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The brain MR image analysis is a primary non-invasive component to detect any 

abnormality in the brain. It is a very important application in the field of medical image 

processing. For analysing brain MR images, there is a strong need to develop efficient 

image segmentation methods. Over the years, many image segmentation techniques have 

been suggested and their real life applications have also been studied. Implementation of 

these segmentation techniques in biomedical engineering is a major breakthrough. Intensive 

research works have been carried out explicitly on the analysis of human brain images and 

their subsequent detection of lesion cells using different segmentation methods. One of the 

easiest and most generally used method of segmentation is multilevel thresholding due to 

its precision and robustness against the other methods. To solve the problem of 

computational complexity for increasing threshold levels, various optimization algorithms 

are used for optimal multilevel thresholding. In this paper, an attempt is made to present a 

comprehensive review on the recent advancements in the area of brain MR image 

segmentation using optimal multilevel thresholding. This review is unique of its kind due 

to its exclusive emphasis on segmentation of brain MR image using thresholding technique 

only, which may not be present in the existing literature reviews. Different validation 

measures used for the multilevel image thresholding are discussed. A detailed comparison 

of the results obtained over the years is done. The merits and demerits of the methods are 

highlighted. This compilation aims to aid and encourage researchers to further explore the 

research in this direction. 
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1. INTRODUCTION

The brain is the ‘master-organ’ in almost all vertebrates and 

invertebrates. It regulates the functioning of other organs of 

the body. Disorders in the brain include tumors (malignant and 

non-malignant), stroke (loss of cells of the brain), 

inflammation of brain cells and traumatic brain injury. 

However, brain diseases may often go undetected as there is 

no visible physical scar to the exterior. Clinical analysis of the 

abnormalities is challenging and complicated. Detection of 

these disorders includes brain scanning followed by image 

segmentation. The quality of image analysis depends on the 

efficiency of the segmentation method, which, in turn, is 

directly dependent on the image acquisition technique. 

Different brain scanning techniques are 

electroencephalography (EEG), positron emission 

tomography (PET), computed tomography (CT) scan, 

ultrasonography (USG) and magnetic resonance imaging 

(MRI) [1]. MRI has acquired greater popularity since it is the 

safest, painless, and most efficient diagnostic method. It uses 

no ionized radiations and obtains images of those parts that 

cannot be obtained through other techniques. 

Image segmentation is the process of segregating different 

components of an image based on their intensity homogeneity, 

pixel values, contrast, brightness, and texture [2-4]. Based on 

the measure of human intervention, there are three methods of 

image segmentation: 1) manual, 2) semi-automatic and 3) 

automatic. Manual segmentation has maximum human 

involvement in the form of drawing the boundaries of the 

organ, initialization, and correction [5, 6]. It is used as a 

measuring standard for other segmentation techniques. 

However, due to its time-consuming tendency, it has clinical 

usage in experiments without any time constraints [7, 8]. It has 

got different properties like inter-rater and intra-rater 

variability. In inter-rater variability, different experts segment 

the same image differently, whereas in intra-rater variability 

the same image is segmented differently by the same expert at 

different times [9]. In semi-automatic or interactive 

segmentation, human involvement is limited only to 

initialization and correction of the segmentation method [6]. 

Work is done without any human interference in automatic 

segmentation method. Its automatic feature is facilitated by the 

use of model-based techniques and soft computing methods. 

Medical image segmentation is challenging [10]. Here, the 

regions to be segmented are often non-rigid, variable in size 

and location and vary from person to person [11]. Brain tissue 

segmentation partitions the brain mainly into white matter 

(WM), gray matter (GM) and cerebrospinal fluid (CSF) along 

with its various abnormalities. There are seven objects in a 

brain MRI: 1) scalp, 2) bone, 3) CSF, 4) WM, 5) GM, 6) 

Tumor (if present), and 7) background [12]. Brain image 

segmentation is an integral part of brain MR image analysis. 

Numerous works have been done in this context. In 2015, 

Ivana et al. [13] presented a review article on segmentation of 
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MR image of the human brain. They have explained various 

MR images, different pre-processing and post-processing 

steps and their validation measures. The segmentation 

methods have been classified into manual segmentation, 

intensity based, atlas based, surface based, and hybrid 

segmentation. A similar literature review is given in the 

studies [14, 15] where the authors have made a comparison of 

the existing methods. Anand and Kaur [14] suggest the use of 

high pass filtering in segmentation to obtain the accurate edges. 

Mathew and Babu Anto [15] have debriefed several works 

done in MR brain image segmentation using feature extraction 

and clustering methods while emphasizing on the importance 

of pre-processing techniques. Another work on brain tumor 

segmentation is given in the study [16]. This paper has made 

a serious review and an extensive comparison of all the 

existing methods using MR, PET and CT images.  

In 2017, Dora et al. [17] presented a review article on brain 

tissue segmentation. The paper is based on extensive research 

of various articles on this topic in the 21st century. However, 

all these review papers are silent on a detailed analysis of MR 

brain image segmentation using thresholding approach only. 

These review papers have either analyzed multiple 

segmentation methods (thresholding, clustering etc.) or 

considered both medical (with or without human brain) and 

non-medical images (standard benchmark images line Baboon, 

Lena etc.) or taken into account images obtained through 

various scientific techniques (MRI, CT, PET). Their 

compositeness is their limitation. None of the works is 

exclusively focused on MR brain image segmentation using 

thresholding. Various works on thresholding of MR brain 

image and validation measures until this date have been 

discussed in details in this paper. We have focused exclusively 

on works done using thresholding method, as this method is 

the simplest, has the least computational complexity and time 

efficient. Moreover, it is very convenient to implement. The 

analysis reflects that satisfactory values are obtained in 

performance evaluation while using several statistical 

parameters. Thus, there is no compromise in the quality of the 

segmented image obtained in spite of the simplicity of this 

method. This characteristic of the segmented image has 

inspired us to review the method rigorously. Certain areas on 

this topic, which remain unexplored, have been discussed.  

