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Finding the most suitable centroids for k-means clustering is one of the most important
criteria for successful clustering operation. We are always looking for the best centroids.
Since, clustering problem and finding best centroids are an NP-hard problems, using
metaheuristic algorithms can be an appropriate tool to deal with these issues. Many authors
have solved this issue with metaheuristic algorithms. Common and popular algorithms have
very good solutions. But which of the metaheuristic algorithms really provides the best
solution? To answer this question, in this comparative study, ten popular metaheuristic
algorithms are compared. The comparisons are performed on synthetic and ten real-world
datasets. To find significant differences between the results obtained by algorithms,

statistical analysis is used. Comparison results are presented with suitable tables.

1. INTRODUCTION

Clustering or cluster analysis is one of the unsupervised
learning categories and the process during which the samples
are divided into groups whose members are similar to each
other, which is called clusters [1]. The goal of clustering is to
obtain clusters with very similar members and the maximum
distance of each cluster than other clusters. For this purpose,
one of the clustering methods is k-means clustering.

k-means method is a very simple and practical approach [2].
In fact, k-means is a heuristic method for partitional clustering.
In this method, the cluster centers are represented as cluster
means. Then each data is checked and assigned to the nearest
cluster center. After completing this, we can create cluster
centers and then create new clusters by getting the meanings
in each cluster. One of the problems in this method is that its
optimality depends on the initial selection of the centers and
therefore, not optimal.

Since, clustering problem is an NP-hard problem [3], using
metaheuristic algorithms can be an appropriate tool to deal
with these issues. Metaheuristic algorithms are defined as
high-level methods that can be used as a guiding strategy for
solving optimization problems and other issues. In other words,
metaheuristic algorithms are advanced search strategies.
These algorithms effectively search the solution space with
special methods. If the solution space is large, the classical
methods cannot find the solution in a reasonable time [4]. One
way to overcome this problem is to use metaheuristic
algorithms. The main problems of heuristic algorithms are
their entrapment in local optimal points and premature
convergence.

Metaheuristic algorithms are also used to solve the
problems of heuristic algorithms. These algorithms
significantly increase the ability to find high-quality solutions
to difficult optimization problems [5]. k-means method, like
other heuristic methods, has the problems mentioned above.
The use of metaheuristic algorithms reduces its problems.
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Many authors have used metaheuristic algorithms to solve
the clustering problem. Shelokar et al. [6] used an ant colony
approach for clustering. They showed that an ant colony
approach had better solutions compared with genetic
algorithm, simulated annealing, and tabu search. Parpinelli et
al. [7] proposed an algorithm based on ant colony optimization
called Ant-Miner. The Ant-Miner was used to extract
classification rules from data. The algorithm was inspired by
both researches on the behavior of real ant colonies and some
data mining concepts as well as principles. In another study,
Moh’d Alia et al. [8] employed the harmony search algorithm.
They compared their method with random initialization mode.
Their algorithm also responds well. Krishna and Murty [9],
Murthy and Chowdhury [10], Maulik and Bandyopadhyay
[11], and Cowgill et al. [12] all of them have used genetic
algorithms in clustering. They claim that using the genetic
algorithm improves the clustering operation.

Differential evolution algorithm is another algorithm that
used widely in clustering. This algorithm works well in
clustering. Das et al. [13] used the differential evolution in
clustering and automatic clustering. Kwedlo [14] combined
the differential evolution with k-means and compared it with
the global k-means. He also demonstrated the superiority of
his combined differential evolution algorithm. Paterlini and
Krink [15] in their paper compared the differential evolution
algorithm with the particle swarm optimization, genetic
algorithm, random search algorithm, and k-means. They
showed that the differential evolution algorithm is very fast in
solving the clustering problem. In their other paper [16], they
compared the genetic algorithm, particle swarm optimization,
and differential evolution. From their experiments, it turned
out that differential evolution is superior compared to genetic
algorithm and particle swarm optimization both with respect
to precision as well as the robustness of the results.

VanderMerwe and Engelbrecht [17] used the particle
swarm optimization algorithm to find the centroids of a user-
specified number of clusters. They showed that the particle
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swarm optimization approaches have better convergence to
lower quantization errors, and in general, larger inter-cluster
distances and smaller intra-cluster distances. In another paper,
Zhao et al. [18] also used particle swarm optimization for
clustering and compared it with k-means algorithm. In their
paper, the particle swarm optimization has better solutions
compared with the k-means.

Karaboga and Ozturk [19] utilized artificial bee colony to
classification benchmark datasets and then the performance
compared with particle swarm optimization. Their results
indicate that the artificial bee colony algorithm is successfully
applied for clustering. Zhang et al. [20] also used the artificial
bee colony approach for clustering and then compared with the
ant colony, genetic algorithm, simulated annealing, and tabu
search algorithm. They performed experiments on only three
datasets. Their results indicate the superiority of the artificial
bee colony algorithm.

