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Finding the most suitable centroids for k-means clustering is one of the most important 

criteria for successful clustering operation. We are always looking for the best centroids. 

Since, clustering problem and finding best centroids are an NP-hard problems, using 

metaheuristic algorithms can be an appropriate tool to deal with these issues. Many authors 

have solved this issue with metaheuristic algorithms. Common and popular algorithms have 

very good solutions. But which of the metaheuristic algorithms really provides the best 

solution? To answer this question, in this comparative study, ten popular metaheuristic 

algorithms are compared. The comparisons are performed on synthetic and ten real-world 

datasets. To find significant differences between the results obtained by algorithms, 

statistical analysis is used. Comparison results are presented with suitable tables. 
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1. INTRODUCTION

Clustering or cluster analysis is one of the unsupervised 

learning categories and the process during which the samples 

are divided into groups whose members are similar to each 

other, which is called clusters [1]. The goal of clustering is to 

obtain clusters with very similar members and the maximum 

distance of each cluster than other clusters. For this purpose, 

one of the clustering methods is k-means clustering.  

k-means method is a very simple and practical approach [2].

In fact, k-means is a heuristic method for partitional clustering. 

In this method, the cluster centers are represented as cluster 

means. Then each data is checked and assigned to the nearest 

cluster center. After completing this, we can create cluster 

centers and then create new clusters by getting the meanings 

in each cluster. One of the problems in this method is that its 

optimality depends on the initial selection of the centers and 

therefore, not optimal. 

Since, clustering problem is an NP-hard problem [3], using 

metaheuristic algorithms can be an appropriate tool to deal 

with these issues. Metaheuristic algorithms are defined as 

high-level methods that can be used as a guiding strategy for 

solving optimization problems and other issues. In other words, 

metaheuristic algorithms are advanced search strategies. 

These algorithms effectively search the solution space with 

special methods. If the solution space is large, the classical 

methods cannot find the solution in a reasonable time [4]. One 

way to overcome this problem is to use metaheuristic 

algorithms. The main problems of heuristic algorithms are 

their entrapment in local optimal points and premature 

convergence. 

Metaheuristic algorithms are also used to solve the 

problems of heuristic algorithms. These algorithms 

significantly increase the ability to find high-quality solutions 

to difficult optimization problems [5]. k-means method, like 

other heuristic methods, has the problems mentioned above. 

The use of metaheuristic algorithms reduces its problems. 

Many authors have used metaheuristic algorithms to solve 

the clustering problem. Shelokar et al. [6] used an ant colony 

approach for clustering. They showed that an ant colony 

approach had better solutions compared with genetic 

algorithm, simulated annealing, and tabu search. Parpinelli et 

al. [7] proposed an algorithm based on ant colony optimization 

called Ant-Miner. The Ant-Miner was used to extract 

classification rules from data. The algorithm was inspired by 

both researches on the behavior of real ant colonies and some 

data mining concepts as well as principles. In another study, 

Moh’d Alia et al. [8] employed the harmony search algorithm. 

They compared their method with random initialization mode. 

Their algorithm also responds well. Krishna and Murty [9], 

Murthy and Chowdhury [10], Maulik and Bandyopadhyay 

[11], and Cowgill et al. [12] all of them have used genetic 

algorithms in clustering. They claim that using the genetic 

algorithm improves the clustering operation.  

Differential evolution algorithm is another algorithm that 

used widely in clustering. This algorithm works well in 

clustering. Das et al. [13] used the differential evolution in 

clustering and automatic clustering. Kwedlo [14] combined 

the differential evolution with k-means and compared it with 

the global k-means. He also demonstrated the superiority of 

his combined differential evolution algorithm. Paterlini and 

Krink [15] in their paper compared the differential evolution 

algorithm with the particle swarm optimization, genetic 

algorithm, random search algorithm, and k-means. They 

showed that the differential evolution algorithm is very fast in 

solving the clustering problem. In their other paper [16], they 

compared the genetic algorithm, particle swarm optimization, 

and differential evolution. From their experiments, it turned 

out that differential evolution is superior compared to genetic 

algorithm and particle swarm optimization both with respect 

to precision as well as the robustness of the results. 

VanderMerwe and Engelbrecht [17] used the particle 

swarm optimization algorithm to find the centroids of a user-

specified number of clusters. They showed that the particle 
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swarm optimization approaches have better convergence to 

lower quantization errors, and in general, larger inter-cluster 

distances and smaller intra-cluster distances. In another paper, 

Zhao et al. [18] also used particle swarm optimization for 

clustering and compared it with k-means algorithm. In their 

paper, the particle swarm optimization has better solutions 

compared with the k-means. 

Karaboga and Ozturk [19] utilized artificial bee colony to 

classification benchmark datasets and then the performance 

compared with particle swarm optimization. Their results 

indicate that the artificial bee colony algorithm is successfully 

applied for clustering. Zhang et al. [20] also used the artificial 

bee colony approach for clustering and then compared with the 

ant colony, genetic algorithm, simulated annealing, and tabu 

search algorithm. They performed experiments on only three 

datasets. Their results indicate the superiority of the artificial 

bee colony algorithm. 

Other algorithms have also been used by other authors to 

solve the clustering problem. For instance, Alami et al. [21] 

used the cultural algorithm, Chowdhury et al. [22] utilized 

invasive weed optimization algorithm, Satapathy and Naik [23] 

applied teaching-learning-based optimization algorithm. 

Hammouri and Abdullah [24] used biogeography based 

optimization for data clustering. 