This review of literature is hopeful of aiding the researchers 

working on multilevel thresholding-based MR brain image 

segmentation by providing them with the required data, 

comparison analysis, critical review, and suggestions on the 

future scope of this technique. 

The organization of this paper is as follows: Section 1 is the 

introduction. Brain MR image analysis techniques are 

described in Section 2. Data acquisition is discussed in Section 

3. Different aspects of thresholding-based brain MR image 

analysis are found in the result analysis Section 4. Concluding 

remarks are given in Section 5. 

 

 

2. BRAIN MR IMAGE ANALYSIS METHODS 

 
2.1 Background 

 

Various methods of brain MR image analysis are: 1) region-

based, 2) clustering-based, 3) feature extraction and 

classification-based and 4) thresholding-based as presented in 

Figure 1. In the region-based method, a group of continuous 

pixels possessing homogeneous property forms a region. This 

similarity criterion is used for segmentation process. Different 

techniques used in the region-based methods are: i) contour- 

and shape-based method [18-22], ii) region-based level set 

method [23-25], iii) region growing [26-28] and iv) graph 

based method [29-31]. 

Clustering is the method of grouping tokens with high 

similarity. The similarity is attributed to the measurement of 

the Euclidean distance. The clusters thus formed, possess high 

intra-class similarity and low inter-class similarity. There are 

different types of clustering: i) k-means [32, 33], ii) fuzzy C-

means [34-37] and 3) mixture models [38-40]. 

In several cases, the input comprises of a large amount of 

redundant information. Thus, the features become very large. 

Therefore, there is a strong need to reduce it to a sub-set 

consisting of only the relevant information (in the feature 

extraction method). This high dimensionality poses a 

challenge in this method. The different techniques in the 

feature extraction method include: Gabor filter [41-43], 

discrete wavelet transform (DWT) [44-47], gray level co-

occurrence matrix (GLCM) and gray level run length matrix 

[48-51]. More elaboration on these methods is out of the scope 

of this review paper. Of all the methods, our paper focuses on 

thresholding based segmentation. Thresholding is the simplest 

and a very easy to implement segmentation technique for 

images with homogeneous objects of interest in image 

processing. In this method, the pixel intensity of the object 

under consideration is compared with one or more threshold 

values. Multilevel thresholding supports multiple object 

segmentation. These subtle properties make thresholding one 

of the best techniques for medical image segmentation. 
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Figure 1. Brain MR image analysis methods 
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Thresholding is a simple and efficient technique for image 

segmentation by comparing the pixel intensity with the 

threshold values. The intensity values of the pixel are 

classified into either object or background and the object is 

extracted subsequently. The process in which multiple objects 

can be extracted from the background is known as multilevel 

thresholding of an image. These methods are of two types: 1) 

fixed thresholding and 2) automated thresholding. In the fixed 

thresholding, the number of thresholds selected is fixed and 

pre-defined. For instance, in bi-level thresholding, the number 

of threshold levels selected is 1. Here, there is a single 

threshold value and all the pixels above this value are taken as 

the object while the pixels below this value are referred to as 

the background.  

Consider an image I (x, y) where a global threshold T 

segments the image as: 

 

1, ( , )
( , )

0, ( , )

I x y T
s x y

I x y T


= 


 (1) 

 

where, s(x,y)=1 refers to the object and s(x, y)=0 indicates the 

background. Similarly, in multilevel thresholding the number 

of threshold levels selected is greater than 1. In the automated 

thresholding, the number of threshold levels is variable with 

respect to the images being considered. This ambiguity arises 

due to the difficulty that lies in identifying the number of 

objects in the concerned image. The automatic determination 

of the number of threshold levels in an image is a major 

challenge and we did not find any relevant work that has been 

done in this field till date. 

An image comprises of several components (objects) of 

varying intensity values. The pixel intensity of the same object 

has certain similarity. This concept is used to classify the 

pixels of an image into different classes based on the decided 

threshold values [see Figure 2]. The rules for a segmented 

output are discussed here. Let an image have intensity values 

from 0 to L-1. Let T1, T2 and T3 be the three threshold values 

used for multilevel thresholding. The image will be divided 

into four classes: C1 having intensity values 0 to T1, C2 having 

values T1+1 to T2, C3 having values T2+1 to T3 and C4 having 

values T3+1 to L-1.  
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Figure 2. Histogram representation of segmented image 

 

There are 256 possible values or levels (L) of the pixel 

intensity ranging from 0 (black) to 255 (white). When the 

intensity of the pixel (V) lies between 0 to T1, it is assigned to 

class C1. The pixel intensity value in the range T1 and T2 is 

assigned to class C2. Class C3 is assigned, if V lies between T2 

and T3. Similarly, class C4 is assigned, if V lies in between T3 

and (L-1). These threshold values are then used to obtain a 

segmented image. 

In the methods discussed above, the judicious determination 

of the appropriate threshold values is crucial. Various 

statistical parameters are used to determine the threshold 

values. However, their performance is affected, when these 

parameters get biased with any presumed information. Several 

research works have been conducted in order to devise 

methods to obtain the apt threshold values.  

In 2004, Sezgin and Sankur [52] presented an elaborate 

survey of various image thresholding methods based on the 

information used. They have vividly distinguished 

thresholding algorithms into six categories: 1. Histogram 

shape information (convex haul, peak and valley, shape 

modelling), 2. Measurement space clustering (iterative 

thresholding, clustering thresholding, minimum error, fuzzy 

clustering), 3. Histogram entropy information (entropic, cross 

entropic, fuzzy entropic), 4. Image attribute information 

(moment preserving, edge field matching, fuzzy similarity), 5. 

Spatial information (co-occurrence thresholding, higher order 

entropy thresholding, 2-D fuzzy partitioning) and 6. Local 

characteristics (local variance, local contrast, Kriging method). 

In 1979, Otsu [53] proposed a method which aimed at 

maximization of the between class variance of the gray level 

in the histogram. It is both non-parametric and unsupervised. 