Other algorithms have also been used by other authors to
solve the clustering problem. For instance, Alami et al. [21]
used the cultural algorithm, Chowdhury et al. [22] utilized
invasive weed optimization algorithm, Satapathy and Naik [23]
applied teaching-learning-based optimization algorithm.
Hammouri and Abdullah [24] used biogeography based
optimization for data clustering.

In the literature, metaheuristic algorithms used in the
clustering problem, have the best performance compared with
metaheuristic algorithms that have been tested with them. All
authors claim that the metaheuristic algorithm used in
clustering yields good results. But which one is better?
Optimization operation to find the best centroid should be
tested under the same conditions for different metaheuristic
algorithms. Statistical analysis is the best way to find the
difference between different performances. In this paper, we
will answer the question of which one of the most common,
state-of-the-art, and widely used metaheuristic algorithms has
really the best performance in the clustering. The goal of this
comparative study is to achieve the desired solutions and
minimize the cost of clustering through the applying of
metaheuristic methods. The main contribution of this paper is
to improve the k-means by applying metaheuristic methods to
achieve optimal centroids and to compare solutions by
examining the three criteria of within-cluster distances,
clustering error rate, and algorithm run time.

The rest of the paper is structured as follows: Section 2
describes clustering fundamentals. Section 3 includes selected
algorithms for comparisons. Experimental results are
presented in Section 4. Section 5 represents the statistical
analysis, and in Section 6 conclusion is presented.

2. CLUSTERING FUNDAMENTALS

In partitioning-based clustering problems, two features are
usually considered. These two characteristics are compactness
and separation [25-27].

Compactness shows the greatest similarity between items in
a group. In other words, the similarity between group items
needs to be maximized. This causes the most compactness in
the group.

Separation shows the differences between items of different
groups. That is, items of one group have the least similarity to
items of other groups.

When we are talking about the least or the most, clustering
can be considered as an optimization problem. As a result,
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clustering is a special case of optimization. This problem can
be solved optimally by metaheuristic algorithms. Here the
objective function is required. To define the objective function,
one of the most convenient and appropriate criteria is within-
cluster distance. Therefore, in a cluster, the total distance of
each cluster member from the cluster center is equal to,

3 d(x,m)

XEC;

(1

where, d is the Euclidean distance, x is the sample data, m is
the cluster centeroid, and c is it cluster. If the above equation
is considered for all clusters, the function of the cluster's center
is obtained. In general,

within cluster distance = z Zd (x,m)

- 2)
I Xeg;

Hence, whatever the answer obtained from the above
equation is minimal, this means that clustering is better done.
Thus, the above equation is a cost function. This equation can
be minimized by changing the centroids. The problem is
mathematically expressed as follows.

Suppose there is a dataset: X={x1, Xo, ..., X} and the
centroids are unknown: M={mz, my, ..., my}. If x is in d-
dimensional space, m is also in d-dimensional space. in overall,
if xieRY, so mjeRY. Therefore, the numbers of unknowns are
k-center multiplication in d-dimension. In this problem, the
number of clusters is predetermined. So the total objective
function is as follows:

Kk

obj func=>">"d(x,m,) :illrpjigkd(xi,mj)

j=1 xec; i=

3)

In the problem presented in this paper, the Error Rate (ER)
is considered as an external quality measurement. The error
rate is expressed as the percentage, and the equation is as
follows:

ER= ' «100 @)
n

where, f is the number of misplaced objects, and n is the total
number of objects within the dataset.

3. SELECTED ALGORITHMS FOR COMPARISONS

In this comparative study, ten well-known, common, and
popular algorithms are chosen for comparison. These are
Artificial Bee Colony (ABC) [28], Ant Colony Optimization
(ACO) [29], Biogeography Based Optimization (BBO) [30],
Cultural Algorithm (CA) [31], Differential Evolution (DE)
[32], Genetic Algorithm (GA) [33], Harmony Search (HS)
[34], Invasive Weed Optimization (IWO) [35], Particle Swarm
Optimization (PSO) [36], and Teaching Learning Based
Optimization (TLBO) [37]. The widespread use of the above
algorithms by authors is the reason for choosing them.

In the ABC [28], agents who are called Artificial Bees are
gathering together to be able to solve more difficult problems.
All artificial bees are in the main hive at the beginning of the
search process. In the search process, artificial bees



communicate directly with each other. Each artificial bee
performs a series of local movements and will help them find
a solution to their current problem. Then, with the integration
of solutions, the main solution to the problem is achieved. The
search process consists of sequential iterations. The first
iteration ends when the first bee offers its solution to solve the
main problem. In the next iterations, artificial bees are
beginning to find new solutions, and this process continues. In

this algorithm, the number of onlooker bees can be determined.

Abandonment limit and acceleration coefficient are also
parameters that have a direct impact on the performance of the
algorithm.

The ACO [29] is inspired by the behavior of ants in its
colony when searching for food. In the real world, the ants first
randomly go to and fro to find food. They then return to the
colony and mark the path with pheromone. When the other
ants find this path, they abandon the roam and follow it. Then,
if they reach the food, they return to the colony and mark the
path again. Therefore, the path is strengthened. In this way, the
best path to reach the food is determined. Although the ACO
algorithm works well in finding good paths through graphs, it
can be applied to other issues as well. Deviation to distance
ratio and intensification factor are among the important
parameters in setting up this algorithm.

