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The Internet of Things (IoT) has recently become a hot spot for researchers and its industrial 

importance is growing exponentially day after day. Statistics show that the number of IoT 

devices will reach fifty billion by 2020. IoT applications are backed through clouds where 

data is stored and processed by gigantic processing systems and accessed only by authorized 

users. In the present work, we outsource the encryption and decryption of ABE operations 

to proxy servers in order to reduce the computation overhead of encryption and decryption. 

However, in some cases performing full encryption is more worthy than partial encryption 

if IoT resources are fit to perform this encryption thus, our scheme allows to adaptively 

switch from partial encryption to full encryption based on the resources that available and 

the number of attributes in access tree. The decision maker component (manager) uses 

decision tree to select the appropriate scheme based on the context at encryption time. 

Finally, we evaluate the performance of our scheme with other scheme proposed for 

constrained devices. 
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1. INTRODUCTION

The fast development and growing of cloud computing help 

IoT applications to be more accessible; because most of IoT 

applications are based on cloud computing, that also helps IoT 

applications to rapidly grow. These factors encourage 

researchers to develop the cloud environment to be 

trustworthy for these applications [1-4]. IoT components can 

gather information remotely and store it on cloud computing. 

However, there are several challenges of data confidentiality 

in an IoT environment: Firstly, the confidentiality and privacy 

of IoT data may breach since this data is usually sensitive [5] 

and since cloud computing is honest but curious. Secondly, 

IoT devices are constrained devices and that leads to yet 

another challenge since there is no choice to keep this data on 

these devices, as it is constrained storage. Thirdly, providing 

the confidentiality of data means reserving many resources 

while IoT devices have limited resources. For all these 

challenges, providing the confidentiality and privacy of data 

in IoT devices has become a critical issue. 

To fix the above mentioned problems, the data owner 

should either use an authenticated access control system that 

allows only authorized users to access the data, or encrypt the 

data before uploading it to the cloud. However, using an 

authenticated access control system is not completely secure 

because intruders could still access the data using malicious 

software [6]. Therefore, preserving the data by encrypting it 

prior to uploading it to the cloud is more suitable. However, 

encryption consumes high resources and that is considered a 

problem with IoT devices since they are constrained devices 

(CPU, RAM, storage, Battery). Symmetric encryption is 

considered lighter than asymmetric encryption [7]. 

Nevertheless, in symmetric encryption, the data owner should 

know the client who requests to read the data in order to send 

them the key and that is not suitable in an IoT scenario, since 

the data owner usually know nothing about the clients who 

want to decrypt the data. Additionally, in symmetric 

encryption, each ciphertext has the same key for encryption 

and decryption, therefore the clients will have the same keys, 

and this is considered as not secure. On the other hand, 

asymmetric encryption is more suitable than symmetric 

encryption in an IoT scenario, since the data owner will 

encrypt the data using a public key while the clients will use a 

private key to decrypt the data. This kind of encryption seems 

more suitable than symmetric encryption since the data 

encrypted with a public key is supposed to be available to 

everyone. However, in an IoT scenario, the data should be 

encrypted in context information or a set of attributes, since 

the data owner usually knows nothing about the client who 

wants to decrypt the data. 

Attribute Based Encryption (ABE) was first proposed in 

2006 by Goyal et al. The authors proposed a new form of 

asymmetric encryption called Key-Policy Attribute Based 

Encryption (KP-ABE). Later, in 2007, Bethencourt et al. 

proposed a new type of Attribute Based encryption called 

Ciphertext policy Attribute Based Encryption (CPABE). In 

this article, we will discuss only the schemes that are based on 

CP-ABE because it is more suitable for an IoT environment, 

since the data owner can specify who can decrypt the data. 

However, based on the aforementioned challenges discussed 

in the first paragraph of this section, ABE technique fixes the 

first two challenges but not the third one, because of the very 
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high computation cost of ABE schemes relatively to 

constrained devices. Several schemes have proposed to reduce 

the computation overhead of CP-ABE [8-11]. Most of these 

schemes optimize the overhead of CP-ABE operations but 

have several weaknesses, as per the following: firstly, some of 

the proposed schemes are not suitable for constrained devices 

because of performance and are not feasible to apply on these 

devices. Secondly, some proposed schemes are restricted to 

specific types of access policy, which makes them restricted 

for a limited range of applications. 