In the literature, metaheuristic algorithms used in the 

clustering problem, have the best performance compared with 

metaheuristic algorithms that have been tested with them. All 

authors claim that the metaheuristic algorithm used in 

clustering yields good results. But which one is better? 

Optimization operation to find the best centroid should be 

tested under the same conditions for different metaheuristic 

algorithms. Statistical analysis is the best way to find the 

difference between different performances. In this paper, we 

will answer the question of which one of the most common, 

state-of-the-art, and widely used metaheuristic algorithms has 

really the best performance in the clustering. The goal of this 

comparative study is to achieve the desired solutions and 

minimize the cost of clustering through the applying of 

metaheuristic methods. The main contribution of this paper is 

to improve the k-means by applying metaheuristic methods to 

achieve optimal centroids and to compare solutions by 

examining the three criteria of within-cluster distances, 

clustering error rate, and algorithm run time. 

The rest of the paper is structured as follows: Section 2 

describes clustering fundamentals. Section 3 includes selected 

algorithms for comparisons. Experimental results are 

presented in Section 4. Section 5 represents the statistical 

analysis, and in Section 6 conclusion is presented. 

 

 

2. CLUSTERING FUNDAMENTALS 

 

In partitioning-based clustering problems, two features are 

usually considered. These two characteristics are compactness 

and separation [25-27]. 

Compactness shows the greatest similarity between items in 

a group. In other words, the similarity between group items 

needs to be maximized. This causes the most compactness in 

the group. 

Separation shows the differences between items of different 

groups. That is, items of one group have the least similarity to 

items of other groups.  

When we are talking about the least or the most, clustering 

can be considered as an optimization problem. As a result, 

clustering is a special case of optimization. This problem can 

be solved optimally by metaheuristic algorithms. Here the 

objective function is required. To define the objective function, 

one of the most convenient and appropriate criteria is within-

cluster distance. Therefore, in a cluster, the total distance of 

each cluster member from the cluster center is equal to, 
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where, d is the Euclidean distance, x is the sample data, m is 

the cluster centeroid, and c is ith cluster. If the above equation 

is considered for all clusters, the function of the cluster's center 

is obtained. In general, 
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Hence, whatever the answer obtained from the above 

equation is minimal, this means that clustering is better done. 

Thus, the above equation is a cost function. This equation can 

be minimized by changing the centroids. The problem is 

mathematically expressed as follows.  

Suppose there is a dataset: X={x1, x2, …, xn} and the 

centroids are unknown: M={m1, m2, …, mn}. If x is in d-

dimensional space, m is also in d-dimensional space. in overall, 

if xid, so mjd. Therefore, the numbers of unknowns are 

k-center multiplication in d-dimension. In this problem, the 

number of clusters is predetermined. So the total objective 

function is as follows: 
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In the problem presented in this paper, the Error Rate (ER) 

is considered as an external quality measurement. The error 

rate is expressed as the percentage, and the equation is as 

follows: 

 

ER 100=
n

f
 (4) 

 

where, f is the number of misplaced objects, and n is the total 

number of objects within the dataset. 

 

 

3. SELECTED ALGORITHMS FOR COMPARISONS 

 

In this comparative study, ten well-known, common, and 

popular algorithms are chosen for comparison. These are 

Artificial Bee Colony (ABC) [28], Ant Colony Optimization 

(ACO) [29], Biogeography Based Optimization (BBO) [30], 

Cultural Algorithm (CA) [31], Differential Evolution (DE) 

[32], Genetic Algorithm (GA) [33], Harmony Search (HS) 

[34], Invasive Weed Optimization (IWO) [35], Particle Swarm 

Optimization (PSO) [36], and Teaching Learning Based 

Optimization (TLBO) [37]. The widespread use of the above 

algorithms by authors is the reason for choosing them. 

In the ABC [28], agents who are called Artificial Bees are 

gathering together to be able to solve more difficult problems. 

All artificial bees are in the main hive at the beginning of the 

search process. In the search process, artificial bees 
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communicate directly with each other. Each artificial bee 

performs a series of local movements and will help them find 

a solution to their current problem. Then, with the integration 

of solutions, the main solution to the problem is achieved. The 

search process consists of sequential iterations. The first 

iteration ends when the first bee offers its solution to solve the 

main problem. In the next iterations, artificial bees are 

beginning to find new solutions, and this process continues. In 

this algorithm, the number of onlooker bees can be determined. 

Abandonment limit and acceleration coefficient are also 

parameters that have a direct impact on the performance of the 

algorithm. 

The ACO [29] is inspired by the behavior of ants in its 

colony when searching for food. In the real world, the ants first 

randomly go to and fro to find food. They then return to the 

colony and mark the path with pheromone. When the other 

ants find this path, they abandon the roam and follow it. Then, 

if they reach the food, they return to the colony and mark the 

path again. Therefore, the path is strengthened. In this way, the 

best path to reach the food is determined. Although the ACO 

algorithm works well in finding good paths through graphs, it 

can be applied to other issues as well. Deviation to distance 

ratio and intensification factor are among the important 

parameters in setting up this algorithm. 

Biogeography discusses the migration of animal species 

from one island to another, the evolution of new species and 

the extinction of species. Basically, in the biogeography, there 

is competition for survival and resources. Animals are trying 

to obtain resources exclusively. Because there are many 

resources in some areas, the animals are trying to migrate into 

these areas. The BBO algorithm [30] is based on a 

mathematical model, describing the migration of species 

between habitats. In this algorithm, the number of kept habitats 

must be determined according to the size of the population. 

Also, the number of new habitats and migration rates have a 

direct impact on the performance of the algorithm. 