Biogeography discusses the migration of animal species
from one island to another, the evolution of new species and
the extinction of species. Basically, in the biogeography, there
is competition for survival and resources. Animals are trying
to obtain resources exclusively. Because there are many
resources in some areas, the animals are trying to migrate into
these areas. The BBO algorithm [30] is based on a
mathematical model, describing the migration of species
between habitats. In this algorithm, the number of kept habitats
must be determined according to the size of the population.
Also, the number of new habitats and migration rates have a
direct impact on the performance of the algorithm.

In the CA [31], there is a knowledge component called the
belief space in addition to the population component. Hence,
this algorithm can be considered a special extension of the
genetic algorithm. The belief space defines the various
knowledge of the population from the search space. The belief
space is updated by the best member of the population after
each iteration. The best member is selected through the fitness
function. This fitness function is exactly like the fitness
function of the genetic algorithm. In this algorithm, the
acceptance ratio and the number of accepted individuals are
effective in the operation of the algorithm.

In the DE [32], information about the direction and distance
from the members is used to find the optimal solution. In this
algorithm, to create a new generation, at first the Mutation
operator and then the Crossover operator is applied. For the
initial population, the uniform distribution is used to make the
same distributed population in the space. At each step of the
algorithm, the distance between the members is reduced to
find the optimal solution. In this algorithm, determining the
upper limit and the lower limit of the scaling factor is very
important to determine the mutation. Determining the
crossover coefficient is also important to get the desirable
solutions.

In the GA [33], it randomly selects people from the current
generation as parents and uses them to create children who
themselves are members of the next generation. During
successive generations, the answers evolve and become
optimized. The genetic algorithm works by using specific
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principles, similar to genetic structures and chromosome
behavior among a population of individuals. The two most
important parameters in the adjustment of this algorithm are
crossover and mutation rate.

The HS [34] is inspired by the process of harmonizing a
piece of music with a musician. During the time, musicians
produce a piece of music by playing different harmonies. After
playing several pieces, the musicians memorize the pieces they
played. The musicians try to match harmony with
improvisations in the pitch played by him. In this algorithm,
the number of new harmonies must be determined. Also, the
amount of memory to maintain harmonies and the pitch
adjustment rate are effective in setting the algorithm.

Table 1. Parameters values of competitor algorithms

Algorithm Parameters Values
ABC Colony size 20
Number of onlooker bees 20
Abandonment limit parameter 10
Acceleration coefficient upper bound 1
ACO Colony size 20
Sample size 40
Intensification factor 0.5
Deviation-Distance ratio 1
BBO Number of habitats 20
Keep rate 0.2
Number of kept habitats 4
Number of new habitats 16
Immigration rates [0,1]
CA Population size 20
Acceptance ratio 0.35
Number of accepted individuals 7
DE Population Size 20
Lower bound of scaling factor 0.2
Upper bound of scaling factor 0.8
Crossover probability 0.2
GA Population size 20
Crossover percentage 0.8
Mutation percentage 0.35
HS Harmony memory size 20
Number of new harmonies 20
Harmony memory consideration rate 0.2
Pitch adjustment rate 0.1
IWO Population size 20
Maximum population size 20
Minimum number of seeds 0
Maximum number of seeds 5
Variance reduction exponent 2
Initial value of standard deviation 0.5
Final value of standard deviation 0.001
PSO Swarm size 20
Inertia weight 1
Inertia weight damping ratio 0.99
Personal learning coefficient 2
Global learning coefficient 2
TLBO Population size 20
Teaching factor [1,2]




Weeds are seen in almost all farms and gardens, and they
are almost always the winners, regardless of how much we
tried to eradicate them. In nature, weeds are heavily grown and
this severe growth is a serious threat to the useful plants. One
of the important characteristics of weeds is their very high
sustainability and adaptability in nature. The IWO algorithm
[35] is inspired by the proliferation, survival, and versatility of
weeds. In this algorithm, the goal is to find the best point of a
given environment for the seeding of the seeds. To do this, the
minimum and the maximum number of seeds must be
determined. Also, variance and standard deviation for
determining new points are other settings of the algorithm.

In the PSO [36], inspired by the movement of the flock of
birds, it is assumed that the flock in the problem space is
randomly looking for food. There is only one piece of food in
the problem space, and none of the birds do not know the
location of food. One of the best strategies can be to follow a
bird that has the least distance to the food. Each particle or bird
has a fitness value calculated by the fitness function. Whatever
particle in the search space is closer to the target or food in the
bird's model, it has better fitness. Also, each particle in this
swarm is defined by the velocity and position vector in the
search space. In each iteration, the new particle position is
defined according to the velocity vector and position vector in
the search space. In this algorithm, the amount of personal
learning and the amount of global learning have a direct
impact on the performance of the algorithm.