The contribution of our work can be summrized as the 

following: 

(1) We study the performance of two cryptography 

encryption schemes on IoT devices. The first scheme [12] is 

perform full encryption which consider hevey on IoT devices, 

whereas the second scheme is performed light encryption on 

IoT devices [12]. 

(2) We proposed adaptive scheme using machine learning 

that can switch from a scheme to another based on the context 

at encryption time. We proof that the switching increases the 

efficiency of the scheme. 

(3) Finally, we validate our scheme by analyzing the 

performance of our scheme and comparing the results with 

other schemes.   

 

 

2. RELATED WORK 

 

In this section, we mainly focus on ABE schemes that 

proposed to reduce the computation cost of ABE by delegating 

the cryptography operations on constrained devices. On the 

other hand, we will discuss the existing works that proposed 

to generate constant ciphertext on IoT devices to reduce their 

storage overhead. 

Zhou et al. proposed an efficient CP-ABE scheme that 

securely outsources most of encryption and decryption 

operations to the cloud [13]. As each access policy consists of 

a left sub-tree and a right subtree, Zhou et al. suppose that the 

left sub-tree of the access policy has more attributes than the 

right sub-tree. Accordingly, the users can encrypt their data 

with the right sub-tree of the access policy in order to generate 

the initial form of ciphertext CT1. The Encryption Proxy 

Service EPS performs the encryption of the left sub-tree and 

generates CTEPS. Finally, EPS generates the final ciphertext 

CT by combining CT1 and CTEPS. Decryption Proxy Service 

DPS performs most of the decryption operations by decrypting 

the left sub-tree of the access policy in order to generate CTout. 

Client decrypts CTout which consists of only the right sub-tree. 

As a result, the user and the client will perform the small part 

of the cryptography operations based on the number of 

attributes on the right sub-tree of the access tree. However, the 

final CT contains the attributes in the left sub-tree and the 

attributes in the right sub-tree which means that the root node 

must always be AND in the access policy. In case that the root 

node of the access policy is OR logic gate, then this scheme 

will not work properly. Moreover, if the number of attributes 

on the right side of the access policy is large then the scheme 

is not efficient to use in IoT devices. 

Jin et al. improved Zhou et al.’s work by proposing a 

flexible, secure and lightweight scheme of ABE on mobile 

devices [13]. The restriction that arises in Zhou et al.’s scheme 

is fixed in Jin et al.’s scheme by adding a dummy attribute to 

the right sub-tree of the whole access policy. The scheme is 

based on CP-ABE. The main components of the scheme are 

Trust Authority (TA), Data Owner (DO), Encryption Proxy 

Server (EPS), Storage Service Provider (SSP), Decryption 

Proxy Server (DPS), and Data Requester (DR). Jin et al. 

scheme delegates most of the intensive ABE operations to 

Mobile Cloud Computing (MCC), and guarantees that neither 

EPS nor the cloud provider hosting the data can reveal that 

data. The authors suggest outsourcing most of ABE to the 

proxy server, thus reducing the execution time of encryption 

and decryption on user and client devices respectively. Jin et 

al. proposed a dummy attribute, namely (AttDum), which is 

owned by every user. The user first encrypts their data with the 

right sub-tree of the access policy that contains only the 

dummy attribute. Then, the user performs some non-critical 

operations to generate security parameters. Finally, the user 

sends the initial form of ciphertext, namely CTDum to EPS. EPS 

will generate the final form of the ciphertext CT by performing 

the CP-ABE on the real access policy at EPS to generate CTAcc 

and finally combine it with CTDum. The final form of CT = 

CTAcc  ∧ CTDum. As such for decryption, DPS does most of the 

ABE decryption operations to generate the initial form of CT1 

and sends it to the client device. The client device does a small 

part of the decryption because DPS did most of these 

operations. Client decrypts CT1, the decryption operation on 

the client side recovers the message encrypted with the dummy 

attribute (AttDum) that the right sub-tree of the access policy 

consists of. This scheme reduces computation cost of 

encryption and decryption operations. However, the authors 

do not provide any details to answer how to choose or generate 

a secure and unique dummy attribute for each user. Moreover, 

the ciphertext’s size has increased with the number of 

attributes in access policy. 