In the CA [31], there is a knowledge component called the 

belief space in addition to the population component. Hence, 

this algorithm can be considered a special extension of the 

genetic algorithm. The belief space defines the various 

knowledge of the population from the search space. The belief 

space is updated by the best member of the population after 

each iteration. The best member is selected through the fitness 

function. This fitness function is exactly like the fitness 

function of the genetic algorithm. In this algorithm, the 

acceptance ratio and the number of accepted individuals are 

effective in the operation of the algorithm. 

In the DE [32], information about the direction and distance 

from the members is used to find the optimal solution. In this 

algorithm, to create a new generation, at first the Mutation 

operator and then the Crossover operator is applied. For the 

initial population, the uniform distribution is used to make the 

same distributed population in the space. At each step of the 

algorithm, the distance between the members is reduced to 

find the optimal solution. In this algorithm, determining the 

upper limit and the lower limit of the scaling factor is very 

important to determine the mutation. Determining the 

crossover coefficient is also important to get the desirable 

solutions. 

In the GA [33], it randomly selects people from the current 

generation as parents and uses them to create children who 

themselves are members of the next generation. During 

successive generations, the answers evolve and become 

optimized. The genetic algorithm works by using specific 

principles, similar to genetic structures and chromosome 

behavior among a population of individuals. The two most 

important parameters in the adjustment of this algorithm are 

crossover and mutation rate. 

The HS [34] is inspired by the process of harmonizing a 

piece of music with a musician. During the time, musicians 

produce a piece of music by playing different harmonies. After 

playing several pieces, the musicians memorize the pieces they 

played. The musicians try to match harmony with 

improvisations in the pitch played by him. In this algorithm, 

the number of new harmonies must be determined. Also, the 

amount of memory to maintain harmonies and the pitch 

adjustment rate are effective in setting the algorithm. 

 

Table 1. Parameters values of competitor algorithms 

 
Algorithm Parameters Values 

ABC Colony size 

Number of onlooker bees 

Abandonment limit parameter 

Acceleration coefficient upper bound 

 

20 

20 

10 

1 

ACO Colony size 

Sample size 

Intensification factor 

Deviation-Distance ratio 
 

20 

40 

0.5 

1 

BBO Number of habitats 

Keep rate 

Number of kept habitats 

Number of new habitats 

Immigration rates 

 

20 

0.2 

4 

16 

[0,1] 

CA Population size 

Acceptance ratio 

Number of accepted individuals 

 

20 

0.35 

7 

DE Population Size 

Lower bound of scaling factor 

Upper bound of scaling factor 

Crossover probability 
 

20 

0.2 

0.8 

0.2 

GA Population size 

Crossover percentage  

Mutation percentage 

 

20 

0.8 

0.35 

HS Harmony memory size 

Number of new harmonies 

Harmony memory consideration rate 

Pitch adjustment rate 

 

20 

20 

0.2 

0.1 

IWO Population size 

Maximum population size 

Minimum number of seeds 

Maximum number of seeds 

Variance reduction exponent 

Initial value of standard deviation 

Final value of standard deviation 
 

20 

20 

0 

5 

2 

0.5 

0.001 

PSO Swarm size 

Inertia weight 

Inertia weight damping ratio 

Personal learning coefficient 

Global learning coefficient 

 

20 

1 

0.99 

2 

2 

TLBO Population size 

Teaching factor 

20 

[1,2] 
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Weeds are seen in almost all farms and gardens, and they 

are almost always the winners, regardless of how much we 

tried to eradicate them. In nature, weeds are heavily grown and 

this severe growth is a serious threat to the useful plants. One 

of the important characteristics of weeds is their very high 

sustainability and adaptability in nature. The IWO algorithm 

[35] is inspired by the proliferation, survival, and versatility of 

weeds. In this algorithm, the goal is to find the best point of a 

given environment for the seeding of the seeds. To do this, the 

minimum and the maximum number of seeds must be 

determined. Also, variance and standard deviation for 

determining new points are other settings of the algorithm. 

In the PSO [36], inspired by the movement of the flock of 

birds, it is assumed that the flock in the problem space is 

randomly looking for food. There is only one piece of food in 

the problem space, and none of the birds do not know the 

location of food. One of the best strategies can be to follow a 

bird that has the least distance to the food. Each particle or bird 

has a fitness value calculated by the fitness function. Whatever 

particle in the search space is closer to the target or food in the 

bird's model, it has better fitness. Also, each particle in this 

swarm is defined by the velocity and position vector in the 

search space. In each iteration, the new particle position is 

defined according to the velocity vector and position vector in 

the search space. In this algorithm, the amount of personal 

learning and the amount of global learning have a direct 

impact on the performance of the algorithm. 

The TLBO algorithm [37] has been inspired by the learning 

and teaching process. In the TLBO algorithm, a mathematical 

model for teaching and learning is considered, which 

ultimately runs in two phases and can lead to optimization. In 

the training phase, the best member of the community is 

selected as a teacher and leads the average population to 

his/her own. This is similar to what a real teacher really does 

in the world. In the learning phase, people in the community 

(who are colleagues together) work with each other to develop 

their knowledge. This is similar to what is really happening 

with friends and classmates. In this algorithm, the teaching 

factor is a value that is selected randomly. 

The values of all parameters for each algorithm are shown in 

Table 1. 

 

 

4. EXPERIMENTAL RESULTS 

 

In the experiments, three criteria have been used for 

evaluation. The first is the objective function, as defined in Eq. 