The TLBO algorithm [37] has been inspired by the learning
and teaching process. In the TLBO algorithm, a mathematical
model for teaching and learning is considered, which
ultimately runs in two phases and can lead to optimization. In
the training phase, the best member of the community is
selected as a teacher and leads the average population to
his/her own. This is similar to what a real teacher really does
in the world. In the learning phase, people in the community
(who are colleagues together) work with each other to develop
their knowledge. This is similar to what is really happening
with friends and classmates. In this algorithm, the teaching
factor is a value that is selected randomly.

The values of all parameters for each algorithm are shown in
Table 1.

4. EXPERIMENTAL RESULTS

In the experiments, three criteria have been used for
evaluation. The first is the objective function, as defined in Eq.
(3). The total distance of each cluster member from the cluster
center is considered as the objective function. The second is
the Error Rate (ER), which is considered as an external quality
measurement. The ER defined in Eq. (4). The Third criterion
is Run Time. To evaluate performance, a simple synthetic
dataset and real-world datasets were used. The synthetic
dataset has been created by ourselves. The characteristics of
the syntactic dataset are shown in Table 2. Also, this syntactic
dataset can be found in the supplementary data files or publicly
available at http://www.harifi.com/.

Also, ten selected real-world datasets for experiments are
Balance Scale, Breast Cancer Wisconsin, Contraceptive
Method Choice, Dermatology, Glass Identification,
Haberman's Survival, Iris, MAGIC Gamma Telescope, Pima
Indians Diabetes, and Wine, which are available in the
repository of the machine learning databases [38]. Table 3
shows the characteristics of real-world datasets.

For this reason that the experiment results be comparable,
the settings of all algorithms are similar to each other. Some
parameters are selected for some algorithms through manual
tuning. For example, the mutation and crossover rate in the GA
are tune-up to get the best solution. It should be noted that the
type of crossover used in the implemented DE algorithm is
binomial crossover. Also, the crossover and mutation type
used in the implemented GA are arithmetic crossover and
Gaussian mutation, respectively. The number of iteration in
each run is considered 150. The initial population is
considered 20 in all algorithms. Each algorithm was run 30
times, as mentioned, each run has 150 iterations. So the mean
of 30 results was considered. The standard deviation, best
solution, worst solution, error rate, and run time were also
reported. The label attributes are removed in some datasets for
the experiments. All evaluation experiments have been run on
an Intel® Pentium® processor CPU G645 2.90 GHz with 2 GB
RAM. Implementations have been run on MATLAB R2015b
for coding.

Table 2. Main characteristics of the synthetic dataset

Dataset Number of  Number of Number of
Clusters Attributes Instances
Hypothetical 5 2 500 (100, 100,
dataset 100, 100, 100)

Table 3. Main characteristics of the real-world datasets

Dataset Number of Number of Number of
Clusters Attributes Instances
625 (49, 288,
Balance Scale 3 4 288)
Breast Cancer
Wisconsin 2 9 699 (458, 241)
Contraceptive 3 9 1473 (629, 334,
Method Choice 510)
366 (112, 61, 72,
Dermatology 6 34 49, 52, 20)
Glass 6 9 214 (70, 17, 76,
Identification 13,9, 29)
Haberman's 2 3 306 (225, 81)
Survival
Iris 3 4 150 (50, 50, 50)
MAGIC
Gamma 9 10 19020 (12332,
6688)
Telescope
Pima Indians
Diabetes 2 8 768 (500, 268)
Wine 3 13 178 (59, 71, 48)
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4.1 Experiment on synthetic dataset

By creating a hypothetical dataset, we can better comment
on the performance of the algorithms. Because we know the
answer. So we create a dataset to know what the answer is. For
this synthetic dataset, we consider five centers (0, 0), (3, 3), (3,
-2), (-3, -4), and (-4, 1). Data around these five centers have
been distributed with normal distribution or specified variance.

Table 2 shows the characteristics of this dataset. In this
dataset, each cluster has 100 members. The values in Table 4
shows the best, average, worst, standard deviation, error rate,
and run time of solutions over 30 independent runs. Also, this
table shows that all algorithms are set correctly and they work
well. Now algorithms are ready for testing with real-world
datasets.



4.2 Experiments on real-world datasets

To get reliable results, the collection of very diverse datasets
is considered. There are small and simple or large and complex
datasets in the selected datasets for experiments.

Table 5 shows the results of 30 independent runs of different
algorithms on the selected datasets. In this table, the best,
average, worst and standard deviation are specified.

According to the results of Table 5, it seems at a glance the

PSO algorithm has a better solution. But until the statistical
analysis is done, the definitive opinion cannot be given. At a
glance, the worst solution is related to the HS algorithm. Also
according to the standard deviation, the PSO algorithm has the
highest stability. Table 6 shows the mean error rate obtained
through 30 independent runs of different algorithms on the
different datasets. Table 7 shows the total run time and each
iteration run time of all algorithms.