Initially, 1-D Otsu’s method was proposed. This method 

worked inefficiently with noisy images as it focused mainly on 

the pixel gray values without any spatial information between 

the pixels. It performed well only for bi-level thresholding. 

However, 1-D Otsu’s method is the fastest method. 

Popularly used entropy-based methods are: 1) Kapur’s, 2) 

Shannon’s, 3) Renyi’s, 4) Cross entropy and 5) Tsallis’. 

Maximization of entropy i.e. probability distribution with the 

largest entropy gives the most accurate value. In 1980, Pun 

[54] proposed a method for bi-level thresholding based on the 

maximization of the upper bound of the total posteriori 

entropy. However, certain errors were detected while 

determining the lower bound on the posteriori entropy of the 

histogram. Kapur et al. [55] in 1985 have rectified this error 

while formulating a new algorithm. Here, the probability 

distribution of the entropy and the background was considered 

and entropy maximization was carried out. Major gap area of 

these methods is that their efficiency is limited to bi-level 

thresholding only. Another method, Shannon’s entropy [56] 

based segmentation is mostly based on Shannon’s information 

entropy where the background contains minimum information 

and the object carries the relevant information. Maximization 

of this entropy aims at maximizing the variance in inter-

homogeneous region. Cross entropy is the difference in the 

two-probability density function where one of the distributions 

has the true value. Thus, it is mostly the error of the resulting 

value from the true distribution. A method has been devised to 

minimize this error.  

Li et al. [57] proposed minimization of cross entropy. 

Minimum error thresholding [58] which aims at optimizing a 

constraint function based on average pixel classification error 

rate. This technique is applicable to both bi-level and 

multilevel thresholding. However, it is applicable only under 

the assumption that objects and pixel gray values are normally 

distributed. Another interesting thresholding work has been 

done by Portes et al. [59] by using Tsallis entropy. Generally, 

the Shannon entropy is an extensive entropy, which obeys 
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Boltzmann-Gibbs-Shannon (BGS) statistics. Tsallis entropy 

extends it to non-extensive physical systems. It is used when 

non-additive information is present in the images. Another 

impressive innovation in this area is diagonal class entropy-

based method proposed by Agrawal et al. [60]. Here the 

entropy is calculated along the diagonal of the gray level co-

occurrence matrix and the increase in threshold level results in 

a reduction in computation time. Panda et al. [61] have 

contributed a new objective function called the evolutionary 

gray gradient algorithm (EGGA). This paper involves the 

between class variance along with the pixel average values for 

information loss minimization. They have made an effort to 

preserve the edge information along with the off diagonal 

pixels. 

There has been an evolution of fitness functions over time. 

More or less works that have been proposed for multi-level 

thresholding-based image segmentation till date like Kapur’s 

entropy and 1-D Otsu function are one dimensional in nature. 

They have a very less number of parameters used and thus 

involve less computational complexity and greater speed. 

However, recent advancements in technology and requirement 

for better accuracy results have attracted researchers to the 

field of two-dimensional objective functions like 2-D Otsu 

method which have been discussed in the studies [61, 62]. Yet, 

the accuracy of these methods is still limited. Latest demands 

and progresses in image segmentation hint at a future in three-

dimensional fitness functions. 3-D based methods are gaining 

very high popularity due to the enormous accuracy incurred 

while segmentation of the MR image. Multi-scale 3-D Otsu 

method suggested by Feng et al. [63] involves mean and 

median of pixel intensity information of the neighboring pixels 

along with the gray level of the pixel under consideration. This 

method exhibits greater immunity to noise and results obtained 

are highly stable at the cost of very high computational time.  

Balanced Histogram Thresholding (BHT) is another simple 

objective function which divides the image into two classes i.e. 

background and foreground. Here, the optimal threshold value 

is determined by weighing the histogram followed by striking 

a balance between the heavier side and the lighter side [64]. 

Current research papers have implemented soft computing 

techniques with different objective functions to obtain the 

optimal threshold values. Earlier works indicate the 

contribution of Maitra and Chatterjee [65]. They have 

proposed the image segmentation using Kapur’s entropy. 

Bacterial foraging optimization (BFO) implementing 

‘foraging strategy’ was used for optimization purpose. The 

performance of this method, called ‘BACTFOR’ has been 

verified using standard benchmark brain images and was 

compared with particle swarm optimization with linearly 

varying inertia weight algorithm. However, this method was 

inefficient due to the usage of fixed step size. The rate of 

convergence decreases if the step size is small while precision 

decreases when the step size is too high. This ambiguity can 

be best solved by making the step size adaptive with every 

iteration.  

Adaptive bacteria foraging implements this technique in 

Kapur’s entropy and Otsu’s method [66]. Kapur’s entropy 

coupled with ABF resulted in high PSNR and low standard 

deviations while the Otsu’s method along with ABF quickly 

converged as compared to bacteria foraging, particle swarm 

optimization and genetic algorithm. A similar technique has 

been proposed by Sathya and Kayalvizhi [67] which focus on 

constantly altering the step size in order to increase the rate 

and precision of convergence. This paper has tried to solve 

multilevel thresholding problems while trying to overcome the 

earlier conventional works in bi-level thresholding. Genetic 

algorithm (GA) is a standard and one of the oldest soft 

computing techniques which is robust yet takes very high 

computation time. Hybridization of this real coded algorithm 

(RCGA) with Simulated Binary (SBX) cross over [68] results 

in better consistency and lesser standard deviation. The 

incorporation of SBX crossover along with polynomial 

mutation in this paper overcomes the gap areas in simple 

genetic algorithm making it more efficient.  

Research work has been carried out on T2 weighted brain 

images were used. Threshold values were determined using 

maximization of Kapur’s entropy and results obtained were 

compared with PSO, BF, ABF, and Nelder-Mead complex. 

Another work on multi-level thresholding using maximization 

of Kapur’s entropy includes research by Priyedarsni et al. [69] 

which has used Social Group Optimization (SGO) method. 

This method resulted in modest performance evaluation values. 