Wang et al. proposed a verified outsourcing ABE scheme 

for keygen, encryption and decryption, a scheme that 

successfully reduces the execution time. the CT becomes more 

complex and the size of it increases with the number of 

attributes in the access policy [14]. The user encrypts the data 

partially to generate EPO and EPL, EPL never leaving the user 

device and EPO send to EPS. EPS performs more operations 

that need more computation cost and sends the output 

parameters back to the user. However, the scheme consumes 

high communication cost on user and client machines. 

Zhao et al. proposed a scheme [15] similar to Wang et al.’s 

works. Zhao et al. encrypt the message using symmetric 

encryption first. After that, DO uses ABE to encrypt random 

message with default attributes and sends CT1 with CSE to EPS. 

Same technique as in the study [14] is applied for the 

remaining part of the algorithms. Nguyen et al. proposed to 

outsource ABE scheme based on CP-ABE [16]. The scheme 

consists of Data Producer (DP), Data consumer (DC), 

Delegatee (DG) which is responsible of generating the final 

form of CT, and Trusted Key Distribution Centre (KDC). 

KDC is responsible of generating the SK, and also performs 

some of the cryptography operations to generate the security 

parameters and delegation key that are needed to form the final 

CT. The user performs only one exponentiation to generate the 

initial CT1, but DG performs most of the expensive operations. 

The KDC is responsible of generating the delegation key and 

the user only specifies the access policy before passing it on to 

DG. DG is responsible of encrypting the data with access 

policy. Then, if DG is compromised and the attacker changes 

the access policy to satisfy a client’s SK, then the client will 

be able to decrypt the data since there is no relation between 

C’ (generated by user) and the access policy that the user sends 

to DG. 
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Storage overhead is also one of the challenges on IoT 

devices, since these devices also have limited storage 

resources, therefore several schemes are proposed to generate 

constant ciphertext. Cheung and Newport proposed 

hierarchical attributes scheme to reduce the size of ciphertext 

as well as the execution time of encryption and decryption [17]. 

The scheme is based on AND gate, the attributes have multiple 

values (i.e., positive, negative, and do not care), thus the 

ciphertext will be generated for each attribute based on the 

value of these attributes. To simplify their idea, assume that 

the Ci is computed for attri then all Cj :j ∀τ will be part of the 

ciphertext, where Ci is a public parameter with the value of attri. 

In this case, the attributes are arranged into a hierarchical form 

that can improve the efficiency because Cheung and Newport 

use few groups of elements to find Ci. However, considering 

all Cj will be on the ciphertext, the ciphertext’s size still 

depends on the number of attributes in the access policy. 

Moreover, if the user wants to encrypt his access policy with a 

new attribute, he must re-run setup algorithm again otherwise 

the client who kept the old SK (containing old attributes) will 

be able to decrypt the ciphertext that contains the new 

attributes because the old value of secret shared has not been 

changed. Emura et al proposed a scheme that improved 

Cheung et al.’s scheme. Their scheme is based on AND gate, 

generates constant ciphertext and reduces the cryptography 

operations on the user side and client side [18]. In Cheung et 

al’s. scheme, the CT included all Ci based on the value of attri 

then the number of CT is i, where i is [1,2,3, ...n]. Emura et al. 

found that the ciphertext should not have redundant values, as 

it is proposed in Cheung and Newport scheme, such as when 

the value of an attribute is not listed at the access policy vi,j ∈/ 

A where A is the access policy. Secondly, the access structure 

can be expressed by the summation of the master key. Emura 

et al calculate the encrypted value for all attributes in case it is 

an element in the access tree or not, and that will generate a 

constant ciphertext. Doshi and Jinwala [19] improved Emura 

et al’s. works, since one of the drawbacks of Emura’s scheme 

is that the attributes in secret key must be the same as the 

attributes in the access policy. Doshi and Jinwala proposed a 

CP-ABE scheme based on AND gate that provides constant 

ciphertext and where the attribute in ciphertext could be a 

subset of the attributes in the secret key [19]. 

Based on aforementioned literature, we summarized the 

weaknesses and the gaps of the existing outsourcing scheme. 