Table 4. The sum of within-cluster distances, error rate, and run time obtained by algorithms on synthetic dataset

Dataset Criteria Algorithms
ABC ACO BBO CA DE GA HS IWO PSO TLBO
Hypothetical dataset Best 649.40 614.88 659.81 61552 632.38 61491 73241 61488 61488 614.88
Average 69448 638.35 717.31 658.76 663.97 61953 812.04 621.61 621.29 616.34
Worst 757.98 788.56 846.60 781.16 699.41 746.88 855.58 74548 745.48 630.39
Std 27.79 50.00 51.70 45.30 16.68 24.05 30.39 26.77 26.03 3.33
ER (%) 2.79 1.18 3.70 3.24 1.66 1.29 7.35 1.53 1.49 0.73
RT (s) 1.65 2.27 1.05 1.09 0.81 0.95 0.89 1.03 0.81 1.39
Table 5. The sum of within-cluster distances obtained by algorithms on real-world datasets
o Algorithms
Dataset  Criteria — 506" BBO CA DE GA HS IWO _ PSO _ TLBO
Balance Scale Best 1430.74 1423.82 1427.05 1426.00 142952 1423.86 1433.83 1423.82 1423.82 1424.13
Average 143393 143250 143751 1430.23 143236 1426.84 144738 1423.82 142468 1425.85
Worst 1437.91 1442.88 1447.71 1437.13 1437.74 143295 1460.13 1423.82 1425.99 1429.10
Std 1.66 7.07 5.48 2.98 1.98 1.99 5.84 0.00 0.92 0.94
Breast Cancer Best 3029.40 3028.28 3887.02 3754.08 3028.26 3030.29 4133.34 3028.15 3028.12 3028.19
Wisconsin Average 3049.41 462391 449741 434242 305451 3038.04 4779.31 3028.25 3028.21 3035.09
Worst 3084.91 4807.41 545591 5039.13 3121.33 3055.35 5132.80 3028.50 3028.52 3127.11
Std 14.68 541.35 397.59 334.44 27.95 6.29 234.95 0.08 0.09 18.38
Contraceptive Best 5550.40 5590.18 5859.14 5789.33 5576.74 5557.26 6048.92 5532.34 5532.29 5540.52
Method Choice Average 5610.37 599151 6153.22 6144.16 5616.52 5611.90 6564.32 5623.12 5534.37 5588.19
Worst 5715.76 7023.70 6694.81 7532.66 5654.00 5807.59 6887.17 7015.05 5550.90 5713.31
Std 37.33 399.58 214.84 360.68 21.01 63.08 177.06 343.06 3.95 40.89
Dermatology Best 2900.87 3248.20 2682.56 2898.96 2617.89 2548.37 3107.04 2254.84 2195.35 2321.36
Average 3000.09 3404.99 2794.18 3030.68 2687.74 264454 319428 2360.61 2240.32 2395.20
Worst 3116.26 3552.44 2983.79 3261.09 2791.23 2728.70 3232.11 2542.23 2291.50 2513.49
Std 56.49 76.25 66.01 80.05 43.87 47.42 32.07 65.48 25.28 47.03
Glass Best 275.15 410.25 302.41 306.20 263.78 256.40 410.80 251.84 219.79 246.12
Identification  Average  296.34 410.25 387.60 368.85 289.09 290.03 443.35 279.02 244.82 265.52
Worst 332.00 410.25 495.89 498.28 307.81 333.68 496.47 341.63 261.96 301.02
Std 14.59 0.00 42.95 38.09 12.28 15.84 21.45 19.54 11.56 11.82
Haberman's Best 2567.03 2566.99 2590.49 2567.02 2566.99 2566.99 261155 2566.99 2566.99 2566.99
Survival Average 256791 2567.10 2770.23 2651.84 2567.04 2568.05 267152 273454 2567.10 2567.58
Worst 2569.47 2567.83 3259.44 342579 2567.82 2569.18 2727.21 3379.29 2567.82 2569.15
Std 0.68 0.29 176.36 213.77 0.16 0.72 32.55 288.63 0.29 0.80
Iris Best 97.45 96.66 99.77 99.61 96.99 96.69 125.39 96.66 96.66 96.66
Average  102.28 123.72 130.42 111.22 102.70 99.24 144.06 97.71 97.46 97.50
Worst 112.20 141.68 179.69 133.24 110.79 127.74 155.66 127.67 120.72 107.21
Std 3.81 11.18 17.28 9.41 3.84 6.10 6.82 5.66 4.39 1.94
MAGIC Gamma Best 1.64E+06 1.93E+06 1.81E+06 1.75E+06 1.63E+06 1.64E+06 2.14E+06 2.21E+06 1.62E+06 1.62E+06
Telescope Average 1.66E+06 1.93E+06 2.17E+06 1.99E+06 1.63E+06 1.69E+06 2.41E+06 3.83E+06 1.62E+06 1.63E+06
Worst  1.72E+06 1.93E+06 3.02E+06 2.30E+06 1.66E+06 1.83E+06 2.62E+06 5.66E+06 1.62E+06 1.64E+06
Std 2.50E+04 0.00 2.80E+05 1.38E+05 5569.49 5.52E+04 1.57E+05 9.08E+05 403.71  4564.62
Pima Indians Best 4.76E+04 4.76E+04 5.06E+04 4.94E+04 4.76E+04 4.76E+04 5.33E+04 5.62E+04 4.76E+04 4.76E+04
Diabetes Average 4.76E+04 4.82E+04 5.97E+04 5.45E+04 4.76E+04 4.77E+04 5.85E+04 6.72E+04 4.76E+04 4.76E+04
Worst 4.78E+04 6.78E+04 7.83E+04 6.20E+04 4.77E+04 4.81E+04 6.21E+04 8.14E+04 4.76E+04 4.82E+04
Std 55.45 3697.98 7118.01 3230.39 49.00 119.81 1733.06 6528.23 2.52 125.57
Wine Best 1.63E+04 1.65E+04 1.63E+04 1.63E+04 1.63E+04 1.63E+04 1.67E+04 1.66E+04 1.63E+04 1.63E+04
Average 1.63E+04 1.67E+04 1.69E+04 1.65E+04 1.63E+04 1.63E+04 1.69E+04 1.93E+04 1.63E+04 1.63E+04
Worst  1.63E+04 1.72E+04 1.88E+04 1.71E+04 1.64E+04 1.66E+04 1.71E+04 2.32E+04 1.63E+04 1.64E+04
Std 11.31 173.31 563.49 180.69 21.63 59.18 14496  1940.06 0.85 19.06
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Table 6. The error rate (in percentage) obtained by algorithms on real-world datasets