(3). The total distance of each cluster member from the cluster 

center is considered as the objective function. The second is 

the Error Rate (ER), which is considered as an external quality 

measurement. The ER defined in Eq. (4). The Third criterion 

is Run Time. To evaluate performance, a simple synthetic 

dataset and real-world datasets were used. The synthetic 

dataset has been created by ourselves. The characteristics of 

the syntactic dataset are shown in Table 2. Also, this syntactic 

dataset can be found in the supplementary data files or publicly 

available at http://www.harifi.com/. 

Also, ten selected real-world datasets for experiments are 

Balance Scale, Breast Cancer Wisconsin, Contraceptive 

Method Choice, Dermatology, Glass Identification, 

Haberman's Survival, Iris, MAGIC Gamma Telescope, Pima 

Indians Diabetes, and Wine, which are available in the 

repository of the machine learning databases [38]. Table 3 

shows the characteristics of real-world datasets.  

For this reason that the experiment results be comparable, 

the settings of all algorithms are similar to each other. Some 

parameters are selected for some algorithms through manual 

tuning. For example, the mutation and crossover rate in the GA 

are tune-up to get the best solution. It should be noted that the 

type of crossover used in the implemented DE algorithm is 

binomial crossover. Also, the crossover and mutation type 

used in the implemented GA are arithmetic crossover and 

Gaussian mutation, respectively. The number of iteration in 

each run is considered 150. The initial population is 

considered 20 in all algorithms. Each algorithm was run 30 

times, as mentioned, each run has 150 iterations. So the mean 

of 30 results was considered. The standard deviation, best 

solution, worst solution, error rate, and run time were also 

reported. The label attributes are removed in some datasets for 

the experiments. All evaluation experiments have been run on 

an Intel® Pentium® processor CPU G645 2.90 GHz with 2 GB 

RAM. Implementations have been run on MATLAB R2015b 

for coding. 

 

Table 2. Main characteristics of the synthetic dataset 

 

Dataset 
Number of 

Clusters 

Number of 

Attributes 

Number of 

Instances 

Hypothetical 

dataset 
5 2 

500 (100, 100, 

100, 100, 100) 

 

Table 3. Main characteristics of the real-world datasets 

 

Dataset 
Number of 

Clusters 

Number of 

Attributes 

Number of 

Instances 

Balance Scale 3 4 
625 (49, 288, 

288) 

Breast Cancer 

Wisconsin 
2 9 699 (458, 241) 

Contraceptive 

Method Choice 
3 9 

1473 (629, 334, 

510) 

Dermatology 6 34 
366 (112, 61, 72, 

49, 52, 20) 

Glass 

Identification 
6 9 

214 (70, 17, 76, 

13, 9, 29) 

Haberman's 

Survival 
2 3 306 (225, 81) 

Iris 3 4 150 (50, 50, 50) 

MAGIC 

Gamma 

Telescope 

2 10 
19020 (12332, 

6688) 

Pima Indians 

Diabetes 
2 8 768 (500, 268) 

Wine 3 13 178 (59, 71, 48) 

 

4.1 Experiment on synthetic dataset 

 

By creating a hypothetical dataset, we can better comment 

on the performance of the algorithms. Because we know the 

answer. So we create a dataset to know what the answer is. For 

this synthetic dataset, we consider five centers (0, 0), (3, 3), (3, 

-2), (-3, -4), and (-4, 1). Data around these five centers have 

been distributed with normal distribution or specified variance. 

Table 2 shows the characteristics of this dataset. In this 

dataset, each cluster has 100 members. The values in Table 4 

shows the best, average, worst, standard deviation, error rate, 

and run time of solutions over 30 independent runs. Also, this 

table shows that all algorithms are set correctly and they work 

well. Now algorithms are ready for testing with real-world 

datasets. 
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4.2 Experiments on real-world datasets 

 

To get reliable results, the collection of very diverse datasets 

is considered. There are small and simple or large and complex 

datasets in the selected datasets for experiments.  

Table 5 shows the results of 30 independent runs of different 

algorithms on the selected datasets. In this table, the best, 

average, worst and standard deviation are specified. 

According to the results of Table 5, it seems at a glance the 

PSO algorithm has a better solution. But until the statistical 

analysis is done, the definitive opinion cannot be given. At a 

glance, the worst solution is related to the HS algorithm. Also 

according to the standard deviation, the PSO algorithm has the 

highest stability. Table 6 shows the mean error rate obtained 

through 30 independent runs of different algorithms on the 

different datasets. Table 7 shows the total run time and each 

iteration run time of all algorithms. 

 

Table 4. The sum of within-cluster distances, error rate, and run time obtained by algorithms on synthetic dataset 

 

Dataset Criteria 
Algorithms 

ABC ACO BBO CA DE GA HS IWO PSO TLBO 

Hypothetical dataset Best 

Average 

Worst 

Std 

ER (%) 

RT (s) 

649.40 

694.48 

757.98 

27.79 

2.79 

1.65 

614.88 

638.35 

788.56 

50.00 

1.18 

2.27 

659.81 

717.31 

846.60 

51.70 

3.70 

1.05 

615.52 

658.76 

781.16 

45.30 

3.24 

1.09 

632.38 

663.97 

699.41 

16.68 

1.66 

0.81 

614.91 

619.53 

746.88 

24.05 

1.29 

0.95 

732.41 

812.04 

855.58 

30.39 

7.35 

0.89 

614.88 

621.61 

745.48 

26.77 

1.53 

1.03 

614.88 

621.29 

745.48 

26.03 

1.49 

0.81 

614.88 

616.34 

630.39 

3.33 

0.73 

1.39 

Table 5. The sum of within-cluster distances obtained by algorithms on real-world datasets 

 