Zhou et al. proposed an efficient scheme [12] to securely 

outsource most of ABE operations but it is restricted to 

specific type of access policy (the root access policy must be 

AND). The scheme proposed in fixed the flexibility problem 

that arises in the study [12], using a dummy attribute so that 

any access policy could add a dummy attribute, and that 

allowed a wide range of application to use this scheme. Wang 

et al.’ [14] scheme outsourced the key-gen, encryption and 

decryption, which means that we have to trust several 

components at this scheme, such as proxy encryption and 

decryption. Nguyen et al. [16] reduces the number of 

exponentiations on user device by allowing a key generator to 

generate some of the security parameters and the delegation 

key. Schemes in the researches [17-19] discussed how to 

reduce the storage overhead by generating a constant 

ciphertext. Table 1 shows the number of exponentiations for 

most schemes we discussed in this section. In Table 1, Nguyen 

et al.’ scheme [16] needs only one exponentiation. The scheme 

performance at the user’s device [12] is based on the right sub-

tree, therefore if we assume the right subtree consists of only 

one attribute, then the number of exponentiations will be 3, 

which is the same as the scheme proposed in the study [12]. 

Most of the listed schemes in Table 1 need only one pairing 

for decryption. Scheme [16] does not support outsource 

decryption. Scheme [12] needs 2 |τ| + 1, where |τ| is the length 

of attributes in access policy. 

 

Table 1. Exponentiations and pairing on several schemes 

 
Scheme Number of Exponentiation 

DO 

Number of Pairing 

DR 

[11] n + 2 2|T| + 1 

[12] 3 1 

[13] 4 1 

[14] 4 1 

[19] N/A 1 

[15] 1 N/A 

 

Based on that, we can summarize our scheme requirements 

as per the following:  

 

• Correctness: The scheme should allow only the 

authorized user to access the data. 

• scalability: The scheme should be scalable for a wide 

range of applications and should not be restricted. 

• Feasibility: The scheme should be usable on 

constrained device. 

• Security: The scheme should be secure, only the user 

machine and the Trust Authority machine being the trusted on 

the scheme. 

 

 

3. PRELIMINARIES 

 

In this section, we further outline some technical 

terminologies that we use in this article. 

 

3.1 Bilinear map 
  

Our scheme and most of CP-ABE scheme are based on 

bilinear map. Assume G0, G1 are two multiplicative group of 

prime order p. Then map e: G0 * G0 → G1 is a bilinear map. 

Bilinear map has three properties: 

 

• Bilinear: e(ga,gb)= e(g,g)a,b 

• Non-degenerate:e(g,g) 6=1 

• Computable: e(ga,gb)= e(g,g)a,b= e(gb,ga) 

 

3.2 CP-ABE 

 

CP-ABE is a form of public key encryption. The data 

encrypt with access policy, where the secret key blind with 

number of attributes. The original form of CP-ABE consists of 

four algorithms as the following: 

 

• Setup (λ)→(PK, MSK). the algorithm generates the public 

key (PK) and the master key (MK). 

• KeyGen(PK, ω, MK)→ SK. SK, where SK is secret 

key ,and ω is the client’s attributes list. 

• Encryption (PK, M, A)→CT. Where CT is the ciphertext 

and A is User’s access policy. 

• Decryption(CT,SK)→ M. where M is the message.
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3.3 Access tree 

 

Access tree used to describe the access policy. Access tree 

consists of set of nodes. The top node called the root node 

where inner nodes are either logical operator (AND, OR, or 

OF) or leaf node. The leaf node represents the attributes and it 

is usually the lower level of the tree. Figure 3 shows sample of 

access tree ((X AND Y) OR (C AND Z)) with the components 

of CT. The important thing about the tree is the fact that each 

node has secret share and all these shares are required to 

reconstruct the root share that the other shared of nodes tree 

derive from and no one has any information about this share 

except the client who has secret key [20, 21]. 
 

 

4. THE PROPOSED SCHEME 
 

In this section we will discuss our framework scheme. We 

design a scheme can applied in several IoT scenarios such as 

smart home, healthcare, or smart city. In IoT scenarios, each 

scenario has different requirements such as the time of 

requesting to encrypt the data, also each data has different 

access policy to encrypt with. Moreover, the availability of IoT 

resources are changes from time to time based on tasks that the 

IoT devices are perform. Based on aforementioned, the 

information context of attributes and the resources availability 

should take in consideration for selecting the way that the data 

should encrypt with. We design a decision maker component 

we call it manager Figure 10 show the components of manager, 

we will further discuss the manager components in section 6. 

