) 

•MCC is used in machine learning as a measure of the quality 

of binary (two-class) classifications. It takes into account true 

and false positives and negatives and is generally regarded as a 

balanced measure which can be used even if the classes are of 

very different sizes 

•ROC (Receiver Operating Characteristics) area gives an idea 

of how the classifiers are performing in general. 

The model is trained on the selected feature vector data set 

and tested on the ten-fold cross-validation approach. The 

accuracy of the result is good enough and can detect sentence 

polarity with more than 93% accuracy. Table 5 shows the 

subject wise accuracy result of the sentence polarity task. The 

average of overall performance analysis in the sentence polarity 

task is represented in Figure 5, where the performance metric is 

as following- TP Rate: 0.933333, FP Rate: 0.066667, Precision: 

0.940167, Recall: 0.933333, F-Measure: 0.933, ROC Area: 

0.980167, Accuracy: 0.933333. The result obtained is quite 

appreciable as the average classification accuracy of the brain 

state in the sentence polarity task is more than 93%. 

 
Table 4. Confusion matrix 

 

Subject id 
Predicted Class 

Actual Class 
Affirmative Negative 

04799 
16 4 Affirmative 

0 20 Negative 

04820 
19 1 Affirmative 

1 19 Negative 

04847 
18 2 Affirmative 

0 20 Negative 

05675 
19 1 Affirmative 

0 20 Negative 

05680 
20 0 Affirmative 

4 16 Negative 

05710 
18 2 Affirmative 

1 19 Negative 

 

3.7 Comparative analysis 

 

Behroozi et al. [28] have classified the voxel from the 

RDLPFC area and achieved an accuracy of almost 75% for all 

the subjects on the same data set. They have used F-score 

based feature selection and SVM classification techniques in 

the classification of selected attributes. In our approach, we 

have scored more than 93% accuracy in polarity detection.   

Doborjeh et al. [29] have studied the neural activity of 

affirmative and negative sentences and using NeuCube [30] on 

the same data set. With proper training after implementing 

classifiers to classify the neural activity pattern of negative and 

affirmative sentences in the brain, this model was able to 

recognize the sentence based on their polarity up to 90% 

accuracy. 

From the above studies, it is clear that our result is evident 

and has much better classification accuracy than previous 

approaches. Comparing the classification accuracy of the 

proposed model with the above-mentioned approaches, the 

result obtained in the proposed model is significantly higher. 

Figure 6 shows the comparative analysis of the accuracy of the 

proposed model with the above-mentioned approaches 

This study is an attempt to recite the state of the brain based 

on fMRI data acquired when the subjects are indulged in 

reading two types of sentences i.e. affirmative or negative 

sentence. Brain processes affirmative and negative sentences 

differently and the activation produced in the brain is not alike 

for both types of sentences. 

 

Table 5. The classification result 
 

Subject TP Rate FP Rate Precision Recall F-Measure ROC Area Accuracy 

04799 0.90 0.1 0.917 0.9 0.899 0.993 0.900 

04820 0.95 0.05 0.95 0.95 0.95 0.995 0.950 

04847 0.95 0.05 0.955 0.95 0.95 0.963 0.950 

05675 0.975 0.025 0.976 0.975 0.975 0.995 0.975 

05680 0.9 0.1 0.917 0.9 0.899 0.95 0.900 

05710 0.925 0.075 0.926 0.925 0.925 0.985 0.925 
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Figure 5. Average of results for all subjects 

 

 
 

Figure 6. Comparative accuracies of recent works on the 

same data-set 

 

 

4. CONCLUSIONS 

 

The paper proposed a model of brain using filtered subset 

evaluator based feature selection and multilayer perceptron 

classification technique to classify the state of the brain based 

on fMRI data. fMRI data is extracted for sentence processing 

from Star Plus data-set. From extracted data mean is calculated 

to find out effective activation at all points of brain regions. 

Prominent features (voxels) are extracted using entopy based 

feature selection. Using MLP, cognitive state of the brain is 

decoded in sentential negation paradigm. The result shows that 

certain brain regions like LDLPFC and CALC are prominent 

areas for the classification of affirmative and negative 

sentences in brain, and RPPREC and RSGA are less 

contributing. This proposed model achieved 93.33% accuracy 

in sentence polarity detection tasks which is significantly 

encouraging than other methods on the same data-set. 