Dataset Criteria 
Algorithms 

ABC ACO BBO CA DE GA HS IWO PSO TLBO 

Balance Scale Best 

Average 

Worst 

Std 

1430.74 

1433.93 

1437.91 

1.66 

1423.82 

1432.50 

1442.88 

7.07 

1427.05 

1437.51 

1447.71 

5.48 

1426.00 

1430.23 

1437.13 

2.98 

1429.52 

1432.36 

1437.74 

1.98 

1423.86 

1426.84 

1432.95 

1.99 

1433.83 

1447.38 

1460.13 

5.84 

1423.82 

1423.82 

1423.82 

0.00 

1423.82 

1424.68 

1425.99 

0.92 

1424.13 

1425.85 

1429.10 

0.94 

Breast Cancer 

Wisconsin 

Best 

Average 

Worst 

Std 

3029.40 

3049.41 

3084.91 

14.68 

3028.28 

4623.91 

4807.41 

541.35 

3887.02 

4497.41 

5455.91 

397.59 

3754.08 

4342.42 

5039.13 

334.44 

3028.26 

3054.51 

3121.33 

27.95 

3030.29 

3038.04 

3055.35 

6.29 

4133.34 

4779.31 

5132.80 

234.95 

3028.15 

3028.25 

3028.50 

0.08 

3028.12 

3028.21 

3028.52 

0.09 

3028.19 

3035.09 

3127.11 

18.38 

Contraceptive 

Method Choice 

Best 

Average 

Worst 

Std 

5550.40 

5610.37 

5715.76 

37.33 

5590.18 

5991.51 

7023.70 

399.58 

5859.14 

6153.22 

6694.81 

214.84 

5789.33 

6144.16 

7532.66 

360.68 

5576.74 

5616.52 

5654.00 

21.01 

5557.26 

5611.90 

5807.59 

63.08 

6048.92 

6564.32 

6887.17 

177.06 

5532.34 

5623.12 

7015.05 

343.06 

5532.29 

5534.37 

5550.90 

3.95 

5540.52 

5588.19 

5713.31 

40.89 

Dermatology Best 

Average 

Worst 

Std 

2900.87 

3000.09 

3116.26 

56.49 

3248.20 

3404.99 

3552.44 

76.25 

2682.56 

2794.18 

2983.79 

66.01 

2898.96 

3030.68 

3261.09 

80.05 

2617.89 

2687.74 

2791.23 

43.87 

2548.37 

2644.54 

2728.70 

47.42 

3107.04 

3194.28 

3232.11 

32.07 

2254.84 

2360.61 

2542.23 

65.48 

2195.35 

2240.32 

2291.50 

25.28 

2321.36 

2395.20 

2513.49 

47.03 

Glass 

Identification 

Best 

Average 

Worst 

Std 

275.15 

296.34 

332.00 

14.59 

410.25 

410.25 

410.25 

0.00 

302.41 

387.60 

495.89 

42.95 

306.20 

368.85 

498.28 

38.09 

263.78 

289.09 

307.81 

12.28 

256.40 

290.03 

333.68 

15.84 

410.80 

443.35 

496.47 

21.45 

251.84 

279.02 

341.63 

19.54 

219.79 

244.82 

261.96 

11.56 

246.12 

265.52 

301.02 

11.82 

Haberman's 

Survival 

Best 

Average 

Worst 

Std 

2567.03 

2567.91 

2569.47 

0.68 

2566.99 

2567.10 

2567.83 

0.29 

2590.49 

2770.23 

3259.44 

176.36 

2567.02 

2651.84 

3425.79 

213.77 

2566.99 

2567.04 

2567.82 

0.16 

2566.99 

2568.05 

2569.18 

0.72 

2611.55 

2671.52 

2727.21 

32.55 

2566.99 

2734.54 

3379.29 

288.63 

2566.99 

2567.10 

2567.82 

0.29 

2566.99 

2567.58 

2569.15 

0.80 

Iris Best 

Average 

Worst 

Std 

97.45 

102.28 

112.20 

3.81 

96.66 

123.72 

141.68 

11.18 

99.77 

130.42 

179.69 

17.28 

99.61 

111.22 

133.24 

9.41 

96.99 

102.70 

110.79 

3.84 

96.69 

99.24 

127.74 

6.10 

125.39 

144.06 

155.66 

6.82 

96.66 

97.71 

127.67 

5.66 

96.66 

97.46 

120.72 

4.39 

96.66 

97.50 

107.21 

1.94 

MAGIC Gamma 

Telescope 

Best 

Average 

Worst 

Std 

1.64E+06 

1.66E+06 

1.72E+06 

2.50E+04 

1.93E+06 

1.93E+06 

1.93E+06 

0.00 

1.81E+06 

2.17E+06 

3.02E+06 

2.80E+05 

1.75E+06 

1.99E+06 

2.30E+06 

1.38E+05 

1.63E+06 

1.63E+06 

1.66E+06 

5569.49 

1.64E+06 

1.69E+06 

1.83E+06 

5.52E+04 

2.14E+06 

2.41E+06 

2.62E+06 

1.57E+05 

2.21E+06 

3.83E+06 

5.66E+06 

9.08E+05 

1.62E+06 

1.62E+06 

1.62E+06 

403.71 

1.62E+06 

1.63E+06 

1.64E+06 

4564.62 

Pima Indians 

Diabetes 

Best 

Average 

Worst 

Std 

4.76E+04 

4.76E+04 

4.78E+04 

55.45 

4.76E+04 

4.82E+04 

6.78E+04 

3697.98 

5.06E+04 

5.97E+04 

7.83E+04 

7118.01 

4.94E+04 

5.45E+04 

6.20E+04 

3230.39 

4.76E+04 

4.76E+04 

4.77E+04 

49.00 

4.76E+04 

4.77E+04 

4.81E+04 

