
Adaptive Ciphertext Policy Attribute Based Encryption Scheme for Internet of Things

Devices Using Decision Tree

Mohammad Bany Taha1*, Hanan Suwi2, Fawaz Khaswneh3, Khaled Alzaareer4

1 Ericsson, GAIA Department, 8275 Trans Canda Route, saint-Laurent, Montreal, Quebec, H4S 0B6, Canada
2 Department of Software Engineering and IT, University of Quebec, Notre-Dame, Montreal, Quebec, H3C 1K3, Canada
3 Ericsson, BDGS RDP Department, 8275 Trans Canda Route, Saint-Laurent, Montreal, Quebec, H4S 0B6, Canada
4 Department of Electrical Engineering, University of Quebec, Notre-Dame, Montreal, Quebec, H3C 1K3, Canada

Corresponding Author Email: an35670@ens.etsmtl.ca

https://doi.org/10.18280/ria.340301 ABSTRACT

Received: 22 March 2020

Accepted: 5 May 2020

The Internet of Things (IoT) has recently become a hot spot for researchers and its industrial

importance is growing exponentially day after day. Statistics show that the number of IoT

devices will reach fifty billion by 2020. IoT applications are backed through clouds where

data is stored and processed by gigantic processing systems and accessed only by authorized

users. In the present work, we outsource the encryption and decryption of ABE operations

to proxy servers in order to reduce the computation overhead of encryption and decryption.

However, in some cases performing full encryption is more worthy than partial encryption

if IoT resources are fit to perform this encryption thus, our scheme allows to adaptively

switch from partial encryption to full encryption based on the resources that available and

the number of attributes in access tree. The decision maker component (manager) uses

decision tree to select the appropriate scheme based on the context at encryption time.

Finally, we evaluate the performance of our scheme with other scheme proposed for

constrained devices.

Keywords:

machine learning, IoT, CP-ABE, decision

tree, offloading

1. INTRODUCTION

The fast development and growing of cloud computing help

IoT applications to be more accessible; because most of IoT

applications are based on cloud computing, that also helps IoT

applications to rapidly grow. These factors encourage

researchers to develop the cloud environment to be

trustworthy for these applications [1-4]. IoT components can

gather information remotely and store it on cloud computing.

However, there are several challenges of data confidentiality

in an IoT environment: Firstly, the confidentiality and privacy

of IoT data may breach since this data is usually sensitive [5]

and since cloud computing is honest but curious. Secondly,

IoT devices are constrained devices and that leads to yet

another challenge since there is no choice to keep this data on

these devices, as it is constrained storage. Thirdly, providing

the confidentiality of data means reserving many resources

while IoT devices have limited resources. For all these

challenges, providing the confidentiality and privacy of data

in IoT devices has become a critical issue.

To fix the above mentioned problems, the data owner

should either use an authenticated access control system that

allows only authorized users to access the data, or encrypt the

data before uploading it to the cloud. However, using an

authenticated access control system is not completely secure

because intruders could still access the data using malicious

software [6]. Therefore, preserving the data by encrypting it

prior to uploading it to the cloud is more suitable. However,

encryption consumes high resources and that is considered a

problem with IoT devices since they are constrained devices

(CPU, RAM, storage, Battery). Symmetric encryption is

considered lighter than asymmetric encryption [7].

Nevertheless, in symmetric encryption, the data owner should

know the client who requests to read the data in order to send

them the key and that is not suitable in an IoT scenario, since

the data owner usually know nothing about the clients who

want to decrypt the data. Additionally, in symmetric

encryption, each ciphertext has the same key for encryption

and decryption, therefore the clients will have the same keys,

and this is considered as not secure. On the other hand,

asymmetric encryption is more suitable than symmetric

encryption in an IoT scenario, since the data owner will

encrypt the data using a public key while the clients will use a

private key to decrypt the data. This kind of encryption seems

more suitable than symmetric encryption since the data

encrypted with a public key is supposed to be available to

everyone. However, in an IoT scenario, the data should be

encrypted in context information or a set of attributes, since

the data owner usually knows nothing about the client who

wants to decrypt the data.

Attribute Based Encryption (ABE) was first proposed in

2006 by Goyal et al. The authors proposed a new form of

asymmetric encryption called Key-Policy Attribute Based

Encryption (KP-ABE). Later, in 2007, Bethencourt et al.

proposed a new type of Attribute Based encryption called

Ciphertext policy Attribute Based Encryption (CPABE). In

this article, we will discuss only the schemes that are based on

CP-ABE because it is more suitable for an IoT environment,

since the data owner can specify who can decrypt the data.

However, based on the aforementioned challenges discussed

in the first paragraph of this section, ABE technique fixes the

first two challenges but not the third one, because of the very

Revue d'Intelligence Artificielle
Vol. 34, No. 3, June, 2020, pp. 233-241

Journal homepage: http://iieta.org/journals/ria

233

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.340301&domain=pdf

high computation cost of ABE schemes relatively to

constrained devices. Several schemes have proposed to reduce

the computation overhead of CP-ABE [8-11]. Most of these

schemes optimize the overhead of CP-ABE operations but

have several weaknesses, as per the following: firstly, some of

the proposed schemes are not suitable for constrained devices

because of performance and are not feasible to apply on these

devices. Secondly, some proposed schemes are restricted to

specific types of access policy, which makes them restricted

for a limited range of applications.