It also focuses on extraction of tumor by using watershed 

segmentation. The segmented tumor region was compared 

with the ground truth image obtained from the BRATS MRI 

database. Maximization of Kapur’s entropy has also been used 

with Adaptive Wind Driven Optimization (AWDO) [70]. Ten 

benchmark brain images from the Harvard Medical School 

database were used for conducting the experiment and the 

results were compared with BFO, ABFO, PSO, GA and 

RCGA SBX. Analysis shows AWDO performs better than all 

other algorithms. This may be attributed to its adaptively 

changing parameters with every iteration. However, due to this 

feature AWDO resulted in greater convergence time than 

WDO. This paper has also used the Otsu’s method with 

AWDO and computed the results. Result comparison of this 

method could have been better if BRATS dataset is used. 

Comparison with a ground truth image should always be 

recommended to obtain better results for diagnosis.  

In 2017, Rajnikanth et al. [71] proposed another technique 

for brain tissue segmentation. Here, each image undergoes tri-

level thresholding using Kapur, Shannon and Tsallis entropy 

individually and Teaching Learning Based Optimization 

(TLBO) was used for the optimization purpose. After 

computation, it was inferred that Shannon based thresholding 

gave better results than its other entropy counterparts did. 

Another instance of use of Shannon’s entropy for tissue 

segmentation has been performed in [12]. Grammatical 

Swarm Optimization (GSO) tool has been used. This paper 

comprised of several processes that include denoising, 

intensity inhomogeneity (IIH) correction, sharpening of image 

and entropy maximization to obtain a segmented image. 

Thresholding was done on different sets of image database 

with and without using preprocessing steps. It was concluded 

that use of preprocessing steps resulted in better-segmented 

image, although the computation time greatly increased. Cross 

entropy minimization is another approach towards multilevel 

thresholding. This method resulted in better segmentation of 

colour image when used with Crow Search Algorithm (CSA) 

[72]. It has been implemented in general images as well as 

brain MR images from BrainWeb database.  

Panda et al. [61] have used (EGGA) for multilevel 

thresholding of the brain MR image. Optimization of fitness 

function was done by adaptive swallow swarm algorithm 

(ASSO). A set of 100 images from the Harvard Medical 

School database have been used and their average 

performance parameters were calculated. The result was 

compared with 1-D and 2-D Otsu methods implemented with 
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three other soft computing techniques: SSO, Coral Reef 

Optimization (CRO) and PSO. The intensity difference 

information of a 2-D histogram matrix has been proposed as a 

new objective function [62]. This paper has implemented 

Adaptive Coral Reef Optimization (ACRO) to get the optimal 

threshold value. 
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Computation

Optimal 
Threshold Values

Thresholded 
Output

Soft Computing 
Algorithm

 
 

Figure 3. A generic block diagram of brain MR image analysis 

 

Table 1. Analysis of different techniques and their implementation 

 
Name of the method Year Modality Dataset Merits Demerits 

Kapur’s entropy using 

BFO [65] 
2008 

Axial T2 - 

weighted 

Harvard 

Medical 

School 

It is less complex and easy to 

implement. 

Poor convergence behavior and 

low precision for complex 

optimization problems. 

Kapur’s entropy and 

Otsu’s function using 

Amended BFO [67] 

2011 
Axial, T2 - 

weighted 
BrainWeb 

More accurate than BFO. Takes 

lesser convergence time. 

Performance is not affected by 

noise. 

There is still possibility of sub-

optimal convergence. 

Kapur’s entropy and 

Otsu’s function using 

Adaptive BFO [66] 

2011 
Axial, T2 - 

weighted 
BrainWeb 

Has a faster convergence. 

Insensitive to noise and intensity 

inhomogeneity. 

Chances of convergence at local 

optima. 

Kapur’s entropy using 

RCGA with SBX 

crossover [68] 

2014 
Axial, T2 - 

weighted 

Harvard 

Medical 

School 

It is robust and self-adaptive in 

nature. It is easy to implement, 

performs even in noisy 

environment and supports multi 

objective optimization. 

This has greater computational 

complexity. 

Evolutionary gray 

gradient algorithm 

using Adaptive SSO in 

[61] 

2016 
Axial, T2 - 

weighted 

Harvard 

Medical 

School 

It requires less number of 

parameters for tuning. There is no 

requirement for initialization of 

control parameters. Noise info is 

minimized due to the objective 

function used. 

The 1-D Otsu method is faster 

than this method. 

Kapur’s entropy using 

SGO [69] 
2017 ─ 

CEREBRIX, 

BRAINIX and 

MICCAI, 

BRATS 

Smoother images are obtained due 

to skull stripping. 

There is no such remarkable 

difference in the image 

segmentation with the increase in 

the number of thresholds. 

Absolute intensity 

difference based 

technique using 

Adaptive CRO [62] 

2017 
T2-

weighted 

Harvard 

dataset, 2017 

(100) 

The shape of the edges obtained 

was more precise. It deals with 

intensity inhomogeneity and gives 

better threshold results. 

It takes greater computation time 

than the 1-D Otsu method. 

Kapur, Shannon and 

Tsallis’ entropy using 

TLBO [71] 

2017 
T1, T2 and 

Flair 

CEREBRIX, 

BRAINIX and 

BRATS 

The optimization is done without 

using function derivatives. 

There are chances of premature 

convergence at local optima. 

Cross entropy using 

CSA [72] 
2017 ─ BrainWeb 

It is robust, fast, accurate, non-

greedy and strikes a balance 

between exploration and 

exploitation. The number of 

selected threshold levels is high. 

The Wilcoxon rank test is done to 

assess the quality of results. 

Finding out the number of 

generations is tedious. Selection 

of predefined parameters is risky 

as incorrect selection will lead to 

sub-optimal convergence. 

Shannon’s entropy 

using GSO [12] 
2017 

T2 - 

weighted 

Images 

generated by 

1.5T GE MR 

imaging 

device 

It has highlighted the importance 

of pre- segmentation processes. 

This process has a broad range of 

application, including several other 

organs of the body other than the 

brain. 