119.81 

5.33E+04 

5.85E+04 

6.21E+04 

1733.06 

5.62E+04 

6.72E+04 

8.14E+04 

6528.23 

4.76E+04 

4.76E+04 

4.76E+04 

2.52 

4.76E+04 

4.76E+04 

4.82E+04 

125.57 

Wine Best 

Average 

Worst 

Std 

1.63E+04 

1.63E+04 

1.63E+04 

11.31 

1.65E+04 

1.67E+04 

1.72E+04 

173.31 

1.63E+04 

1.69E+04 

1.88E+04 

563.49 

1.63E+04 

1.65E+04 

1.71E+04 

180.69 

1.63E+04 

1.63E+04 

1.64E+04 

21.63 

1.63E+04 

1.63E+04 

1.66E+04 

59.18 

1.67E+04 

1.69E+04 

1.71E+04 

144.96 

1.66E+04 

1.93E+04 

2.32E+04 

1940.06 

1.63E+04 

1.63E+04 

1.63E+04 

0.85 

1.63E+04 

1.63E+04 

1.64E+04 

19.06 
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Table 6. The error rate (in percentage) obtained by algorithms on real-world datasets 

 

Dataset 
Algorithms 

ABC ACO BBO CA DE GA HS IWO PSO TLBO 

Balance Scale 21.81 21.62 21.92 22.47 22.14 22.73 20.63 20.16 21.09 22.36 

Breast Cancer Wisconsin 0.83 29.30 3.79 4.60 0.80 0.82 7.89 0.72 0.72 0.72 

Contraceptive Method Choice 3.02 4.22 4.37 4.37 2.97 3.02 5.14 4.24 3.56 3.21 

Dermatology 10.02 11.26 8.01 8.48 9.30 8.98 9.28 12.29 7.78 8.13 

Glass Identification 39.39 64.49 36.68 43.99 35.90 36.79 47.01 39.84 34.70 36.73 

Haberman's Survival 21.50 22.16 14.76 18.46 22.42 19.60 17.03 19.42 22.03 21.09 

Iris 7.53 29.33 10.02 10.53 6.82 7.42 18.13 8.02 8.13 5.16 

MAGIC Gamma Telescope 11.24 35.16 23.76 30.49 3.81 15.06 33.57 31.65 12.35 10.70 

Pima Indians Diabetes 0.66 1.11 12.70 7.86 0.60 0.71 7.52 20.99 0.65 0.69 

Wine 2.32 1.95 2.79 2.28 2.45 1.93 2.06 13.00 2.73 2.10 

 

Table 7. The run time obtained by algorithms on real-world datasets. Total run time is the sum of 30 independent runs. Time is 

calculated in seconds 

 

Dataset Criteria 
Algorithms 

ABC ACO BBO CA DE GA HS IWO PSO TLBO 

Balance Scale Total Run time 

Each Run 

49.10 

1.64 

72.11 

2.40 

33.20 

1.11 

36.14 

1.20 

24.97 

0.83 

30.59 

1.02 

27.62 

0.92 

31.83 

1.06 

24.72 

0.82 

42.85 

1.43 

Breast Cancer Wisconsin Total Run time 

Each Run 

50.12 

1.67 

84.98 

2.83 

39.24 

1.31 

43.78 

1.46 

25.70 

0.86 

31.18 

1.04 

28.88 

0.96 

32.03 

1.07 

25.28 

0.84 

43.92 

1.46 

Contraceptive Method Choice Total Run time 

Each Run 

59.47 

1.98 

114.62 

3.82 

53.22 

1.77 

60.33 

2.01 

30.88 

1.03 

37.32 

1.24 

35.31 

1.18 

38.33 

1.28 

30.35 

1.01 

54.00 

1.80 

Dermatology Total Run time 

Each Run 

59.06 

1.97 

498.74 

16.62 

226.14 

7.54 

290.71 

9.69 

35.65 

1.19 

36.82 

1.23 

62.94 

2.10 

37.06 

1.24 

30.90 

1.03 

53.25 

1.77 

Glass Identification Total Run time 

Each Run 

48.33 

1.61 

183.12 

6.10 

82.90 

2.76 

103.69 

3.46 

25.98 

0.87 

29.40 

0.98 

34.84 

1.16 

30.02 

1.00 

24.46 

0.82 

42.13 

1.40 

Haberman's Survival Total Run time 

Each Run 

45.18 

1.51 

54.93 

1.83 

25.41 

0.85 

25.94 

0.86 

22.95 

0.77 

26.91 

0.90 

24.37 

0.81 

30.22 

1.01 

22.64 

0.75 

39.17 

1.31 

Iris Total Run time 

Each Run 

45.49 

1.52 

67.46 

2.25 

30.83 

1.03 

33.70 

1.12 

22.81 

0.76 

26.43 

0.88 

24.88 

0.83 

27.94 

0.93 

22.26 

0.74 

38.74 

1.29 

MAGIC Gamma Telescope Total Run time 

Each Run 

329.83 

10.99 

371.57 

12.39 

182.12 

6.07 

182.88 

6.10 

167.01 

5.57 

195.54 

6.52 

172.46 

5.75 

223.83 

7.46 

170.62 

5.69 

320.28 

10.68 

Pima Indians Diabetes Total Run time 

Each Run 

50.79 

1.69 

81.31 

2.71 

37.48 

1.25 

41.49 

1.38 

26.18 

0.87 

31.42 

1.05 

28.63 

0.95 

32.75 

1.09 

25.54 

0.85 

44.82 

1.49 

Wine Total Run time 

Each Run 

46.50 

1.55 

125.71 

4.19 

58.73 

1.96 

70.29 

2.34 

24.65 

0.82 

27.81 

0.93 

30.58 

1.02 

29.98 

1.00 

23.76 

0.79 

39.84 

1.33 

 