The contribution of our work can be summrized as the

following:

(1) We study the performance of two cryptography

encryption schemes on IoT devices. The first scheme [12] is

perform full encryption which consider hevey on IoT devices,

whereas the second scheme is performed light encryption on

IoT devices [12].

(2) We proposed adaptive scheme using machine learning

that can switch from a scheme to another based on the context

at encryption time. We proof that the switching increases the

efficiency of the scheme.

(3) Finally, we validate our scheme by analyzing the

performance of our scheme and comparing the results with

other schemes.

2. RELATED WORK

In this section, we mainly focus on ABE schemes that

proposed to reduce the computation cost of ABE by delegating

the cryptography operations on constrained devices. On the

other hand, we will discuss the existing works that proposed

to generate constant ciphertext on IoT devices to reduce their

storage overhead.

Zhou et al. proposed an efficient CP-ABE scheme that

securely outsources most of encryption and decryption

operations to the cloud [13]. As each access policy consists of

a left sub-tree and a right subtree, Zhou et al. suppose that the

left sub-tree of the access policy has more attributes than the

right sub-tree. Accordingly, the users can encrypt their data

with the right sub-tree of the access policy in order to generate

the initial form of ciphertext CT1. The Encryption Proxy

Service EPS performs the encryption of the left sub-tree and

generates CTEPS. Finally, EPS generates the final ciphertext

CT by combining CT1 and CTEPS. Decryption Proxy Service

DPS performs most of the decryption operations by decrypting

the left sub-tree of the access policy in order to generate CTout.

Client decrypts CTout which consists of only the right sub-tree.

As a result, the user and the client will perform the small part

of the cryptography operations based on the number of

attributes on the right sub-tree of the access tree. However, the

final CT contains the attributes in the left sub-tree and the

attributes in the right sub-tree which means that the root node

must always be AND in the access policy. In case that the root

node of the access policy is OR logic gate, then this scheme

will not work properly. Moreover, if the number of attributes

on the right side of the access policy is large then the scheme

is not efficient to use in IoT devices.

Jin et al. improved Zhou et al.’s work by proposing a

flexible, secure and lightweight scheme of ABE on mobile

devices [13]. The restriction that arises in Zhou et al.’s scheme

is fixed in Jin et al.’s scheme by adding a dummy attribute to

the right sub-tree of the whole access policy. The scheme is

based on CP-ABE. The main components of the scheme are

Trust Authority (TA), Data Owner (DO), Encryption Proxy

Server (EPS), Storage Service Provider (SSP), Decryption

Proxy Server (DPS), and Data Requester (DR). Jin et al.

scheme delegates most of the intensive ABE operations to

Mobile Cloud Computing (MCC), and guarantees that neither

EPS nor the cloud provider hosting the data can reveal that

data. The authors suggest outsourcing most of ABE to the

proxy server, thus reducing the execution time of encryption

and decryption on user and client devices respectively. Jin et

al. proposed a dummy attribute, namely (AttDum), which is

owned by every user. The user first encrypts their data with the

right sub-tree of the access policy that contains only the

dummy attribute. Then, the user performs some non-critical

operations to generate security parameters. Finally, the user

sends the initial form of ciphertext, namely CTDum to EPS. EPS

will generate the final form of the ciphertext CT by performing

the CP-ABE on the real access policy at EPS to generate CTAcc

and finally combine it with CTDum. The final form of CT =

CTAcc ∧ CTDum. As such for decryption, DPS does most of the

ABE decryption operations to generate the initial form of CT1

and sends it to the client device. The client device does a small

part of the decryption because DPS did most of these

operations. Client decrypts CT1, the decryption operation on

the client side recovers the message encrypted with the dummy

attribute (AttDum) that the right sub-tree of the access policy

consists of. This scheme reduces computation cost of

encryption and decryption operations. However, the authors

do not provide any details to answer how to choose or generate

a secure and unique dummy attribute for each user. Moreover,

the ciphertext’s size has increased with the number of

attributes in access policy.

Wang et al. proposed a verified outsourcing ABE scheme

for keygen, encryption and decryption, a scheme that

successfully reduces the execution time. the CT becomes more

complex and the size of it increases with the number of

attributes in the access policy [14]. The user encrypts the data

partially to generate EPO and EPL, EPL never leaving the user

device and EPO send to EPS. EPS performs more operations

that need more computation cost and sends the output

parameters back to the user. However, the scheme consumes

high communication cost on user and client machines.

Zhao et al. proposed a scheme [15] similar to Wang et al.’s

works. Zhao et al. encrypt the message using symmetric

encryption first. After that, DO uses ABE to encrypt random

message with default attributes and sends CT1 with CSE to EPS.

Same technique as in the study [14] is applied for the

remaining part of the algorithms. Nguyen et al. proposed to

outsource ABE scheme based on CP-ABE [16]. The scheme

consists of Data Producer (DP), Data consumer (DC),

Delegatee (DG) which is responsible of generating the final

form of CT, and Trusted Key Distribution Centre (KDC).