Before we start discussing our scheme we will explain some 

proposed CP-ABE scheme for IoT devices. Figure 1 shows 

three scenarios of IoT framework. In scenario 1, IoT device 

can completely encrypt the data by performing full encryption. 

The data encrypted with real access policy and generate the 

final CT then upload it to the cloud. There are several schemes 

proposed for scenario 1 such as BSW scheme [22, 23]. 

Scenario 2 in Figure1 the data encrypted partially. In partial 

encryption IoT devices encrypts the data with only dummy 

attribute and delegate most of CP-ABE cryptography 

operations to EPS server. Several schemes proposed this idea 

such as the scheme proposed in [12, 24, 25]. The details of full 

and partial encryption will discuss later in this section. 

Scenario 3 in Figure 1 shows our scheme. To take advantage 

of two scheme we found that in some cases under specific 

situations IoT device can perform full encryption since 

outsourcing CP-ABE operations are not worthy always 

because the policy context and the resources of IoT devices are 

rapidly changed. In scenario 3 our scheme performing full 

encryption if the resources in IoT device are underloaded and 

the number of attributes in access policy is not large. 

Otherwise, the manager will decide to perform partial 

encryption. 

In scenario 1, the data is fully encrypted in IoT device and 

the final ciphertext is uploaded to the cloud. In full encryption 

IoT device need only to communicate with cloud once to send 

the final CT and this reducing the communication overhead. 

However, performing all CP-ABE operations on the same IoT 

device will increase the computation cost on this device. 

Therefore, using the second scenario will reduce the 

computation cost of CP-ABE operations on IoT device by 

delegation most of CP-ABE computation cost to EPS. 

However, the connection between EPS and IoT device must 

be available always. Moreover, in some scenarios EPS’s 

ciphertext should return to IoT device then IoT device 

detriment the final form of ciphertext before upload it to the 

cloud and that will increase the communication overhead on 

IoT device and need more time for overall encryption time. In 

some IoT scenarios IoT devices can perform key generation in 

addition to encryption task. In some environments the number 

of clients is not large which means they can generate the secret 

keys inside IoT device. However, this will increase the 

computation on IoT device in addition to encryption 

computation cost. 

Based on aforementioned, full encryption in some situation 

is more worthy to use than partial encryption because it is more 

secure since all CP-ABE operations are performed in trust part. 

However, we found that the execution time becomes 

unacceptable in some case when the number of attributes in 

access policy become more. Moreover, the CPU utilization 

and RAM usage become infeasible to apply in IoT device. 

We measure the execution time of encryption operations in 

IoT device (Beaglebone black) of scenario one and two. Figure 

2 shows the execution time of encryption operations on 

Beaglebone device for BSW [22] and Dummy [12] schemes. 

BSW scheme perform full encryption as explained in scenario 

1 whereas Dummy-scheme represents scenario 2. as shown 2 

the execution time of encryption operation is very close in 

BSW-scheme and Dummy-scheme when the number of 

attributes is less than five attributes. However, the difference 

in execution time of encryption between BSW-Scheme and 

Dummy-scheme increase when the number of attributes in 

access policy becomes more than five attributes. Based on that, 

we can perform full encryption when the number of attributes 

is less than five attributes and partial encryption when the 

number of attributes is more than five attributes. Designing 

scheme that allow to switch from full to partial encryption 

require to use same scheme architecture. More precisely, using 

BSW scheme to perform full encryption and Dummy scheme 

to perform partial encryption required two secret keys for each 

client to decrypt the data, one suitable for full scheme if the 

data encrypted using full encryption and other key to decrypt 

the data if the data encrypted with Dummy-scheme, the reason 

is in dummy architecture the data encrypted with dummy 

attribute which it is not in BSW scheme which means the 

secret key of BSW’s scheme cannot decrypt the data encrypted 

with dummy attribute. In this case if IoT device will perform 

full encryption then it has to add only one dummy attribute to 

the real attributes. The execution time of encryption operations 

in BSW and Dummy-scheme shown in Figure 2. The 

difference between BSW and Dummy scheme in term of 

execution time for encryption algorithms in less than 1 second 

instead, we use only one scheme for full and partial encryption 

and one scheme to generate secret key for the client instead 

having two keys (one for BSW scheme and second one for 

Dummy scheme). Moreover, adaptive scheme will allow to 

perform full encryption if the number attributes is less than 

five in access policy and the resources of IoT devices are 

underloaded. 