Table 8. Friedman ranking for each dataset based on the objective function solution 

 

Dataset 
Algorithms 

ABC ACO BBO CA DE GA HS IWO PSO TLBO 

Balance Scale 7.37 6.10 8.17 5.83 6.60 4.30 9.83 1.50 1.83 3.47 

Breast Cancer Wisconsin 5.17 8.50 8.27 7.67 5.20 4.47 9.17 1.73 1.43 3.40 

Contraceptive Method Choice 4.57 7.60 8.37 8.17 5.00 4.30 9.50 2.07 1.47 3.97 

Dermatology 7.33 10.00 5.93 7.67 4.80 4.30 8.97 2.27 1.00 2.73 

Glass Identification 4.90 8.57 8.10 7.50 4.47 4.47 9.80 3.63 1.13 2.43 

Haberman's Survival 5.70 2.45 9.33 7.40 3.58 5.67 8.90 5.70 2.45 3.82 

Iris 5.53 7.53 8.53 7.00 5.63 4.10 9.70 2.43 1.35 3.18 

MAGIC Gamma Telescope 4.30 6.43 7.87 6.90 2.97 4.60 8.87 9.93 1.33 1.80 

Pima Indians Diabetes 5.07 1.83 8.30 7.53 4.03 5.13 8.40 9.63 1.97 3.10 

Wine 2.97 7.63 7.57 6.37 4.07 4.00 8.40 9.80 1.00 3.20 

 

 

5. STATISTICAL ANALYSIS 

 

To find significant differences between the results obtained 

by algorithms, statistical analysis is used. For this purpose, 

Friedman and Iman-Davenport tests are employed. Table 8 

shows Friedman ranking for each dataset based on the 

objective function solution. In this table, for most datasets, the 

PSO algorithm has a better solution. The IWO and ACO 

algorithms have the best solution on Balance Scale and Pima 

Indians Diabetes datasets, respectively. However, the PSO 

algorithm is in the next rank. The IWO and ACO algorithms 

have been fluctuating. So that the ACO algorithm in 

Dermatology dataset is in the last rank. Also, the IWO 

algorithm is in the last rank in MAGIC Gamma Telescope, 

Pima Indians Diabetes, and Wine. The HS algorithm in the 

clustering is an algorithm with an inappropriate solution 

because in most datasets is in the last ranks. This table shows 

that the GA algorithm is an average algorithm that usually has 

acceptable solutions. Also, the TLBO algorithm showed that 

is a good algorithm for clustering problem. 

Table 9 shows the ranking of clustering algorithms based on 

the results of Table 5 (within-cluster distances) using the 
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Friedman test. As expected, the PSO algorithm is first in the 

ranking, then the TLBO algorithm is located. In the next ranks, 

the algorithms are DE, GA, ABC, IWO, CA, ACO, BBO, and 

HS, respectively. 

Table 10 shows the results of the Friedman and Iman-

Davenport tests. In this table, there is the Chi-Square value 

with nine degrees of freedom, and also there is the asymptotic 

significance of the test (p-value) with very close to zero value. 

Given the close to zero value of the asymptotic significance, 

the hypothesis is rejected. Therefore, it can be concluded that 

there is a significant difference in the performance of 

clustering algorithms. 

 

Table 9. Ranking of clustering algorithms based on the sum 

of within-cluster distances 

 

 Algorithms 

ABC ACO BBO CA DE GA HS IWO PSO TLBO 

Ranking 4.85 7.15 8.45 6.90 4.10 4.40 9.25 5.60 1.60 2.70 

 

Table 10. Results of Friedman’s and Iman–Davenport’s tests 

based on the sum of within-cluster distances 

 
Test 

method 

Chi-

Square 

Degrees of 

freedom (DF) 

p-

Value 
Hypothesis 

Friedman 60.2226 9 
1.21E-

09 
Rejected 

Iman–

Davenport 
17.1440 9 

1.77E-

15 
Rejected 

 

Table 11. Ranking of clustering algorithms based on the 

error rate 

 

 Algorithms 

ABC ACO BBO CA DE GA HS IWO PSO TLBO 

Ranking 5.05 7.60 5.85 6.85 4.20 4.65 6.60 6.40 4.00 3.80 

 

Table 12. Results of Friedman’s and Iman–Davenport’s tests 

based on the error rate 

 
Test 

method 

Chi-

Square 

Degrees of 

freedom (DF) 

p-

Value 
Hypothesis 

Friedman 17.6605 9 
0.039

32 
Rejected 

Iman–

Davenport 
2.1873 9 

0.031

21 
Rejected 

 

Table 13. Ranking of clustering algorithms based on the run 

time 

 

 Algorithms 

ABC ACO BBO CA DE GA HS IWO PSO TLBO 

Ranking 8.20 10.00 6.20 7.45 1.90 4.10 3.80 5.10 1.10 7.15 

 

Table 14. Results of Friedman’s and Iman–Davenport’s tests 

based on the run time 

 
Test 

method 

Chi-

Square 

Degrees of 

freedom (DF) 

p-

Value 
Hypothesis 

Friedman 78.4675 9 
3.26E-

13 
Rejected 

Iman–

Davenport 
60.9480 9 

2.20E-

16 
Rejected 

 

Table 11 shows the ranking of clustering algorithms based 

on the results of Table 6 (Error Rate) using the Friedman test. 