KDC is responsible of generating the SK, and also performs

some of the cryptography operations to generate the security

parameters and delegation key that are needed to form the final

CT. The user performs only one exponentiation to generate the

initial CT1, but DG performs most of the expensive operations.

The KDC is responsible of generating the delegation key and

the user only specifies the access policy before passing it on to

DG. DG is responsible of encrypting the data with access

policy. Then, if DG is compromised and the attacker changes

the access policy to satisfy a client’s SK, then the client will

be able to decrypt the data since there is no relation between

C’ (generated by user) and the access policy that the user sends

to DG.

234

Storage overhead is also one of the challenges on IoT

devices, since these devices also have limited storage

resources, therefore several schemes are proposed to generate

constant ciphertext. Cheung and Newport proposed

hierarchical attributes scheme to reduce the size of ciphertext

as well as the execution time of encryption and decryption [17].

The scheme is based on AND gate, the attributes have multiple

values (i.e., positive, negative, and do not care), thus the

ciphertext will be generated for each attribute based on the

value of these attributes. To simplify their idea, assume that

the Ci is computed for attri then all Cj :j ∀τ will be part of the

ciphertext, where Ci is a public parameter with the value of attri.

In this case, the attributes are arranged into a hierarchical form

that can improve the efficiency because Cheung and Newport

use few groups of elements to find Ci. However, considering

all Cj will be on the ciphertext, the ciphertext’s size still

depends on the number of attributes in the access policy.

Moreover, if the user wants to encrypt his access policy with a

new attribute, he must re-run setup algorithm again otherwise

the client who kept the old SK (containing old attributes) will

be able to decrypt the ciphertext that contains the new

attributes because the old value of secret shared has not been

changed. Emura et al proposed a scheme that improved

Cheung et al.’s scheme. Their scheme is based on AND gate,

generates constant ciphertext and reduces the cryptography

operations on the user side and client side [18]. In Cheung et

al’s. scheme, the CT included all Ci based on the value of attri

then the number of CT is i, where i is [1,2,3, ...n]. Emura et al.

found that the ciphertext should not have redundant values, as

it is proposed in Cheung and Newport scheme, such as when

the value of an attribute is not listed at the access policy vi,j ∈/

A where A is the access policy. Secondly, the access structure

can be expressed by the summation of the master key. Emura

et al calculate the encrypted value for all attributes in case it is

an element in the access tree or not, and that will generate a

constant ciphertext. Doshi and Jinwala [19] improved Emura

et al’s. works, since one of the drawbacks of Emura’s scheme

is that the attributes in secret key must be the same as the

attributes in the access policy. Doshi and Jinwala proposed a

CP-ABE scheme based on AND gate that provides constant

ciphertext and where the attribute in ciphertext could be a

subset of the attributes in the secret key [19].

Based on aforementioned literature, we summarized the

weaknesses and the gaps of the existing outsourcing scheme.

Zhou et al. proposed an efficient scheme [12] to securely

outsource most of ABE operations but it is restricted to

specific type of access policy (the root access policy must be

AND). The scheme proposed in fixed the flexibility problem

that arises in the study [12], using a dummy attribute so that

any access policy could add a dummy attribute, and that

allowed a wide range of application to use this scheme. Wang

et al.’ [14] scheme outsourced the key-gen, encryption and

decryption, which means that we have to trust several

components at this scheme, such as proxy encryption and

decryption. Nguyen et al. [16] reduces the number of

exponentiations on user device by allowing a key generator to

generate some of the security parameters and the delegation

key. Schemes in the researches [17-19] discussed how to

reduce the storage overhead by generating a constant

ciphertext. Table 1 shows the number of exponentiations for

most schemes we discussed in this section. In Table 1, Nguyen

et al.’ scheme [16] needs only one exponentiation. The scheme

performance at the user’s device [12] is based on the right sub-

tree, therefore if we assume the right subtree consists of only

one attribute, then the number of exponentiations will be 3,

which is the same as the scheme proposed in the study [12].

Most of the listed schemes in Table 1 need only one pairing

for decryption. Scheme [16] does not support outsource

decryption. Scheme [12] needs 2 |τ| + 1, where |τ| is the length

of attributes in access policy.

Table 1. Exponentiations and pairing on several schemes

Scheme Number of Exponentiation

DO

Number of Pairing

DR

[11] n + 2 2|T| + 1

[12] 3 1

[13] 4 1

[14] 4 1

[19] N/A 1

[15] 1 N/A

Based on that, we can summarize our scheme requirements

as per the following:

• Correctness: The scheme should allow only the

authorized user to access the data.

• scalability: The scheme should be scalable for a wide

range of applications and should not be restricted.

• Feasibility: The scheme should be usable on

constrained device.

• Security: The scheme should be secure, only the user

machine and the Trust Authority machine being the trusted on

the scheme.

3. PRELIMINARIES

In this section, we further outline some technical

terminologies that we use in this article.

3.1 Bilinear map

Our scheme and most of CP-ABE scheme are based on

bilinear map. Assume G0, G1 are two multiplicative group of

prime order p. Then map e: G0 * G0 → G1 is a bilinear map.