Dataset Algorithms

ABC ACO BBO CA DE GA HS IWO PSO TLBO

Balance Scale 2181 2162 2192 2247 2214 2273 2063 2016 21.09 22.36
Breast Cancer Wisconsin 0.83 29.30 3.79 4.60 0.80 0.82 7.89 0.72 0.72 0.72
Contraceptive Method Choice 3.02 4.22 4.37 4.37 2.97 3.02 5.14 4.24 3.56 3.21
Dermatology 10.02 1126 8.01 8.48 9.30 8.98 928 1229 7.78 8.13

Glass Identification 39.39 6449 3668 4399 3590 36.79 47.01 39.84 3470 36.73
Haberman's Survival 2150 2216 1476 1846 2242 1960 17.03 1942 22.03 21.09
Iris 753 2933 10.02 1053 6.82 742 1813 8.02 8.13 5.16

MAGIC Gamma Telescope 11.24 3516 2376 3049 381 1506 3357 3165 1235 10.70
Pima Indians Diabetes 0.66 111 1270 7.86 0.60 0.71 752 2099 0.65 0.69
Wine 2.32 1.95 2.79 2.28 2.45 1.93 206 13.00 273 2.10

Table 7. The run time obtained by algorithms on real-world datasets. Total run time is the sum of 30 independent runs. Time is
calculated in seconds

Dataset Criteri Algorithms
atase reria "ABC _ACO BBO CA DE__GA __HS IWO PSO TLBO
Balance Scale Total Runtime 49.10 7211 3320 36.14 2497 3059 27.62 3183 2472 4285
Each Run 164 240 111 120 083 102 092 106 082 143
Breast Cancer Wisconsin Total Runtime 50.12 84.98 39.24 4378 2570 31.18 28.88 32.03 2528 43.92
Each Run 167 283 131 146 086 104 096 107 084 1.46
Contraceptive Method Choice Total Runtime 59.47 11462 5322 60.33 30.88 3732 3531 3833 3035 54.00
Each Run 1.98 3.82 1.77 2.01 1.03 1.24 1.18 1.28 1.01 1.80
Dermatology Total Runtime 59.06 498.74 226.14 290.71 35.65 36.82 62.94 37.06 3090 53.25
Each Run 197 16.62 754 9.69 1.19 1.23 2.10 1.24 1.03 1.77
Glass Identification Total Runtime 48.33 183.12 8290 103.69 2598 29.40 34.84 30.02 2446 42.13
Each Run 161 610 276 346 087 098 116 1.00 0.82 1.40
Haberman's Survival Total Runtime 4518 54.93 2541 2594 2295 2691 2437 30.22 2264 39.17
Each Run 151 183 085 08 077 09 081 101 075 131
Iris Total Runtime 4549 67.46 30.83 33.70 2281 2643 2488 27.94 2226 38.74
Each Run 152 225 103 112 076 088 083 093 074 1.29
MAGIC Gamma Telescope Total Runtime 329.83 371.57 182.12 182.88 167.01 195.54 172.46 223.83 170.62 320.28
Each Run 1099 1239 6.07 6.10 5.57 6.52 5.75 7.46 5.69 10.68
Pima Indians Diabetes Total Runtime 50.79 81.31 37.48 4149 26.18 3142 2863 3275 2554 4482
Each Run 169 271 125 138 087 105 095 109 085 149
Wine Total Runtime 46.50 12571 5873 70.29 24.65 27.81 30.58 29.98 2376 39.84
Each Run 1.55 4.19 1.96 2.34 0.82 0.93 1.02 1.00 0.79 1.33
Table 8. Friedman ranking for each dataset based on the objective function solution
Dataset Algorithms
ABC ACO BBO CA DE GA HS IWO PSO TLBO
Balance Scale 7.37 6.10 8.17 583 6.60 430 983 1.50 1.83 3.47
Breast Cancer Wisconsin 5.17 8.50 827 767 520 447 917 1.73 143 3.40
Contraceptive Method Choice 4,57 7.60 837 817 5.00 430 950 207 1.47 3.97
Dermatology 7.33 10.00 593 767 4.80 430 897 227 1.00 2.73
Glass Identification 4.90 8.57 810 750 447 447 980 3.63 1.13 2.43
Haberman's Survival 5.70 2.45 9.33 740 358 567 890 5.70 2.45 3.82
Iris 5.53 7.53 8.53 700 563 410 9.70 243 1.35 3.18
MAGIC Gamma Telescope 4.30 6.43 7.87 6.90 297 460 8.87 9.93 1.33 1.80
Pima Indians Diabetes 5.07 1.83 8.30 753 403 513 8.40 9.63 1.97 3.10
Wine 2.97 7.63 757 637 4.07 4.00 840 9.80 1.00 3.20