It has very high convergence 

time leading to computation 

complexity in the case of a large 

dataset. The de-noising methods 

provide additional entropy to the 

image under consideration 

during entropy maximization. 

Otsu’s method and 

Kapur’s entropy using 

Adaptive WDO [70] 

2018 
Axial T2 -

weighted 

Harvard 

Medical 

School 

Due to its adaptive nature, tuning 

of parameters is not required. It 

gives better threshold values and 

has faster convergence as 

compared to other conventional 

methods 

Kapur-AWDO gives inaccurate 

results at threshold level 2 for the 

entire dataset. It has a greater 

convergence time than WDO. 
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2.2 Optimal multilevel thresholding methods 

 

A block diagram of the brain MR image analysis using 

multilevel thresholding is shown in Figure 3. The brain MR 

image is taken as the input. Different objective functions based 

on various criteria are reported in the literature. These 

objective functions are computed using different soft 

computing tools. The optimal threshold values are obtained 

after optimizing (maximizing or minimizing) the objective 

function. The brain MR image is then thresholded using 

suitable reconstruction rules. The optimal threshold values are 

obtained after optimizing (maximizing or minimizing) the 

objective function. The brain MR image is then thresholded 

using suitable reconstruction rules. Table 1 presents a detailed 

analysis of research done in brain MR image segmentation 

based on multilevel thresholding using soft computing 

techniques. 

It is found from the literature that the Otsu method [61-70] 

is popular due to its speed. Kapur’s entropy [65-68] is used as 

one of the popular techniques for multilevel thresholding due 

to its simplicity and accuracy. Tsalli’s entropy [71] based 

multilevel thresholding methods are also popular and largely 

accepted by the research community. Recently, many new 

objective functions such as Masi entropy using different 

optimization techniques such as Krill Herd Optimization 

(KHO), Harris hawks optimization (HHO) etc. are also 

reported in the literature for multilevel thresholding [73-92]. 

Researchers have also introduced fuzzy systems for dynamic 

parameter adaption in metaheuristics for multilevel 

thresholding [93-96]. 

It is observed that different optimization techniques are used 

for obtaining the optimal threshold values. Mostly, the fitness 

functions are based on class variance, entropy, edge magnitude 

and so on. It is difficult to decide the use of a particular method 

for a particular application. The quality of the segmentation 

results based on a particular method crucially depends on the 

choice of the parameters as well. Further, the kind of modality 

also plays a major concern. In summary, the reason for the 

choice of the method, its merits and demerits are shown in 

Table 1. 

 

 

3. DATA ACQUISITION 
 

The performance of the segmentation technique and the 

quality of the output is directly dependent on the quality of the 

input data. MR image of the brain is the input data in this 

technique. This data can be acquired from real time 

environment (real clinical image) or can be generated 

artificially using a computer (synthetic image). 

 

3.1 Real clinical images  

 

Various real life images are obtained from several patients 

belonging to different gender, age groups and suffering from 

different brain diseases. In order to obtain a heterogeneous 

variety of images, maximum number of possible images must 

be acquired. Application of the technique on a diversity of 

images will validate its efficiency. 
 

3.2 Synthetic images 
 

These images are synthetically created using a simulator. 

Synthesis of the images requires predefined MR parameters. 

Further modification of this image is supported based on the 

researcher’s requirement [17]. There is no MR scanner used 

and therefore generation of real images is not possible. Use of 

synthetic images is popular as it also has a ground truth image 

for comparison purposes. However, synthetic images are only 

a prototype of the real images and cannot take into 

consideration all possible factors that influence image 

acquisition in real time conditions. 

 

3.3 Multimodal images 

 

In MRI, an external magnetic field is applied to the tissues 

where the randomly oriented protons get arranged in a certain 

alignment. The protons are then excited by the application of 

external radio frequency (RF) energy. After some time, all the 

protons return to their initial position and in doing so, they 

emit an RF energy which is measured. This time taken for 

emission of RF energy is called Echo Time (TE). Repetition 

time (TR) is the difference in time between applications of 

successive pulses to the same slice. Based on the span of TR 

and TE various brain image modalities have been described. 

T1-weighted images have TR < 1000 msec and TE < 30 msec 

whereas T2-weighted images have TR > 2000msec and TE > 

80msec [97]. Proton density (PD-weighted) images are the 

shorter of the two echoes employed in T2 images which use 

dual echo sequences. Recently, Fluid Attenuated Inversion 

Recovery (FLAIR) images are gaining more popularity. 

FLAIR is an inversion technique which results in a long 

inversion time that removes the signal from the CSF of the 

brain such that at equilibrium condition there is no net 

transverse magnetization of the fluid. Sometimes T1 weighted 

images are administered with contrast agents like gadolinium 

to enhance the contrast of MR images. These images are then 

called T1C MR Images. 

 

Table 2. Databases used in brain tissue segmentation 

 
Name of 

database 
Characteristics Download link 

BrainWeb 

It consists of Simulated Brain 

Database (SBD) generated by 

an MRI simulator. The images 

are multimodal with a variety of 

slice thickness, intensity, and 

noise levels. They are available 

in transversal, sagittal and 

coronal views. 

http://brainweb.bi

c.mni.mcgill.ca/b

rainweb 

 

Harvard 

Medical 

School 

Numerous images are available 

with various conditions of the 

brain (normal brain, neoplastic 

disease, degenerative disease, 

and inflammatory disease). 

http://www.med.

harvard.edu/aanli

b/home.htm 

 

MICCAI, 

BRATS 

These are clinically acquired 

multimodal brain images which 

have undergone manual 

segmentation. These images 

already have their skull stripped 

and intensity homogeneity 

removed. 

http://martinos.or

g/qtim/miccai201

3/data.html 

 

BRAINIX 

It is DICOM (Digital Imaging 

and Communication in 

Medicine) image sample set 

compressed in JPEG 2000 

transfer syntax. 

https://www.osiri

x-

viewer.com/resou

rces/dicom-

image-library 

CEREBRIX 
Various multimodal images are 

available in this DICOM file. 

https://www.osiri

x-viewer.com/ 

resources/ dicom-

image-library 
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3.4 Database 

 

Several standard databases have been decidedly declared. 