 

REFERENCES  

 

[1] Flöel, A., Buyx, A., Breitenstein, C., Lohmann, H., 

Knecht, S. (2005). Hemispheric lateralization of spatial 

attention in right-and left-hemispheric language 

dominance. Behavioural Brain Research, 158(2): 269-

275. https://doi.org/10.1016/j.bbr.2004.09.016 

[2] Costanzo, E.Y., Villarreal, M., Drucaroff, L.J., Ortiz-

Villafañe, M., Castro, M.N., Goldschmidt, M., 

Camprodon, J.A. (2015). Hemispheric specialization in 

affective responses, cerebral dominance for language, 

and handedness: Lateralization of emotion, language, 

and dexterity. Behavioural Brain Research, 288: 11-19. 

https://doi.org/10.1016/j.bbr.2015.04.006 

[3] Kaan, E., Swaab, T.Y. (2002). The brain circuitry of 

syntactic comprehension. Trends in Cognitive Sciences, 

6(8): 350-356. https://doi.org/10.1016/s1364-

6613(02)01947-2 

[4] Fiveash, A., Thompson, W.F., Badcock, N.A., McArthur, 

G. (2018). Syntactic processing in music and language: 

Effects of interrupting auditory streams with alternating 

timbres. International Journal of Psychophysiology, 129: 

31-40. https://doi.org/10.1016/j.ijpsycho.2018.05.003 

[5] Yang, Y., Wang, J., Bailer, C., Cherkassky, V., Just, M.A. 

(2017). Commonality of neural representations of 

sentences across languages: Predicting brain activation 

during Portuguese sentence comprehension using an 

English-based model of brain function. NeuroImage, 146: 

658-666. 

https://doi.org/10.1016/j.neuroimage.2016.10.029 

[6] Feng, S., Qi, R., Yang, J., Yu, A., Yang, Y. (2020). 

Neural correlates for nouns and verbs in phrases during 

syntactic and semantic processing: An fMRI study. 

Journal of Neurolinguistics, 53: 100860. 

https://doi.org/10.1016/j.jneuroling.2019.100860 

[7] Meyer, L., Friederici, A.D. (2016). Neural systems 

underlying the processing of complex sentences. 

Neurobiology of Language, 597-606. 

https://doi.org/10.1016/b978-0-12-407794-2.00048-1 

[8] Rogalsky, C. (2016). The role of the anterior temporal 

lobe in sentence processing. Neurobiology of Language, 

587-595. https://doi.org/10.1016/b978-0-12-407794-

2.00047-x 

[9] Friederici, A.D. (2011). The brain basis of language 

processing: From structure to function. Physiological 

Reviews, 91(4): 1357-1392. 

https://doi.org/10.1152/physrev.00006.2011 

[10] Yokoyama, S., Maki, H., Hashimoto, Y., Toma, M., 

Kawashima, R. (2012). Mechanism of case processing in 

the brain: An fMRI study. PLoS One, 7(7): e40474. 

https://doi.org/10.1371/journal.pone.0040474 

[11] Haegeman, L. (1995). The Syntax of Negation. 

Cambridge, Cambridge Univerisity Press. 

https://doi.org/10.1017/cbo9780511519727 

[12] Mayo, R., Schul, Y., Burnstein, E. (2004). “I am not 

guilty” vs “I am innocent”: Successful negation may 

depend on the schema used for its encoding. Journal of 

Experimental Social Psychology, 40(4): 433-449. 

https://doi.org/10.1016/j.jesp.2003.07.008 

[13] Zwaan, R.A. (2012). The experiential view of language 

comprehension: How is negation represented. Higher 

Level Language Processes in The Brain: Inference and 

Comprehension Processes, Erlbaum, 255-288. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
V

al
u

e
s

Performance Measures

0

10

20

30

40

50

60

70

80

90

100

[28] [29] Proposed
Method

A
cc

u
ra

cy
(%

)

Methods

367



 

[14] Carpenter, P.A., Just, M.A., Keller, T.A., Eddy, W.F., 

Thulborn, K.R. (1999). Time course of fMRI-activation 

in language and spatial networks during sentence 

comprehension. Neuroimage, 10(2): 216-224. 