We also measure the difference of execution time of 

generating secret keys and the size of secrete keys in IoT 

device (Beaglebone black) for BSW and our scheme as shown 

in Figure 3 and 4 respectively. As shown in Figure 3 our need 

0.06 second more to generate the secret key than BSW scheme 

and that is not really difference specially when the number of 

attributes is more than fifteen. Figure 4 shows the secret key 

size of BSW and our scheme, the differences are always 

constant around 665 bytes regardless of the number of 

attributes in secret key. 
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Figure 1. sc1, sc2, and sc3 IoT framework 

 

 
 

Figure 2. Execution time of encryption at scenario 1 and 

scenario 2 
 

 
 

Figure 3. Execution time of key generation for BSW and 

partial scheme  
 

 
 

Figure 4. Secret key size for BSW and partial scheme 

 
 

Figure 5. Proposed framework 

 

Our scheme shown in Figure 5. In Figure 5, DO is the data 

owner (user), Client is the person who want to decrypt the data, 

EPS is Encryption Proxy Server. SSP is Storage Service 

Provider. 

The scheme based on CP-ABE, the DO generate PK by 

running Algorithm 1. Data Owner runs Algorithm either 3 or 

4 to encrypt the data and send it to either EPS or SSP. The 

manager component in IoT device will decide to perform full 

or partial encryption based on the access policy and the 

resources available in the machine. 

If the manager decides to perform full encryption then 

Algorithm 3 runs in DO’s machine and upload CT to SSP 

without needing to send the data to EPS. Otherwise, in case 

the manager chooses to perform partial encryption then, DO 

machine will generate CT1 and send it to EPS. Table 2 show 

the notations we use in this article. 

 

Table 2. Notations 

 
Notation Description 

A Access policy 

|T| Attributes list in Access Policy 

ω User’s attributes 

K Symmetric key 

 
Satisfy 

CT1 Initial Ciphertext 

CT Final ciphertext 

Ct, Ci, C Ciphertext components 

EPS Encryption Proxy Provider 

SSP Storage Service Provider 

DPS Decryption Proxy Service 

User The encryptor 

Client The decryptor 
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0
.8

6
4

1
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7

1
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2
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4
9

2 6 9 1 2 1 5 2 0 3 0

BSW-Without-Dummy Dummy-Scheme

1
6

4
1 4

2
4

6 6
2

0
5 8
1

6
9 1
0

1
6

2 1
3

4
7

1

2
0

1
8

2

2
2

9
1 4

9
0

2 6
8

6
0 8
8

2
6 1
0

8
1

3 1
4

1
1

7

2
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4

1
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BSW-Without-Dummy BSW-with-Dummy

0 

0.5 

1 
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2 
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3 

3.5 

2 6 9 12 15 20 30 

BSW Dummy 

SSP CT 

EPS 

Partial Encryption 

CT 1 

Request for SK 
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4.1 Setup  

 

Algorithm 1 shows the setup algorithm steps, this 

Algorithm runs at IoT device to generate PK and MK.  

 

Algorithm 1 Setup Algorithm 

Input: Security Parameters λ 

Output: PK, MK 

1: Generate g, gp from bilinear group G1 and G2 

2: Select random elements α, β ∈ ZR 

3: Calculate PK = G0, g, h= gβ, f= garg(1/β), e(g,g)α,  

     MK= (β, gα) 

4: return PK, MK 

 

4.2 Key generation  

 

Algorithm 2 runs in IoT device to generate the SK. 

 

Algorithm 2 Key Generator Algorithm 

Input: PK, MK, ω 

Output: SK 

Initialisation: 

1: Select random element r 

2: Calculate D = gr
α−β 

3: calculate Dj and Djp for each attribute in ω 

LOOP Process 

4: for j in ω do 

5: Select random element rj 

6: Calculate Dj, Djp 

7: end for 

8: return SK 

 

4.3 User encryption 

 

The user can either perform full or Dummy encryption as 

the following: 

 

Algorithm 3 User Full Encryption Algorithm 

Input: PK, M, A 

Output: CT 

1: Select random element s from ∈ ZR 

2: Generate key (k) from group element GT 

3: Calculate secret shared  

4: Compute C0 = gs, Ct = M × e(g,g)αs 

5: calculate Cy , Cyp  

6: return CT 

 

4.3.1 Full encryption 

As shows in algorithm 3, the user’s data (M) encrypted with 

access policy A. The full encryption will calculate the all 

security parameters need to generate CT as shown in 

Algorithm 3.  