Bilinear map has three properties:

• Bilinear: e(ga,gb)= e(g,g)a,b

• Non-degenerate:e(g,g) 6=1

• Computable: e(ga,gb)= e(g,g)a,b= e(gb,ga)

3.2 CP-ABE

CP-ABE is a form of public key encryption. The data

encrypt with access policy, where the secret key blind with

number of attributes. The original form of CP-ABE consists of

four algorithms as the following:

• Setup (λ)→(PK, MSK). the algorithm generates the public

key (PK) and the master key (MK).

• KeyGen(PK, ω, MK)→ SK. SK, where SK is secret

key ,and ω is the client’s attributes list.

• Encryption (PK, M, A)→CT. Where CT is the ciphertext

and A is User’s access policy.

• Decryption(CT,SK)→ M. where M is the message.

235

3.3 Access tree

Access tree used to describe the access policy. Access tree

consists of set of nodes. The top node called the root node

where inner nodes are either logical operator (AND, OR, or

OF) or leaf node. The leaf node represents the attributes and it

is usually the lower level of the tree. Figure 3 shows sample of

access tree ((X AND Y) OR (C AND Z)) with the components

of CT. The important thing about the tree is the fact that each

node has secret share and all these shares are required to

reconstruct the root share that the other shared of nodes tree

derive from and no one has any information about this share

except the client who has secret key [20, 21].

4. THE PROPOSED SCHEME

In this section we will discuss our framework scheme. We

design a scheme can applied in several IoT scenarios such as

smart home, healthcare, or smart city. In IoT scenarios, each

scenario has different requirements such as the time of

requesting to encrypt the data, also each data has different

access policy to encrypt with. Moreover, the availability of IoT

resources are changes from time to time based on tasks that the

IoT devices are perform. Based on aforementioned, the

information context of attributes and the resources availability

should take in consideration for selecting the way that the data

should encrypt with. We design a decision maker component

we call it manager Figure 10 show the components of manager,

we will further discuss the manager components in section 6.

Before we start discussing our scheme we will explain some

proposed CP-ABE scheme for IoT devices. Figure 1 shows

three scenarios of IoT framework. In scenario 1, IoT device

can completely encrypt the data by performing full encryption.

The data encrypted with real access policy and generate the

final CT then upload it to the cloud. There are several schemes

proposed for scenario 1 such as BSW scheme [22, 23].

Scenario 2 in Figure1 the data encrypted partially. In partial

encryption IoT devices encrypts the data with only dummy

attribute and delegate most of CP-ABE cryptography

operations to EPS server. Several schemes proposed this idea

such as the scheme proposed in [12, 24, 25]. The details of full

and partial encryption will discuss later in this section.

Scenario 3 in Figure 1 shows our scheme. To take advantage

of two scheme we found that in some cases under specific

situations IoT device can perform full encryption since

outsourcing CP-ABE operations are not worthy always

because the policy context and the resources of IoT devices are

rapidly changed. In scenario 3 our scheme performing full

encryption if the resources in IoT device are underloaded and

the number of attributes in access policy is not large.

Otherwise, the manager will decide to perform partial

encryption.

In scenario 1, the data is fully encrypted in IoT device and

the final ciphertext is uploaded to the cloud. In full encryption

IoT device need only to communicate with cloud once to send

the final CT and this reducing the communication overhead.

However, performing all CP-ABE operations on the same IoT

device will increase the computation cost on this device.

Therefore, using the second scenario will reduce the

computation cost of CP-ABE operations on IoT device by

delegation most of CP-ABE computation cost to EPS.

However, the connection between EPS and IoT device must

be available always. Moreover, in some scenarios EPS’s

ciphertext should return to IoT device then IoT device

detriment the final form of ciphertext before upload it to the

cloud and that will increase the communication overhead on

IoT device and need more time for overall encryption time. In

some IoT scenarios IoT devices can perform key generation in

addition to encryption task. In some environments the number

of clients is not large which means they can generate the secret

keys inside IoT device. However, this will increase the

computation on IoT device in addition to encryption

computation cost.

Based on aforementioned, full encryption in some situation

is more worthy to use than partial encryption because it is more

secure since all CP-ABE operations are performed in trust part.

However, we found that the execution time becomes

unacceptable in some case when the number of attributes in

access policy become more. Moreover, the CPU utilization

and RAM usage become infeasible to apply in IoT device.

We measure the execution time of encryption operations in

IoT device (Beaglebone black) of scenario one and two. Figure

2 shows the execution time of encryption operations on

Beaglebone device for BSW [22] and Dummy [12] schemes.