These are available on open source platforms for free 

download by researchers and teachers. These databases also 

contain ground truth images of various brain tissues like white 

matter, gray matter, and cerebrospinal fluid for comparison 

after segmentation process. Commonly used brain image 

database for research in brain tissue segmentation using 

thresholding are discussed in Table 2. 

 

 

4. RESULT ANALYSIS 

 

The efficiency of various segmentation techniques can be 

compared from their performance metrics. However, this 

comparison is challenging since all the techniques are not 

implemented using the same set of data (image modality and 

database). Some of the standard performance metrics used to 

compare thresholding techniques is briefly explained. 

Dice similarity coefficient (DSC): Dice similarity 

coefficient or dicing index or Sorensen index is the 

quantitative spatial overlap between the ground truth image 

and the segmented image. It can be calculated for various 

tissue types since ground truth images are available for WM, 

GM and CSF. It can be employed in research to test the 

accuracy and reproducibility of the segmented image, if the 

ground truth images are available. 

 

2 s g

s g

I I
DSC

I I


=

+
 (2) 

 

where,  

| |sI = cardinality of the segmented image,  

| |gI =  cardinality of ground truth image. 

Its value ranges from 0 to 1. Note that 0 indicates no overlap, 

1 indicates complete overlap. However, this parameter yields 

inaccurate results for comparison of objects with different 

sizes [11]. 

Jaccard index (JI): Jaccard index or Jaccard similarity 

coefficient or Tanimoto coefficient is the measure of similarity 

between two image sets. It is the ratio of the intersection of the 

segmented lesion region to ground truth lesion region. The 

Jaccard Index is calculated using the formula: 
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The value of JI ranges from 0 to 1 where 0 indicates no 

segmentation and 1 denotes perfect segmentation [17]. The 

areas of the segmented lesion and the ground truth lesion must 

be of nearly the same size in order to obtain the correct results. 

Similarity index (ρ): This index is often used for comparison 

between the segmented image and the reference image and 

expressed as: 

 

1

2 | |1

| | | |

C
i i

i i i
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=

+
  (4) 

 

where, Ai is the number of pixels fitting to cluster Ci and Bi is 

the number of pixels in Ci as per the reference image. The 

range of ρ is [0, 1]. Note that ρ = 1 is its optimal value. 

Structural similarity index (SSIM) and Feature similarity 

index (FSIM) are two types of similarity indices. Wang et al. 

[98] developed SSIM in 2004. It is a widely used parameter to 

measure similarity between two images. FSIM is a highly 

efficient parameter for image analysis. Phase congruency and 

gradient magnitude are the prime features of FSIM. Zhang et 

al. [99] have introduced this parameter in 2011. 

Peak signal to noise ratio (PSNR): PSNR is the ratio of 

maximum possible signal power to the noise power affecting 

the quality of the signal. 

 

10

max
20logPSNR

MSE
=  (5) 

 

where, max= maximum value of the signal, MSE = mean 

square error. Analysis shows that we will obtain the same 

value of MSE when different degradations are applied to the 

same image [100]. Thus, PSNR is not an effective parameter 

to define the structural content of an image. Hore and Ziou 

[101] have given the relationship between PSNR and SSIM.  

Inverse Difference Moment (IDM): It is the measure of local 

homogeneity and is also represented as HOM. Homogeneity 

weights values by the inverse of the contrast weight, with 

weights decreasing exponentially away from the diagonal [61]. 

 

Table 3. Comparison of optimal threshold values (slice #42 

from the Harvard Medical School database) 

 
Methods m GA PSO ABF Proposed Ref 

Proposed 

RCGA 

with SBX 

[68] 

2 ─ 
111, 

183 

114, 

184 

114, 

183 

[68] 

3 ─ 

80, 

148, 

178 

74, 

130, 

185 

84, 

132, 

187 

4 ─ 

81, 

125, 

164, 

197 

50, 

100, 

143, 

190 

30, 

75, 

127, 

188 

Proposed

AWDO 

[70] 

2 
111, 

187 

111, 

183 

114, 

184 

183, 

256 

[70] 

3 

85, 

128, 

179 

80, 

148, 

178 

74, 

130, 

185 

116, 

186, 

256 

4 

66, 

108, 

147, 

188 

81, 

125, 

164, 

197 

50, 

100, 

143, 

190 

98, 

141, 

189, 

256 

Proposed

CHPSO 

[102] 

2 ─ ─ 
114, 

184 

112, 

182 

[102] 

3 ─ ─ 

83, 

136, 

187 

82, 

130, 

186 

4 ─ ─ 

48, 

102, 

144, 

190 

28, 

75, 

126, 

186 

1 “m” denotes the number of threshold levels; 

2 “ – ” denotes data not available 

 

This paper analyzes efficacy of various methods, using the 

same data at different threshold levels, quantitatively. In 

general, the results obtained for bi-level thresholding may be 

considered inaccurate, leading to under-segmentation of the 

image. Thus, by increasing the threshold levels, it is possible 

to obtain better segmentation accuracy with much better 
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performance evaluation metric value. However, there is also a 

limit to the number of threshold levels being considered, as a 

greater threshold level above an optimum value may result in 

over-segmentation. An over segmented image comprises of 

segmentation of the already segmented components of the 

image. The extracted objects from the background are again 

fractured into sub components in the process. This is 

undesirable, unnecessary and may affect the segmentation 

accuracy. Therefore, it is very important to limit the 

experiment within the optimum value. Hence, result analysis 

in this review concentrates only on threshold levels 2, 3, and 

4. The values in bold indicate the best results obtained. Tables 

3–5 give a comparison of the optimal threshold values, 

standard deviation, and objective function values respectively. 

The results are reported using the Kapur’s entropy-based 

method with various optimization approaches.  