 

Algorithm 4 User Dummy Encryption Algorithm 

Input: PK, M, A 

Output: Ct, Ct, C,  

1: Generate key (k) from group element GT 

2: select random element s from ∈ ZR 

3: Calculate secret shared  

4: Compute C = gs, Ct = M × e(g,g)αs 

5: return CT 1 
 

4.3.2 Partial encryption 

As shows in algorithm 4 the user’s data (M) encrypted with 

access policy A. In order to reduce the computation cost at DO 

machine we delegate most of the cryptography operations to 

EPS machine. In Algorithm 4 we only need two 

exponentiations to generate CT1. Meanwhile, we ensure that 

our scheme is secure even we delegate most of the 

cryptography operations to EPS. Moreover, we reduce the 

communication cost between DO machine and SSP by 

allowing EPS to combine CTDum and CTEPS to generate and 

upload the final CT. 

The secret shared is used in the access policy, Figure 6 

shows how generated for each node (s1,2,3…)•ϵ is re-divide 

into sub-secret for each node in the access tree in a way that 

all sub-secret required to reconstruct the original value of s. 

 

 
 

Figure 6. Construction of s 
 

4.4 Encryption proxy service 

 

This stage performs at EPS if the manager components 

decide to perform partial encryption. Algorithm 5 shows the 

main steps that are performed in order to generate the final 

ciphertext CT. The user must pass CT1 to EPS to perform the 

second part of encryption. τ in Algorithm 5is the list of 

attribute in A. 

EPS should calculate Cy and Cyp for each attribute in A 

because calculating Cy and Cyp perform two exponentiations 

for each attribute and this cause high computation overhead as 

we will see in section 5.  

 

Algorithm 5 EncryptionOut 

Input: PK,  

Output: Cy, Cyp 

LOOP Process 

1: for j in ω do 

2: calculate Cy = pk, 

3: Cyp  

4: end for 

5: Generate the final form of CT C,Ct, Cy, Cyp  

6: return CT 

 

 

5. IMPLEMENTATION AND PERFORMANCE 

EVALUATION 
 

In this section we further outline the performance and 

evaluation of our scheme, we also compare our scheme’s 

results with [12]’s scheme results. We test our scheme on 
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Beaglebone black, Beaglebone is an IoT device, the 

specification of Beaglebone black shows in Table 3. In order 

to evaluate the efficiency of our and Jin et al.’s schemes we 

measure the execution time of encryption, decryption 

operations in DO and DR machines. We also found the CT size 

in DO machine in both schemes. Moreover, we test both 

schemes in symmetric curve (Super Singular) 512-bit and 

asymmetric curve type A (y2 = x3 + x) MNT 159, 201,224. 

Finally, we evaluate the computation overhead of two schemes 

by measured the memory usage of these schemes on DO and 

DR using python script. 

 

Table 3. Beaglebone black specs 

 
 Description 

Processor ARM 1GB Cortex A8 

memory 256 MB 

Flash 4GB MicroSD 

Clock Speed 1000 MHz 

OS Linux beaglebone 4.4.9-ti-r25 

 

5.1 Execution time  

 

Definition 1: The execution time of encryption operation on 

user’s machine is effected by the number of attributes in access 

policy in full and partial encryption. 

 

 
 

Figure 7. Execution time of full and partial encryption at 

user machine 

 

Figure 7 shows the execution time of full and partial 

encryption. The execution time of partial and full encryption 

is very closed when the number of attributes less than five 

attributes. However, the differences in time become more 

when the number of attributes increase. The execution time of 

partial encryption is less than of full encryption because in 

partial encryption the data encrypt with only dummy attribute. 

However, in partial encryption the user machine must 

calculate the shares values for all attributes in access policy 

and that would explain the slightly increase of encryption time 

in partial encryption. In full encryption Algorithm (3) user 

machine should performs more cryptography operations than 

the algorithm of partial encryption (4) and that explain why the 

execution time of full encryption is more than the execution 

time of partial encryption. 