BSW scheme perform full encryption as explained in scenario

1 whereas Dummy-scheme represents scenario 2. as shown 2

the execution time of encryption operation is very close in

BSW-scheme and Dummy-scheme when the number of

attributes is less than five attributes. However, the difference

in execution time of encryption between BSW-Scheme and

Dummy-scheme increase when the number of attributes in

access policy becomes more than five attributes. Based on that,

we can perform full encryption when the number of attributes

is less than five attributes and partial encryption when the

number of attributes is more than five attributes. Designing

scheme that allow to switch from full to partial encryption

require to use same scheme architecture. More precisely, using

BSW scheme to perform full encryption and Dummy scheme

to perform partial encryption required two secret keys for each

client to decrypt the data, one suitable for full scheme if the

data encrypted using full encryption and other key to decrypt

the data if the data encrypted with Dummy-scheme, the reason

is in dummy architecture the data encrypted with dummy

attribute which it is not in BSW scheme which means the

secret key of BSW’s scheme cannot decrypt the data encrypted

with dummy attribute. In this case if IoT device will perform

full encryption then it has to add only one dummy attribute to

the real attributes. The execution time of encryption operations

in BSW and Dummy-scheme shown in Figure 2. The

difference between BSW and Dummy scheme in term of

execution time for encryption algorithms in less than 1 second

instead, we use only one scheme for full and partial encryption

and one scheme to generate secret key for the client instead

having two keys (one for BSW scheme and second one for

Dummy scheme). Moreover, adaptive scheme will allow to

perform full encryption if the number attributes is less than

five in access policy and the resources of IoT devices are

underloaded.

We also measure the difference of execution time of

generating secret keys and the size of secrete keys in IoT

device (Beaglebone black) for BSW and our scheme as shown

in Figure 3 and 4 respectively. As shown in Figure 3 our need

0.06 second more to generate the secret key than BSW scheme

and that is not really difference specially when the number of

attributes is more than fifteen. Figure 4 shows the secret key

size of BSW and our scheme, the differences are always

constant around 665 bytes regardless of the number of

attributes in secret key.

236

Figure 1. sc1, sc2, and sc3 IoT framework

Figure 2. Execution time of encryption at scenario 1 and

scenario 2

Figure 3. Execution time of key generation for BSW and

partial scheme

Figure 4. Secret key size for BSW and partial scheme

Figure 5. Proposed framework

Our scheme shown in Figure 5. In Figure 5, DO is the data

owner (user), Client is the person who want to decrypt the data,

EPS is Encryption Proxy Server. SSP is Storage Service

Provider.

The scheme based on CP-ABE, the DO generate PK by

running Algorithm 1. Data Owner runs Algorithm either 3 or

4 to encrypt the data and send it to either EPS or SSP. The

manager component in IoT device will decide to perform full

or partial encryption based on the access policy and the

resources available in the machine.

If the manager decides to perform full encryption then

Algorithm 3 runs in DO’s machine and upload CT to SSP

without needing to send the data to EPS. Otherwise, in case

the manager chooses to perform partial encryption then, DO

machine will generate CT1 and send it to EPS. Table 2 show

the notations we use in this article.

Table 2. Notations

Notation Description

A Access policy

|T| Attributes list in Access Policy

ω User’s attributes

K Symmetric key

Satisfy

CT1 Initial Ciphertext

CT Final ciphertext

Ct, Ci, C Ciphertext components

EPS Encryption Proxy Provider

SSP Storage Service Provider

DPS Decryption Proxy Service

User The encryptor

Client The decryptor

0
.1

5
5 0
.4

2 0
.6

2
6

0
.8

1
9

1
.0

0
7 1

.3
5

1

2
.0

1

0
.2

0
5 0
.4

7
3

0
.6

8
7

0
.8

6
4

1
.0

7

1
.4

1
2

2
.0

4
9

2 6 9 1 2 1 5 2 0 3 0

BSW-Without-Dummy Dummy-Scheme

1
6

4
1 4

2
4

6 6
2

0
5 8
1

6
9 1
0

1
6

2 1
3

4
7

1

2
0

1
8

2

2
2

9
1 4

9
0

2 6
8

6
0 8
8

2
6 1
0

8
1

3 1
4

1
1

7

2
0

8
4

1

2 6 9 1 2 1 5 2 0 3 0

BSW-Without-Dummy BSW-with-Dummy

0

0.5

1

1.5

2

2.5

3

3.5

2 6 9 12 15 20 30

BSW Dummy

SSP CT

EPS

Partial Encryption

CT 1

Request for SK

237

4.1 Setup

Algorithm 1 shows the setup algorithm steps, this

Algorithm runs at IoT device to generate PK and MK.

Algorithm 1 Setup Algorithm

Input: Security Parameters λ

Output: PK, MK

1: Generate g, gp from bilinear group G1 and G2

2: Select random elements α, β ∈ ZR

3: Calculate PK = G0, g, h= gβ, f= garg(1/β), e(g,g)α,

 MK= (β, gα)

4: return PK, MK

4.2 Key generation

Algorithm 2 runs in IoT device to generate the SK.

Algorithm 2 Key Generator Algorithm

Input: PK, MK, ω

Output: SK

Initialisation:

1: Select random element r

2: Calculate D = gr
α−β

3: calculate Dj and Djp for each attribute in ω

LOOP Process

4: for j in ω do

5: Select random element rj

6: Calculate Dj, Djp

7: end for

8: return SK

4.3 User encryption

The user can either perform full or Dummy encryption as

the following:

Algorithm 3 User Full Encryption Algorithm

Input: PK, M, A

Output: CT

1: Select random element s from ∈ ZR

2: Generate key (k) from group element GT

3: Calculate secret shared

4: Compute C0 = gs, Ct = M × e(g,g)αs

5: calculate Cy , Cyp

6: return CT

4.3.1 Full encryption

As shows in algorithm 3, the user’s data (M) encrypted with

access policy A. The full encryption will calculate the all

security parameters need to generate CT as shown in

Algorithm 3.