https://doi.org/10.1006/nimg.1999.0465 

[15] Hasegawa, M., Carpenter, P.A., Just, M.A. (2002). An 

fMRI study of bilingual sentence comprehension and 

workload. Neuroimage, 15(3): 647-660. 

https://doi.org/10.1006/nimg.2001.1001 

[16] Tettamanti, M., Manenti, R., Della Rosa, P.A., Falini, A., 

Perani, D., Cappa, S.F., Moro, A. (2008). Negation in the 

brain: Modulating action representations. Neuroimage, 

43(2): 358-367. 

https://doi.org/10.1016/j.neuroimage.2008.08.004 

[17] Christensen, K.R. (2009). Negative and affirmative 

sentences increase activation in different areas in the 

brain. Journal of Neurolinguistics, 22(1): 1-17. 

https://doi.org/10.1016/j.jneuroling.2008.05.001 

[18] Bahlmann, J., Mueller, J.L., Makuuchi, M., Friederici, 

A.D. (2011). Perisylvian functional connectivity during 

processing of sentential negation. Frontiers in 

Psychology, 2: 104. 

https://doi.org/10.3389/fpsyg.2011.00104 

[19] Kumar, U., Padakannaya, P., Mishra, R.K., Khetrapal, 

C.L. (2013). Distinctive neural signatures for negative 

sentences in Hindi: An fMRI study. Brain Imaging and 

Behavior, 7(2): 91-101. https://doi.org/10.1007/s11682-

012-9198-8 

[20] http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-

81/www/, accessed on 12 Jan. 2020. 

[21] Pandey, P., Jha, B.K., Sinha, N. (2016). Analyzing 

cognitive states using fMRI data. Procesure Computer 

Science, 90: 35-41. 

https://doi.org/10.1016/j.procs.2016.07.007 

[22] Wang, X., Mitchell, T. (2002). Detecting cognitive states 

using machine learning, 1-10.  

[23] Eddy, W., Fitzgerald, M., Genovese, C., Lazar, N., 

Mockus, A., Welling, J. (1999). The challenge of 

functional magnetic resonance. Imaging. Journal of 

Computational and Graphical Statistics, 8(3): 545-558. 

https://doi.org/10.2307/1390875 

[24] Dash, M., Liu, H. (1997). Feature selection for 

classification. Intelligent Data Analysis, 1(3): 131-156. 

https://doi.org/10.1016/s1088-467x(97)00008-5 

[25] Ruck, D.W., Rogers, S.K., Kabrisky, M., Oxley, M.E., 

Suter, B.W. (1990). The multilayer perceptron as an 

approximation to a Bayes optimal discriminant function. 

IEEE Transactions on Neural Networks, 1(4): 296-298. 

https://doi.org/10.1109/72.80266 

[26] http://deeplearning.net/tutorial/mlp.html, accessed on 12 

Jan. 2020. 

[27] https://becominghuman.ai/multi-layer-perceptron-mlp-

models-on-real-world-banking-data-f6dd3d7e998f, 

accessed on 12 Jan. 2020. 

[28] Behroozi, M., Daliri, M.R. (2015). RDLPFC area of the 

brain encodes sentence polarity: A study using fMRI. 

Brain Imaging and Behavior, 9(2): 178-189. 

https://doi.org/10.1007/s11682-014-9294-z 

[29] Doborjeh, M.G., Capecci, E., Kasabov, N. (2014). 

Classification and segmentation of fMRI spatio-temporal 

brain data with a NeuCube evolving spiking neural 

network model. In 2014 IEEE Symposium on Evolving 

and Autonomous Learning Systems (EALS), Orlando, 

USA, pp. 73-80. 

https://doi.org/10.1109/eals.2014.7009506 

[30] Kasabov, N.K. (2014). NeuCube: A spiking neural 

network architecture for mapping, learning and 

understanding of spatio-temporal brain data. Neural 

Networks, 52: 62-76. 

https://doi.org/10.1016/j.neunet.2014.01.006 

 

 

NOMENCLATURE 

 

t Time in second 

f function 

X,Y 

M 

features 

Number of Classes 

N Number of Voxels 

H Entropy 

i,j Indices 

  
Threshold 

x Input vector 

D Size of input vector 

L Size of output vector 

o(x) Output Vector 

b Bias 

W Weight Matrix 

G,s Activation function 

SU Symmetrical uncertainty 

IG Information Gain 
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