 

Table 4. Comparison of standard deviation values (slice #42 

from the Harvard Medical School database) 

 
Method m GA PSO ABF Proposed Ref 

Proposed 

RCGA with 

SBX [68] 

2 ─ 0.004 1.5000e-04 8.9265e-15 

[68] 3 ─ 0.312 0.019 7.1412e-15 

4 ─ 0.539 0.081 2.0436e-04 

Proposed 

AWDO 

[70] 

2 0.016 0.004 1.5000e−004 0.002 

[70] 3 0.424 0.312 0.019 0.006 

4 0.719 0.539 0.081 0.020 

Proposed 

CHPSO 

[102] 

2 ─ ─ 1.5000e-4 8.972e-15 

[102] 3 ─ ─ 0.017 8.972e-15 

4 ─ ─ 0.052 0.0003 

 

Only a single image (slice number 42) from the Harvard 

Medical School database has been used for this comparison. 

Threshold values are shown in Table 3. Values of standard 

deviation obtained from the different optimization techniques 

are given in Table 4. For an algorithm to be efficient, it must 

have a very low standard deviation tending to zero. A 

comparison of the objective function values obtained using 

Kapur’s entropy is shown in Table 5. 

Table 6 reflects the efficiency of segmentation techniques 

based on PSNR, SSIM, FSIM and IDM values. The values 

reported are the average of results obtained for 100 images 

from the Harvard Medical School database. This analysis 

reflects the best value and its degree of betterment from its 

competing value at threshold level 3, 4 and 5. The results 

clearly indicate that the same optimization technique performs 

differently when implemented using different objective 

functions. We can notice that the results obtained using the 1-

D Otsu method and 2-D Otsu method are different, with the 

later performing better than the former. A high value of peak 

signal-to-noise ratio produces a better thresholded image. The 

table indicates that ASSO gives the best PSNR value with the 

2-D Otsu method. However, the data obtained from the PSNR 

value using 2-D Otsu method implemented in ASSO give a 

surge of around 9% than that obtained using the 1-D Otsu 

method. This huge difference clearly reflects the better 

segmentation accuracy of the 2-D Otsu method. A comparison 

of the SSIM and FSIM values is given. The greater is the value 

of these parameters better is the segmentation [61]. ASSO 

outperforms all other techniques in all the methods computed. 

The table also gives a comparison of the average IDM values 

obtained using the 1-D Otsu method. A lesser value of IDM is 

desirable for better segmentation results. ASSO gives the best 

value, which is around 2% better than the second best 

competent (SSO). It may be attributed to the self-adaptive 

nature of the ASSO due to which very less number of 

parameters are required for tuning and the algorithm 

adaptively modifies its parameters at every iteration. When 

this technique is implemented using the 2-D Otsu method, we 

can notice a huge rise of about 14% in the results. This 

significant rise in value may be due to characteristic feature of 

the 2-D Otsu method, which takes into account gray levels of 

the whole image along with the spatial relationships between 

the pixels unlike the 1-D Otsu method, which considers the 

gray levels only of the image. 

 

Table 5. Comparison of objective function values (slice #42 

from the Harvard Medical School database) 

 
Methods m GA PSO ABF Proposed Ref 

RCGA 

with SBX 

[68] 

2 ─ 9.256 9.257 9.258 

[68] 3 ─ 11.303 11.565 11.577 

4 ─ 13.555 13.813 13.865 

AWDO 

[70] 

2 9.252 9.256 9.258 9.100 

[70] 3 10.985 11.303 11.565 13.300 

4 13.096 13.555 13.864 16.700 

CHPSO 

[102] 

2 ─ ─ 9.258 9.258 

[102] 3 ─ ─ 11.574 11.578 

4 ─ ─ 13.815 13.865 

 

Table 6. Comparison of average values of evaluation metrics (calculated over 100 slices) 

 

Optimization 

technique 
m 

PSNR FSIM SSIM IDM 

1-D Otsu 2-D Otsu 1-D Otsu 2-D Otsu 1-D Otsu 2-D Otsu 1-D Otsu 2-D Otsu 

PSO [61] 

3 21.137 22.851 0.936 0.952 0.912 0.928 0.062 0.051 

4 21.872 24.847 0.936 0.950 0.915 0.929 0.077 0.064 

5 23.743 25.912 0.937 0.954 0.921 0.937 0.075 0.063 

CRO [61] 

3 21.310 23.103 0.941 0.957 0.922 0.937 0.063 0.052 

4 22.033 25.108 0.941 0.955 0.925 0.938 0.078 0.065 

5 23.963 26.174 0.942 0.958 0.931 0.947 0.075 0.064 

ACRO [62] 

3 20.390 22.860 0.941 0.956 0.922 0.936 0.056 0.044 

4 21.720 23.830 0.947 0.959 0.934 0.946 0.096 0.047 

5 22.510 22.511 0.947 0.963 0.938 0.954 0.102 0.058 

SSO [61] 

3 21.556 23.336 0.946 0.962 0.931 0.947 0.064 0.052 

4 22.296 25.362 0.946 0.959 0.934 0.948 0.077 0.066 

5 24.226 26.438 0.947 0.963 0.940 0.956 0.076 0.065 

ASSO [61] 

3 21.741 23.519 0.951 0.967 0.940 0.956 0.064 0.053 

4 22.509 23.615 0.950 0.964 0.943 0.957 0.079 0.066 

5 24.418 26.702 0.952 0.968 0.949 0.966 0.076 0.066 

250



 
 

Figure 4. Comparison of average PSNR values  

 

 
 

Figure 5. Comparison of average IDM values 

 
 

Figure 6. Comparison of average contrast values 

 

   
a [61] b[68] c[70] 

 

Figure 7. Representative segmented images using various 

methods at threshold level 3, a) slice no 95 using EGGA, b) 

slice no 92 using RCGA with SBX, c) slice no 92 using 

AWDO 

 

Analysis shows the improvement in these values in recent 

years with the adoption of faster and robust soft computing 

techniques. ASSO gives the highest PSNR value in 2-D Otsu 

method out of all the techniques used. [see Figure 4 above.]. It 

has the innate quality of adjusting the step size adaptively with 

every iteration. ASSO also outperforms other algorithms in 

computation of average IDM values based on the 1-D Otsu 

method [see Figure 5 above.]. It can also be seen that average 

IDM value increases with the increase in threshold level. Thus, 

the ASSO algorithm at threshold level 5 gives the maximum 

IDM value. On comparison of 1-D and 2-D Otsu methods, the 

later yields better result as compared to the former although 

the difference is small [see Figure 6 above]. The figure shows 

a comparison of the average contrast values of both the 

methods obtained at threshold level 3. It compares the values 

of average contrast parameters obtained using the 2-D Otsu 

based method. A high contrast value is desirable for better 

segmentation of the image. However, analysis shows that 

comparison results show slightly different varying result than 

those obtained in the parameters discussed earlier. Here, 

ACRO out beats ASSO by about 10%. This may be due to 

better efficiency of ACRO in dealing with intensity 

inhomogeneity. 