Algorithm 4 User Dummy Encryption Algorithm

Input: PK, M, A

Output: Ct, Ct, C,

1: Generate key (k) from group element GT

2: select random element s from ∈ ZR

3: Calculate secret shared

4: Compute C = gs, Ct = M × e(g,g)αs

5: return CT 1

4.3.2 Partial encryption

As shows in algorithm 4 the user’s data (M) encrypted with

access policy A. In order to reduce the computation cost at DO

machine we delegate most of the cryptography operations to

EPS machine. In Algorithm 4 we only need two

exponentiations to generate CT1. Meanwhile, we ensure that

our scheme is secure even we delegate most of the

cryptography operations to EPS. Moreover, we reduce the

communication cost between DO machine and SSP by

allowing EPS to combine CTDum and CTEPS to generate and

upload the final CT.

The secret shared is used in the access policy, Figure 6

shows how generated for each node (s1,2,3…)•ϵ is re-divide

into sub-secret for each node in the access tree in a way that

all sub-secret required to reconstruct the original value of s.

Figure 6. Construction of s

4.4 Encryption proxy service

This stage performs at EPS if the manager components

decide to perform partial encryption. Algorithm 5 shows the

main steps that are performed in order to generate the final

ciphertext CT. The user must pass CT1 to EPS to perform the

second part of encryption. τ in Algorithm 5is the list of

attribute in A.

EPS should calculate Cy and Cyp for each attribute in A

because calculating Cy and Cyp perform two exponentiations

for each attribute and this cause high computation overhead as

we will see in section 5.

Algorithm 5 EncryptionOut

Input: PK,

Output: Cy, Cyp

LOOP Process

1: for j in ω do

2: calculate Cy = pk,

3: Cyp

4: end for

5: Generate the final form of CT C,Ct, Cy, Cyp

6: return CT

5. IMPLEMENTATION AND PERFORMANCE

EVALUATION

In this section we further outline the performance and

evaluation of our scheme, we also compare our scheme’s

results with [12]’s scheme results. We test our scheme on

238

Beaglebone black, Beaglebone is an IoT device, the

specification of Beaglebone black shows in Table 3. In order

to evaluate the efficiency of our and Jin et al.’s schemes we

measure the execution time of encryption, decryption

operations in DO and DR machines. We also found the CT size

in DO machine in both schemes. Moreover, we test both

schemes in symmetric curve (Super Singular) 512-bit and

asymmetric curve type A (y2 = x3 + x) MNT 159, 201,224.

Finally, we evaluate the computation overhead of two schemes

by measured the memory usage of these schemes on DO and

DR using python script.

Table 3. Beaglebone black specs

 Description

Processor ARM 1GB Cortex A8

memory 256 MB

Flash 4GB MicroSD

Clock Speed 1000 MHz

OS Linux beaglebone 4.4.9-ti-r25

5.1 Execution time

Definition 1: The execution time of encryption operation on

user’s machine is effected by the number of attributes in access

policy in full and partial encryption.

Figure 7. Execution time of full and partial encryption at

user machine

Figure 7 shows the execution time of full and partial

encryption. The execution time of partial and full encryption

is very closed when the number of attributes less than five

attributes. However, the differences in time become more

when the number of attributes increase. The execution time of

partial encryption is less than of full encryption because in

partial encryption the data encrypt with only dummy attribute.

However, in partial encryption the user machine must

calculate the shares values for all attributes in access policy

and that would explain the slightly increase of encryption time

in partial encryption. In full encryption Algorithm (3) user

machine should performs more cryptography operations than

the algorithm of partial encryption (4) and that explain why the

execution time of full encryption is more than the execution

time of partial encryption.

5.2 CPU utilization

Definition 2: CPU utilization on partial encryption

algorithm is less than the CPU utilization on Full encryption

algorithm.

Figure 8. CPU utilization of full and partial encryption

Figure 8 shows CPU utilization of full and partial

encryption on user machine. the percentage of CPU utilization

is increased when the number of attributes is increase in access

policy. For example, in Full encryption the CPU utilization is

acceptable when the number of attributes is less than twelve.

However, it become not acceptable when the number of

attributes is more that twelve. Whereas, the CPU utilization is

acceptable for thirty attributes if we use partial encryption.

5.3 Memory utilization

Defintion 3: Memory usage of partial encryption algorithm

is less than the memory usage of full encryption algorithm.

Figure 9 shows the Memory usage in full and partial

encryption on user machine. Full encryption consumes more

memory usage than partial encryption. In term of memory

usage, full and partial encryption are acceptable when the

number of attributes in access policy is thirty or less.

Figure 9. Memory utilization of full and partial encryption

6. ADAPTIVE CP-ABE

In this section we discuss our Adaptive CP-ABE scheme.

The main goal of our scheme is to reduce the computation cost

of CP-ABE operations, in section 4 we discussed two ways to

encrypt the data using of CP-ABE (Full and Partial encryption).