5. STATISTICAL ANALYSIS

To find significant differences between the results obtained
by algorithms, statistical analysis is used. For this purpose,
Friedman and Iman-Davenport tests are employed. Table 8
shows Friedman ranking for each dataset based on the
objective function solution. In this table, for most datasets, the
PSO algorithm has a better solution. The IWO and ACO
algorithms have the best solution on Balance Scale and Pima
Indians Diabetes datasets, respectively. However, the PSO
algorithm is in the next rank. The IWO and ACO algorithms
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have been fluctuating. So that the ACO algorithm in
Dermatology dataset is in the last rank. Also, the IWO
algorithm is in the last rank in MAGIC Gamma Telescope,
Pima Indians Diabetes, and Wine. The HS algorithm in the
clustering is an algorithm with an inappropriate solution
because in most datasets is in the last ranks. This table shows
that the GA algorithm is an average algorithm that usually has
acceptable solutions. Also, the TLBO algorithm showed that
is a good algorithm for clustering problem.

Table 9 shows the ranking of clustering algorithms based on
the results of Table 5 (within-cluster distances) using the



Friedman test. As expected, the PSO algorithm is first in the
ranking, then the TLBO algorithm is located. In the next ranks,
the algorithms are DE, GA, ABC, IWO, CA, ACO, BBO, and
HS, respectively.

Table 10 shows the results of the Friedman and Iman-
Davenport tests. In this table, there is the Chi-Square value
with nine degrees of freedom, and also there is the asymptotic
significance of the test (p-value) with very close to zero value.
Given the close to zero value of the asymptotic significance,
the hypothesis is rejected. Therefore, it can be concluded that
there is a significant difference in the performance of
clustering algorithms.

Table 9. Ranking of clustering algorithms based on the sum
of within-cluster distances

Algorithms
ABCACOBBO CA DE GA HS IWOPSOTLBO
Ranking 4.85 7.15 8.456.904.104.409.255.60 1.60 2.70

Table 10. Results of Friedman’s and Iman—Davenport’s tests
based on the sum of within-cluster distances

Test Chi- Degrees of

p_

method _ Square _freedom (DF)  Value ' 1YPOthesis
Friedman ~ 60.2226 9 1%35- Rejected
Iman-— 1.77E- :
Davenport 17.1440 9 15 Rejected

Table 11. Ranking of clustering algorithms based on the
error rate

Algorithms
ABCACOBBOCA DE GA HS IWOPSO TLBO
Ranking 5.05 7.60 5.85 6.85 4.20 4.65 6.60 6.40 4.00 3.80

Table 12. Results of Friedman’s and Iman—Davenport’s tests
based on the error rate

Test Chi- Degrees of p- Hvoothesis
method Square  freedom (DF)  Value yp
Friedman  17.6605 9 0'3?239 Rejected
Iman— 0.031 .
Davenport 2.1873 9 21 Rejected

Table 13. Ranking of clustering algorithms based on the run
time

Algorithms
ABCACOBBOCA DE GA HS IWOPSO TLBO
Ranking 8.20 10.006.20 7.45 1.90 4.10 3.80 5.10 1.10 7.15

Table 14. Results of Friedman’s and Iman—Davenport’s tests
based on the run time

Test Chi- Degrees of

p_

method  Square freedom (DF) Value 1YPOthesis
Friedman 78.4675 9 3-2125 Rejected
Iman— 2.20E- .
Davenport 09480 9 16 Rejected
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Table 11 shows the ranking of clustering algorithms based
on the results of Table 6 (Error Rate) using the Friedman test.
In Table 11, the best rank is related to the TLBO algorithm,
then the PSO algorithm is located. Table 12 shows the results
of the Friedman and Iman-Davenport tests based on the error
rate. In this table, the hypothesis is also rejected according to
the p-value. There is a significant difference in the error rates.