In Table 11, the best rank is related to the TLBO algorithm, 

then the PSO algorithm is located. Table 12 shows the results 

of the Friedman and Iman-Davenport tests based on the error 

rate. In this table, the hypothesis is also rejected according to 

the p-value. There is a significant difference in the error rates. 

In the clustering problem, in addition to the accuracy  of 

clustering, the run time is also very important. Previously, in 

Table 7, the run time of each algorithm was shown. Table 13 

shows that the PSO algorithm has a very high speed in solving 

the clustering problem based on the Friedman ranking. The DE 

and HS algorithms are in the next rank, respectively. Although 

the TLBO algorithm has high accuracy, the run time is not 

good enough. Also, the GA algorithm is placed in the category 

of intermediate in terms of run time. Table 14 shows the results 

of the Friedman and Iman-Davenport tests based on the run 

time. There is a significant difference in the run time because 

the hypothesis is rejected according to the p-value. 

Some of the algorithms that were compared had a very good 

performance, some had a very low error rate, and some had a 

very good run time. To make better choices the more efficient 

algorithm, all criteria including within-cluster distances, error 

rate, and run time must be compared at the same time. For this 

purpose, Friedman's ranking has been performed with all these 

criteria. The results in Table 15 show that the PSO algorithm 

is much better than the other algorithms. After the PSO 

algorithm, the DE, GA, TLBO, IWO, ABC, HS, BBO, CA, 

and ACO are located, respectively. Table 16 shows the results 

of Friedman’s and Iman–Davenport’s tests based on the 

collection of within-cluster distances, error rate, and run time. 

In this table, the hypothesis is rejected according to the p-value, 

so there is a significant difference. 

Because a significant difference has been observed, the 

pairwise comparisons of algorithms are performed by the 

Wilcoxon test to determine whether the difference is 

statistically significant. The Wilcoxon test is applied as a 

nonparametric test. Algorithms are compared in terms of 

within-cluster distances value, error rate, and run time for all 

datasets. In this method, the confidence interval is 95% 

(α=0.05). The results are shown in Table 17 shows that the 

PSO algorithm has been successful in most cases. In the 

pairwise comparisons, most of the wins are related to the PSO. 

 

Table 15. Ranking of clustering algorithms based on the 

collection of within-cluster distances, error rate, and run time 

 

 Algorithms 

ABC ACO BBO CA DE GA HS IWO PSO TLBO 

Ranking 6.03 8.25 6.83 7.07 3.40 4.38 6.55 5.70 2.23 4.55 

 

Table 16. Results of Friedman’s and Iman–Davenport’s tests 

based on the collection of within-cluster distances, error rate, 

and run time 

 
Test 

method 

Chi-

Square 

Degrees of 

freedom (DF) 

p-

Value 
Hypothesis 

Friedman 100.4737 9 
1.26E-

17 
Rejected 

Iman–

Davenport 
16.9670 9 

2.20E-

16 
Rejected 
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Table 17. Pairwise comparisons of algorithms based on Wilcoxon test 

 
 ABC ACO BBO CA DE GA HS IWO PSO TLBO 

ABC - 2.16E-05 0.02183 0.00241 0.00475 0.04039 0.00927 0.95899 1.43E-04 4.13E-05 

ACO 2.16E-05 - 0.38203 0.03683 6.34E-06 4.29E-06 0.82901 0.08590 4.33E-06 4.29E-06 

BBO 0.02183 0.38203 - 0.54486 4.07E-05 1.48E-04 0.18358 0.53718 1.02E-05 0.00148 

CA 0.00241 0.03683 0.54486 - 8.19E-05 3.89E-05 0.02067 0.46528 1.24E-05 2.00E-04 

DE 0.00475 6.34E-06 4.07E-05 8.19E-05 - 0.30430 7.51E-05 0.06268 0.02202 0.70065 

GA 0.04039 4.29E-06 1.48E-04 3.89E-05 0.30430 - 4.71E-04 0.04714 7.11E-04 0.15662 

HS 0.00927 0.82901 0.18358 0.02067 7.51E-05 4.71E-04 - 0.76550 5.30E-05 0.00385 

IWO 0.95899 0.08590 0.53718 0.46528 0.06268 0.04714 0.76550 - 2.47E-04 0.16310 

PSO 1.43E-04 4.33E-06 1.02E-05 1.24E-05 0.02202 7.11E-04 5.30E-05 2.47E-04 - 0.00476 

TLBO 4.13E-05 4.29E-06 0.00148 2.00E-04 0.70065 0.15662 0.00385 0.16310 0.00476 - 

 

 

6. CONCLUSIONS 

 

In this comparative study, the performance of popular, 

general, and state-of-the-art metaheuristic algorithms in the 

clustering problem was compared. Three criteria including 

performance, error rate, and run time were investigated. 

Algorithms were compared in equal conditions. All algorithms 

were first tested on the synthetic dataset and then on real-world 

datasets. The real-world datasets contain ten datasets with a 

variety of features. Statistical analysis was also used to reveal 

significant differences. According to the results, we can 

answer the question of the paper's introduction. All the 

algorithms compared in this paper were indeed able to improve 

the k-means method well. However, according to the 

experiments performed in this paper and examining three 

evaluation criteria including performance, clustering error rate, 

and run time, it can be concluded that the PSO algorithm has 

been superior to other algorithms in improving the k-means 

method. DE and GA are in the next ranks, respectively. 
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