Full encryption will perform all cryptography operations for

encryption at user machine and upload CT to the cloud, thus

will consume high resources on user machine. However, in full

encryption the user machine does not need proxy server to

perform some cryptography operations and that need less

communication overhead. Figure 11 shows the fluctuation of

44.2

55.1

73.1

84.6

100 100 100

39.9 43.2
49.2

60.3

71.4 74.8
80.9

attr 2 6 attr 9 attr 12 attr attr 15 20 attr 30 attr

CPU-Full CPU-D

29.5
33.3

36 37.1 38.9
42.1

44.6

26.2 28.4
34.1 35 36.3 38.4 39.1

2 attr 6 attr 9 attr 12 attr 15 attr 20 attr 30 attr

Full Partial

239

execution time for CP-ABE encryption for file size 100 KB.

For Partial and full encryption schemes [12, 22] respectively.

It is clear that the efficiency of the scheme depends on the

context of the resources (CPU, Memory) in addition to the

factors that we discussed above.

Figure 10. Manager components

Figure 11. Encryption time for schemes [12] and [22] on file

size 100 KB

In our scheme we design a manager component that can

specify which encryption that user machine should perform

(either full or partial encryption). Figure 10 shows the manager

components. In Figure 10 the data is the user’s message, the

access policy is the access policy that the user wants to encrypt

her data with. The profiler and Resource Monitor are too

frequently check the device resource status. Manager

component has decision engine to select which and where data

should be encrypted. Finally, the communication part is to

connect the manager component with IoT device.

The objective of manager component is to decide which

kind of encryption should perform and where. As we discussed

early, in some cases partial encryption is not always worthy to

perform and since the context and the length of access policy

rapidly changed. Whereas, partial encryption is worthy if the

length of access policy is large and the IoT resources are

overloaded.

6.1 Decision tree

We use decision tree as it shows high accuracy than other

techniques. We compare the accuracy of decision tree with

Sequential minimal optimization (SMO) and Naive Bayes.

The accuracy for decision tree was 94.3% whereas it 85% and

92.7 for SMO and N-Bayes respectively.

The machine learning is work based on the dataset. Our

dataset consists of file size, status of resources, connection

type, and the length of the access policy. The label column of

the dataset is the decision (full or partial). The selection is

based on which one shows better results (less time). As shows

in Figure 12, the tree checks the number of attributes in the

access policy first, then based on the number of attributes its

checks the number of attributes again or the CPU status. Then

the data size or number of attributes again based on the status

as shows in the figure.

7. CONCLUSION

In this article we discuss several schemes proposed to

provide CPABE for constrained devices. All of these schemes

either provide full encryption to encrypt the data before upload

it to the cloud or providing partial encryption before upload it

to the cloud and then complete the remind part of encryption

on cloud or trusted server. In our scheme we design adaptive

CP-ABE technique that allow to constrained device to either

perform full encryption or partial encryption based on the

available resources of constrained device and based on the

context and the number of attributes in access policy. We

found that performing full encryption is more beneficial than

partial encryption in some cases whereas performing partial

encryption is worthy in another cases.

Figure 12. Decision tree

0

10

20

30

40

50

2 4 5 9

1
2

2
0

3
0

5
0

1
0

0

2
5

0

5
0

0

Full 20% Partial 20% Full 50%

Partial 50% Full 80% Partial 80%

240

REFERENCES

[1] Li, S.C., Li, D.X. (2017). Securing the Internet of Things.

Syngress.

[2] Fuad, A., Rahman, A., Daud, M., Mohamad, Z. (2016).

Securing sensor to cloud ecosystem using internet of

things (IoT) security framework. In Proceedings of the

International Conference on Internet of things and Cloud

Computing, Okinawa, Japan, pp. 1-5.

https://doi.org/10.1145/2896387.2906198

[3] Zhou, J., Cao, Z.F., Dong, X.L., Vasilakos, A. (2017).

Security and privacy for cloud-based IoT: Challenges.

IEEE Communications Magazine, 55(1): 26-33.

https://doi.org/10.1109/MCOM.2017.1600363CM

[4] Taha, M.M.B., Chaisiri, S., Ko, R.K.L. (2015). Trusted

tamper-evident data provenance. 2015 IEEE

Trustcom/BigDataSE/ISPA, Helsinki, Finland, pp. 646-

653. https://doi.org/10.1109/Trustcom.2015.430

[5] Ukil, A., Bandyopadhyay, S., Pal, A. (2014). IoT-privacy:

To be private or not to be private. In Computer

Communications Workshops (INFOCOM WKSHPS),

Toronto, Canada, pp. 123-124.
https://doi,org/10.1109/INFCOMW.2014.6849186

[6] Ali, M., Dhamotharan, R., Khan, E., Khan, S.U.,

Vasilakos, A.V., Li, K., Zomaya, A.Y. (2017). SeDaSC:

Secure data sharing in clouds. IEEE Systems Journal,

11(2): 395-404.

https://doi.org/10.1109/JSYST.2014.2379646

[7] Sasi, S.B., Dixon, D., Wilson, J., No, P. (2014). A

general comparison of symmetric and asymmetric

cryptosystems for WSNs and an overview of location

based encryption technique for improving security. IOSR

Journal of Engineering, 4(3): 1-4.

https://doi.org/10.9790/3021-04330104

[8] Yao, X.X., Chen, Z., Tian, Y. (2015). A lightweight

attribute-based encryption scheme for the internet of

things. Future Generation Computer Systems, 49: 104-

112. https://doi.org/10.1016/j.future.2014.10.010

[9] Morales-Sandoval, M., Vega-Castillo, A.K., Diaz-Perez,

A. (2014). A secure scheme for storage, retrieval, and

sharing of digital documents in cloud computing using

attribute-based encryption on mobile devices.