 

5.2 CPU utilization  

 

Definition 2: CPU utilization on partial encryption 

algorithm is less than the CPU utilization on Full encryption 

algorithm. 

 
 

Figure 8. CPU utilization of full and partial encryption 

 

Figure 8 shows CPU utilization of full and partial 

encryption on user machine. the percentage of CPU utilization 

is increased when the number of attributes is increase in access 

policy. For example, in Full encryption the CPU utilization is 

acceptable when the number of attributes is less than twelve. 

However, it become not acceptable when the number of 

attributes is more that twelve. Whereas, the CPU utilization is 

acceptable for thirty attributes if we use partial encryption. 

 

5.3 Memory utilization  

 

Defintion 3: Memory usage of partial encryption algorithm 

is less than the memory usage of full encryption algorithm. 

Figure 9 shows the Memory usage in full and partial 

encryption on user machine. Full encryption consumes more 

memory usage than partial encryption. In term of memory 

usage, full and partial encryption are acceptable when the 

number of attributes in access policy is thirty or less. 

 

 
 

Figure 9. Memory utilization of full and partial encryption 

 

 

6. ADAPTIVE CP-ABE 

 

In this section we discuss our Adaptive CP-ABE scheme. 

The main goal of our scheme is to reduce the computation cost 

of CP-ABE operations, in section 4 we discussed two ways to 

encrypt the data using of CP-ABE (Full and Partial encryption). 

Full encryption will perform all cryptography operations for 

encryption at user machine and upload CT to the cloud, thus 

will consume high resources on user machine. However, in full 

encryption the user machine does not need proxy server to 

perform some cryptography operations and that need less 

communication overhead. Figure 11 shows the fluctuation of 
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execution time for CP-ABE encryption for file size 100 KB. 

For Partial and full encryption schemes [12, 22] respectively. 

It is clear that the efficiency of the scheme depends on the 

context of the resources (CPU, Memory) in addition to the 

factors that we discussed above. 

 

 
 

Figure 10. Manager components 

 

 
 

Figure 11. Encryption time for schemes [12] and [22] on file 

size 100 KB 

 

In our scheme we design a manager component that can 

specify which encryption that user machine should perform 

(either full or partial encryption). Figure 10 shows the manager 

components. In Figure 10 the data is the user’s message, the 

access policy is the access policy that the user wants to encrypt 

her data with. The profiler and Resource Monitor are too 

frequently check the device resource status. Manager 

component has decision engine to select which and where data 

should be encrypted. Finally, the communication part is to 

connect the manager component with IoT device. 

The objective of manager component is to decide which 

kind of encryption should perform and where. As we discussed 

early, in some cases partial encryption is not always worthy to 

perform and since the context and the length of access policy 

rapidly changed. Whereas, partial encryption is worthy if the 

length of access policy is large and the IoT resources are 

overloaded. 

 

6.1 Decision tree 

 

We use decision tree as it shows high accuracy than other 

techniques. We compare the accuracy of decision tree with 

Sequential minimal optimization (SMO) and Naive Bayes. 

The accuracy for decision tree was 94.3% whereas it 85% and 

92.7 for SMO and N-Bayes respectively.  

The machine learning is work based on the dataset. Our 

dataset consists of file size, status of resources, connection 

type, and the length of the access policy. The label column of 

the dataset is the decision (full or partial). The selection is 

based on which one shows better results (less time). As shows 

in Figure 12, the tree checks the number of attributes in the 

access policy first, then based on the number of attributes its 

checks the number of attributes again or the CPU status. Then 

the data size or number of attributes again based on the status 

as shows in the figure. 

 

 

7. CONCLUSION  

 

In this article we discuss several schemes proposed to 

provide CPABE for constrained devices. All of these schemes 

either provide full encryption to encrypt the data before upload 

it to the cloud or providing partial encryption before upload it 

to the cloud and then complete the remind part of encryption 

on cloud or trusted server. In our scheme we design adaptive 

CP-ABE technique that allow to constrained device to either 

perform full encryption or partial encryption based on the 

available resources of constrained device and based on the 

context and the number of attributes in access policy. We 

found that performing full encryption is more beneficial than 

partial encryption in some cases whereas performing partial 

encryption is worthy in another cases.

 

 
 

Figure 12. Decision tree 
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