In the clustering problem, in addition to the accuracy of
clustering, the run time is also very important. Previously, in
Table 7, the run time of each algorithm was shown. Table 13
shows that the PSO algorithm has a very high speed in solving
the clustering problem based on the Friedman ranking. The DE
and HS algorithms are in the next rank, respectively. Although
the TLBO algorithm has high accuracy, the run time is not
good enough. Also, the GA algorithm is placed in the category
of intermediate in terms of run time. Table 14 shows the results
of the Friedman and Iman-Davenport tests based on the run
time. There is a significant difference in the run time because
the hypothesis is rejected according to the p-value.

Some of the algorithms that were compared had a very good
performance, some had a very low error rate, and some had a
very good run time. To make better choices the more efficient
algorithm, all criteria including within-cluster distances, error
rate, and run time must be compared at the same time. For this
purpose, Friedman's ranking has been performed with all these
criteria. The results in Table 15 show that the PSO algorithm
is much better than the other algorithms. After the PSO
algorithm, the DE, GA, TLBO, IWO, ABC, HS, BBO, CA,
and ACO are located, respectively. Table 16 shows the results
of Friedman’s and Iman-Davenport’s tests based on the
collection of within-cluster distances, error rate, and run time.
In this table, the hypothesis is rejected according to the p-value,
so there is a significant difference.

Because a significant difference has been observed, the
pairwise comparisons of algorithms are performed by the
Wilcoxon test to determine whether the difference is
statistically significant. The Wilcoxon test is applied as a
nonparametric test. Algorithms are compared in terms of
within-cluster distances value, error rate, and run time for all
datasets. In this method, the confidence interval is 95%
(0=0.05). The results are shown in Table 17 shows that the
PSO algorithm has been successful in most cases. In the
pairwise comparisons, most of the wins are related to the PSO.

Table 15. Ranking of clustering algorithms based on the
collection of within-cluster distances, error rate, and run time

Algorithms
ABCACOBBOCA DE GA HS IWOPSO TLBO
Ranking 6.03 8.25 6.83 7.07 3.40 4.38 6.55 5.70 2.23 4.55

Table 16. Results of Friedman’s and Iman—Davenport’s tests
based on the collection of within-cluster distances, error rate,

and run time
Test Chi- Degrees of p- _
method  Square freedom (DF) Value Hypothesis
Friedman  100.4737 9 1-216;5 Rejected
Iman— 2.20E- .
Davenport 16.9670 9 16 Rejected




Table 17. Pairwise comparisons of algorithms based on Wilcoxon test

ABC ACO BBO CA DE

GA HS IWO PSO TLBO

ABC -

ACO 2.16E-05 -

BBO 0.02183 0.38203 -
CA 0.00241 0.03683 0.54486

2.16E-05  0.02183 0.00241 0.00475
0.38203 0.03683  6.34E-06
0.54486  4.07E-05

- 8.19E-05
DE 0.00475  6.34E-06 4.07E-05  8.19E-05 -
GA 0.04039  4.29E-06  1.48E-04 3.89E-05  0.30430
HS 0.00927 0.82901 0.18358 0.02067  7.51E-05

IWO 0.95899 0.08590 0.53718 0.46528 0.06268
PSO 143E-04 433E-06 1.02E-05 1.24E-05 0.02202
TLBO 4.13E-05 4.29E-06  0.00148  2.00E-04  0.70065

0.04039 0.00927 0.95899  1.43E-04 4.13E-05

4.29E-06  0.82901 0.08590  4.33E-06  4.29E-06
1.48E-04  0.18358 0.53718  1.02E-05  0.00148
3.89E-05  0.02067 0.46528  1.24E-05  2.00E-04
0.30430  7.51E-05  0.06268 0.02202 0.70065
4.71E-04  0.04714  7.11E-04  0.15662
- 0.76550  5.30E-05  0.00385
0.04714 0.76550 - 2.47E-04  0.16310
7.11E-04 5.30E-05 2.47E-04 - 0.00476
0.15662 0.00385 0.16310 0.00476 -

4.71E-04

6. CONCLUSIONS

In this comparative study, the performance of popular, [8]
general, and state-of-the-art metaheuristic algorithms in the
clustering problem was compared. Three criteria including
performance, error rate, and run time were investigated.
Algorithms were compared in equal conditions. All algorithms
were first tested on the synthetic dataset and then on real-world
datasets. The real-world datasets contain ten datasets with a [9]
variety of features. Statistical analysis was also used to reveal
significant differences. According to the results, we can
answer the question of the paper's introduction. All the
algorithms compared in this paper were indeed able to improve [10]
the k-means method well. However, according to the
experiments performed in this paper and examining three
evaluation criteria including performance, clustering error rate,
and run time, it can be concluded that the PSO algorithm has [11]
been superior to other algorithms in improving the k-means
method. DE and GA are in the next ranks, respectively.
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