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 The present work addresses the dynamics of a steady state two dimensional 

hydromagnetic Walters’ B fluid over a vertical stretching surface. The governing 

expression of partial differential equations corresponding to momentum, energy and 

concentration equations are converted to nonlinear ordinary differential equation by 

appropriate similarity variables and solved via Homotopy Analysis Method. The result 

reveals among other that large values of Prandtl number due to low thermal diffusivity 

contributes to the falling of temperature across the layer, indicating that at small values of 

Prandtl number, the fluid is highly conductive while higher values of internal heat 

generation magnifies the random movement of the fluid molecules which in turns energies 

the operating temperature and allow the penetration of the thermal effect to the quiescent 

fluid. 
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1. INTRODUCTION 
 

The theory of non-Newtonian fluid has gained 

considerable attention of the researchers recently in the 

literature due to its various applications in industries and 

engineering field. Little among these applications as 

highlighted in Iqbal et al. [1] are artificial fibers, paper 

production, extrusion of plastic sheets, glass blowing, 

metallic spinning and drawing plastic films e.t.c. Mahapatra 

et al. [2] reported that the flow near the stretching surface 

corresponding to inviscid stagnation-point flow when the 

surface stretching velocity is equal to the velocity of the free 

stream. Nadeem et al. [3] examined the effects of thermo-

diffusion on MHD oblique stagnation-point flow of a 

viscoelastic fluid over a convective surface. It is found that 

the magnetic field disturbs the obliqueness of the flow, lower 

the normal skin friction coefficient, and enhances the 

tangential skin friction coefficient. Ariel [4] investigated 

stagnation point flow of an elastico-viscous fluid with partial 

slip where the boundary value problem characterizing the 

flow are solved without making any assumption on the size 

of either the viscoelastic fluid parameter or the partial slip 

parameter and the solutions are shown to exist only up to a 

critical value of viscoelastic fluid parameter, whereas, the 

effect of the partial slip is to enhance this critical value. 

Hayat et al. [5] reported behaviors of  Brownian movement 

number which exhibit reverse behavior for temperature and 

concentration while investigating stagnation point flow of 

viscoelastic nanomaterial over a stretched surface. Poonia 

and Bhargava [6] worked on oblique stagnation-point flow of 

viscoelastic fluid and heat transfer with variable thermal 

conductivity. The result emphases the significant application 

of the work in cooling of nuclear reactors and electronic 

devices by fans, where the angle plays an important role in 

cooling. Reza et al. [7] worked on Stagnation point flow and 

heat transfer for a viscoelastic fluid impinging on a quiescent 

fluid. It is found that the interface temperature improves with 

increasing viscoelastic parameter. Bariş [8] examined the 

steady three-dimensional flow of a second grade fluid near 

the stagnation point of an infinite flat plate moving parallel to 

itself with constant velocity. Qayyum et al. [9] analyzed that 

more heat is generated through the random motion of the 

fluid particles within the frame of large Brownian motion 

when working on the effect of a chemical reaction on MHD 

stagnation-point flow of Walters-B Nanofluid with 

Newtonian heat and mass condition. Others researchers in the 

related disciplines like; Ahmad [10], Sadeghy and Sharifi 

[11], Ayub [12], Chen [13] and Nandeppanavar et al. [14] 

have also contributed to the foregoing development of this 

field in the  literature.  

The main objective of the study is to examine the heat and 

mass transfer in a Walters’ B fluid over a vertical stretching 

surface with suction\injection. To the best of our knowledge, 

this has not been addressed in the literature. The governing 

equations are solved via a modern analytical method and 

effects of different parameters on fluid flow are taking into 

account. 

 

 

2. MATHEMATICAL FORMULATION 
 

Consider the steady-state of two-dimensional MHD flow 

of an incompressible, viscous Walters’ B fluid flowing over a 

vertical stretching surface in the presence of an uniform 

Magnetic field 𝐵0  applied in 𝑦 − direction . The energy 

equation is carried out in the presence of viscous dissipation, 

elastic deformation and uniform heat generation while the 

concentration boundary layer is executed in the presence of 

chemical reaction. Negligible magnetic Reynolds number is 

considered since is the most encountered in application. Also 
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the joule heating effect is not taken into account as it really 

small to hinder the flow of free convection. The plate 

temperature and species concentration are respectively taken 

as Tw and Cw while the ambient temperature and ambient 

concentration are taken as T∞  and C∞  respectively. (see 

Figure 1). 