Information Security Journal: A Global Perspective,

23(1-2): 22-31.

https://doi.org/10.1080/19393555.2014.891282

[10] Thatmann, D., Zickau, S., Forster, A. (2015). Applying

attribute-based encryption on publish subscribe

messaging patterns for the internet of things. In

International Conference on Data Science and Data

Intensive Systems, pp. 556-563.

https://doi.org/10.1109/DSDIS.2015.52

[11] Borgh, J., Ngai, E., Ohlman, B., Malik, A.M. (2016).

Attribute-based encryption in systems with resource

constrained devices in an information centric networking

context. 2017 Global Internet of Things Summit (GIoTS),

Geneva, pp. 1-6.

https://doi.org/10.1109/GIOTS.2017.8016277

[12] Jin, Y., Tian, C., He, H., Wang, F. (2015). A secure and

lightweight data access control scheme for mobile cloud

computing. 2015 IEEE Fifth International Conference on

Big Data and Cloud Computing, Dalian, pp. 172-179.

https://doi.org/10.1109/BDCloud.2015.57

[13] Zhou, Z.B., Huang, D.J. (2012). Efficient and secure data

storage operations for mobile cloud computing. In

Network and service management (CNSM), 2012 8th

international conference and 2012 workshop on systems

virtualiztion management (SVM), Las Vegas, USA, pp.

37-45.

[14] Wang, H., He, D.B., Shen, J., Zheng, Z.H., Zhao, C.,

Zhao, M.H. (2016). Verifiable outsourced ciphertext-

policy attribute-based encryption in cloud computing.

Soft Computing, 21: 7325-7335.

https://doi.org/10.1007/s00500-016-2271-2

[15] Zhao, Z.Y., Wang, J.H. (2017). Verifiable outsourced

ciphertext-policy attribute-based encryption for mobile

cloud computing. KSII Transactions on Internet &

Information Systems, 11(6): 3254-3272.

https://doi.org/10.3837/tiis.2017.06.024

[16] Nguyen, K.T., Oualha, N., Laurent, M. (2017). Securely

outsourcing the ciphertext-policy attribute-based

encryption. World Wide Web, 21: 169-183.

https://doi.org/10.1007/s11280-017-0473-x

[17] Cheung, L., Newport, C. (2007). Provably secure

ciphertext policy ABE. In Proceedings of the 14th ACM

conference on Computer and Communications Security,

Auckland, New Zealand, pp. 456-465.

https://doi.org/10.1145/1315245.1315302

[18] Emura, K., Miyaji, A., Omote, K., Nomura, A., Soshi, M.

(2010). A ciphertext-policy attribute-based encryption

scheme with constant ciphertext length. International

Journal of Applied Cryptography, 2(1): 46-59.

[19] Doshi, N., Jinwala D. (2011). Constant ciphertext length

in CP-ABE. 2011 2nd International Conference on

Computer and Communication Technology (ICCCT-

2011), Allahabad, India, pp. 451-456.

https://doi.org/10.1109/ICCCT.2011.6075139

[20] Green, M., Hohenberger, S., Waters, B. (2011).

Outsourcing the decryption of ABE ciphertexts. 20th

USENIX conference on Security, p. 34.

[21] Somesh, S., Singh, N. (2018). Role based security for

cloud based data with data reliability. Int J Res Eng IT

Soc Sci, 7: 23-28.

[22] Bethencourt, J., Sahai, A., Waters, B. (2007). Ciphertext-

policy attribute-based encryption. In 2007 IEEE

Symposium on Security and Privacy (SP’07), Berkeley,

USA, pp. 321- 334. https://doi.org/10.1109/SP.2007.11

[23] Taha, M.M.B., Talhi, C., Ould-Slimane, H. (2019).

Performance evaluation of CP-ABE schemes under

constrained devices. Procedia Computer Science, 155:

425-432. https://doi.org/10.1016/j.procs.2019.08.05

[24] Taha, M.M.B., Talhi, C., Ould-Slimane, H., Alrabaee, S.

(2020). TD‐PSO: Task distribution approach based on

particle swarm optimization for vehicular ad hoc network.

Transactions on Emerging Telecommunications

Technologies. https://doi.org/10.1002/ett.3860

[25] Taha, M.M.B., Talhi, C., Ould-Slimanec, H. (2019). A

cluster of CP-ABE microservices for VANET. Procedia

Computer Science, 155: 441-448.

https://doi.org/10.1016/j.procs.2019.08.061

241

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.9790%2F3021-04330104