The representative segmented images for the three methods 

are shown in Figure 7 above. 

 

4.1 Challenges 

 

Thresholding mainly focuses on the intensity values of 

pixels. This behavior may not guarantee the identification of 

contiguous pixels. Here, undesired extraneous pixels may get 

included along with elimination of the isolated pixels within 

the region. This difficulty can be overcome by using objective 

functions like 2-D Otsu and 3-D Otsu methods, which consider 

the relationship between the pixels along with pixel intensity 

values and result in a highly stable output. Noise removal, IIH 

correction and bias field correction, which may affect the MR 

image analysis must be taken care of. It is to be noted that 

Rician noise corrupts the MRI, which is image-dependent and 

computed from both real and imaginary images. This noise 

hampers quantitative estimation based on images. It should be 

converted into an independent Gaussian noise to eliminate the 

noise and apply the additive noise model. Several pre-

processing and post processing steps can help in fine-tuning 

the segmented output. The challenge of automatically 

determining the number of threshold levels of an image still 

persists. Researchers have to manually pre-define the number 

of threshold levels prior to the segmentation process. This is 

tedious, time consuming and more of a hit and trial method. 

Any future scope of thresholding lies in automated 

thresholding and significant contribution in this area will 

become a major breakthrough. 

 

4.2 Hardware implementation 

 

Brain MR Image analysis is an important technique for 

detection and diagnosis of any abnormality in the brain. 

Acquisition of high quality (real or simulated) brain MR image 

is of great necessity. This is possible by using high-resolution 

MR instruments using superconducting magnets. Computation 

complexity is not an issue here as thresholding is one of the 

simplest methods of image segmentation. The classification of 

each pixel is done independent of other pixels. Thus, parallel 

processing is required. This greatly reduces computation time. 

Due to use of multiple processors, load on a single processor 

is reduced. Memory requirement is also low. The maximum 

memory that can be used is equal to the size of the image in 

case of storing the segmentation results [5]. 

 

4.3 Clinical usage 

 

Brain MR Image analysis is a non-invasive exploration of 

the clinical details of the brain. The computational simplicity 

of a segmentation method determines its clinical acceptance 

[5]. MR image is preferred over other existing techniques for 

data acquisition since the images produced have a sharp 

contrast between fat, water, muscle, and other soft tissues. 

Moreover, due to the non-usage of any ionizing radiations in 

this process, patients are saved from exposure to such harmful 

radiations. There are various modalities available, which are 

application specific during their clinical usage. T1-weighted 
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images are preferable for inter tissue segmentation. For intra-

tissue segmentation, T2-weighted images are preferred. These 

images, mostly aim at detecting brain diseases associated with 

ageing. FLAIR images efficiently detect changes in 

periventricular region close to CSF along with other 

infarctions, multiple sclerosis, trauma, sub-arachnoid 

hemorrhage. Post-contrast FLAIR images detect 

leptomeningeal diseases. Proton density imaging. Apart from 

this, tissue segmentation methods are also disease specific. 

Therefore, it is better to use only that segmentation method 

which produces satisfactory results of the disease under study. 

Thresholding based method performs well if the tissue consists 

of spherical or nearly spherical. 

 

 

5. CONCLUSIONS 

 

An attempt is made to analyze the recent advances in the 

segmentation of the brain MR image using optimal multilevel 

thresholding techniques. Intriguing results on segmentation 

using multilevel thresholding methods are compiled in this 

work. Even more interesting is the comparison between 

various optimization methods used for multilevel thresholding. 

It is found that the measures like PSNR, FSIM, SSIM and IDM 

are well suited in evaluating a method. The performance of a 

methodology explicitly depends on an optimization technique. 

It is crucial to choose an optimization technique over the other. 

In this context, this study may help to enrich the knowledge on 

selection of an optimization technique for a particular 

methodology.  

Methods undergoing various pre-processing (bias field 

correction, image registration and extraction of non-brain 

tissues) and post-processing stages have been observed to 

perform better. It is observed that the inefficiency of 

thresholding techniques lies in low contrast conditions in 

which scattered groups of pixels are formed. Therefore, use of 

connectivity algorithms in post processing steps will enhance 

the quality of the result. Most of the methods discussed in the 

review are manual or semi-automatic. Hence, better research 

in the field of segmentation using automatic approach still 

remains unexplored. As far as our knowledge is concerned, the 

maximum limit on the number of threshold levels still remains 

ambiguous. As stated in the literature, lesser number of 

threshold levels lacks distinct boundary in the segmented 

image, whereas higher threshold levels may result in over 

segmentation. Researchers need to perform segmentation on 

an array of threshold levels in order to obtain the appropriate 

number of levels. This approach is found to be tedious and 

time-consuming. Hence, automation of these methods to 

perform segmentation at the best threshold level can be the 

future scope in this field. Existing literature reflects very 

limited research using 3-D fitness functions. This area needs 

to be widely explored to enhance the quality of research 

followed by disease diagnosis. The aim of this paper is to help 

researchers working in this field by providing a 

comprehensive study on the various steps involved, data used, 

techniques implemented, results obtained and the future scope. 

It is believed that the paper may attract more readers to open 

the door for future research in this area. 
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