 

 
 

Figure 1. Flow configuration and coordinate system 

 

The equation for Walters’ B fluid subject to tensorial form 

can be expressed (see Hayat et al. [15]) as; 

 

𝑆∗ = 2𝜂0 − 2𝑘0

𝛿𝑒

𝛿𝑡
 (1) 

 

where, e is the rate of strain tensor, 
𝛿𝑒

𝛿𝑡
 is the covariant 

differentiation of the rate of strain tensor in relation to the 

material motion which can be expressed as 
𝛿𝑒

𝛿𝑡
=

𝜕𝑒

𝜕𝑡
+ 𝑉. ∇𝑒 −

𝑒∇𝑉 − (∇𝑉)𝑇 . 𝑒 , while ղ
0

= ∫ 𝑁(𝜏)𝑑𝜏
∞

0
 and 𝑘0 =

∫ 𝜏𝑁(𝜏)𝑑𝜏
∞

0
 in equation (1) stands for the limiting viscosity 

at low shear rates and short memory coefficient respectively 

with 𝑁(𝜏)  being the distribution function with relaxation 

time 𝜏 . Holding on the short memory, the term involving 

𝑘0 = ∫ 𝜏𝑛𝑁(𝜏)𝑑𝜏
∞

0
 (𝑎𝑡 𝑛 ≥ 2)  are neglected. On the 

account of the assumption expressed above with usual 

Boussinesq’s approximation, the governing equations for a 

Walters’ B fluid of this presence investigation can be 

expressed as; 

 

  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (2) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= ѵ

𝜕2𝑢

𝜕𝑦2 −
𝜎𝐵0

2𝑢

𝜌
𝑢 

     −𝑘0 [𝑢
𝜕3𝑢

𝜕𝑥𝜕𝑦2 + 𝑣
𝜕3𝑢

𝜕𝑦3 +
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2 −
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
]  

                                 +𝑔 𝛽𝑇(𝑇 − 𝑇∞) + 𝑔 𝛽𝑐(𝐶 − 𝐶∞) 

(3) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 +
ѵ

𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

2

 

               −
𝛿𝑘0

𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

𝜕

𝜕𝑦
[𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
] + 𝑄0(𝑇 − 𝑇∞)   

(4) 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2 − 𝑟(𝐶 − 𝐶∞)   (5) 

 

With the following boundary 

𝑢 = 𝑢𝑤 = 𝑎𝑥,   𝑣 = 𝑣𝑤 ,   𝑇 = 𝑇𝑤 ,   𝐶 = 𝐶𝑤    𝑎𝑡   𝑦
= 0 

(6) 

 

𝑢 → 0,   𝑇 → 𝑇∞,   𝐶 → 𝐶∞     𝑎𝑠       𝑦 → ∞ (7) 

 

The velocity components in x and y directions is taken as u 

and v respectively, Cp is the specific heat at constant pressure, 

ѵ  is the kinematic viscosity, βT is the thermal expansion 

coefficient, βc is the concentration expansion coefficient, D is 

the mass diffusivity, α is the thermal diffusivity, σ is the fluid 

electrical conductivity, g is the acceleration due to gravity 

and ρ is the density, T is the temperature and C is the 

concentration of the fluid. Following Akinbo and Olajuwon 

[16], the continuity equation (2) is trivially satisfied with 

u=∂ψ⁄∂y and v=-∂ψ⁄∂x while the similarity solution of the 

governing equations are obtained by the introduction 

appropriate variables, such as; 

 

  𝜂 = 𝑦√
𝑎

ѵ
 ,    𝜓 = 𝑥√𝑎ѵ𝑓(ղ),   𝜃(𝜂) =

𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
,  

   ∅(𝜂) =
𝐶 − 𝐶∞

𝐶𝑤 − 𝐶∞
 

(8) 

 

Here, η denotes the independent similarity variable, θ(η) 

and ∅(𝜂)  are dimensionless temperature and concentration 

respectively, which result in higher nonlinear differential 

equations of the form 

 

𝑑3𝑓

𝑑𝜂3 + 𝑓(𝜂)
𝑑2𝑓

𝑑𝜂2 − (
𝑑𝑓

𝑑𝜂
)

2

− 𝑀𝑛
𝑑𝑓

𝑑𝜂
 

 +𝑊𝑒 [(
𝑑2𝑓

𝑑𝜂2)

2

− 2
𝑑𝑓

𝑑𝜂

𝑑3𝑓

𝑑𝜂3 + 𝑓(𝜂)
𝑑4𝑓

𝑑𝜂4] 

   + 𝜆𝑇𝜃(𝜂) + 𝜆𝑀∅(𝜂) 

= 0   

(9) 

 

𝑑2𝜃

𝑑𝜂2 + 𝑃𝑟𝑓(𝜂)
𝑑𝜃

𝑑𝜂
+ 𝑃𝑟𝐸𝑐 (

𝑑2𝑓

𝑑𝜂2)

2

 

  −𝛿𝑊𝑒𝑃𝑟𝐸𝑐 [
𝑑𝑓

𝑑𝜂
(

𝑑2𝑓

𝑑𝜂2)

2

− 𝑓(𝜂)
𝑑2𝑓

𝑑𝜂2

𝑑3𝑓

𝑑𝜂3] + 𝑄𝜃(𝜂) 

(10) 

 
𝑑2∅

𝑑𝜂2 + 𝑆𝑐𝑓(𝜂)
𝑑∅

𝑑𝜂
− 𝑅𝑆𝑐∅(𝜂) = 0    (11) 

 

Satisfying the following boundary conditions 

 
𝑑𝑓(𝜂 = 0)

d𝜂
= 1,   𝑓(𝜂 = 0) = 𝑆, 

                                   𝜃(𝜂 = 0) = 1,     ∅(𝜂 = 0) = 1 

(12) 

 
𝜕𝑓(𝜂 → ∞)

∂𝜂
= 0,   𝜃(𝜂 → ∞) = 0 = ∅(𝜂 → ∞)   (13) 

 

where, 𝛿 is the elastic deformation parameter, 𝑆 =
−𝑣𝑤

√𝑎𝑣
 is the 

mass transfer parameter with S>0 for suction and S<0 for 

injection, 𝑅 =
𝑟

𝑎
 is the rate of chemical reaction, 𝑀𝑛 =

𝜎𝐵0
2

𝜌𝑎
 is 

the magnetic field, 𝑊𝑒 =
𝑎𝑘0

ѵ
 is the Weissenberg Number, 

𝜆𝑇 =
𝐺𝑟𝑥

(𝑅𝑒𝑥)2 is the thermal buoyancy parameter, 𝜆𝑀 =
𝐺𝑐

(𝑅𝑒𝑥)2 is 

the mass buoyancy parameter, 𝐺𝑟𝑥 =
𝑔𝛽𝑇(𝑇−𝑇∞)𝑥3

ѵ2  is the 

thermal Grashof Number, 𝐺𝑐𝑥 =
𝑔𝛽𝐶(𝑇_−𝑇∞)𝑥3

ѵ2  is the solutal 
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Grashof Number, 𝑅𝑒𝑥 =
𝑢(𝑥)

ѵ
 is the Relyold Number, 𝑃𝑟 =

ѵ𝜌𝐶𝑝

𝑘
 is the Prandtl number, 𝑆𝑐 =

ѵ

𝐷
 is the Schmidt number, 

𝑃𝑟  is the porosity parameter, 𝐸𝑐 =
𝑢𝑤

2

𝐶𝑝(𝑇𝑤−𝑇∞)
 is the Eckert 

number, and 𝑄 =
𝑄0(𝑇−𝑇∞)ѵ

𝑎(𝑇𝑤−𝑇∞)𝛼
 is the internal heat generation. 

On the account of the engineering application of the study, 

the expression for skin friction coefficient, local Nusselt 

number, and Local Sherwood number are respectively 

considered as follows: 

 

𝐶𝑓 =
2𝜏𝑤

𝜌𝑢𝑤
2 ,   𝑁𝑢 =

𝑥𝑞𝑤

𝑘(𝑇𝑓 − 𝑇∞)
,   𝑆ℎ =

𝑥𝑞𝑚

𝐷𝑚(𝐶𝑤 − 𝐶∞)
 (14) 

 

where, 𝜏𝑤  stands for the shear stress along with the plate, qw 

denotes the surface heat and qm represents the surface mass, 

expressed as.  

 

𝜏𝑤 = [𝜇
𝜕𝑢

𝜕𝑦
+ 𝑘0 (𝑢

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑣

𝜕2𝑢

𝜕𝑦2
+ 2

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
)]

𝑦=0

,   

          𝑞𝑤 = [−𝑘
𝜕𝑇

𝜕𝑦
]

𝑦=0

,     𝑞𝑚 = [−𝐷𝑚

𝜕𝐶

𝜕𝑦
]

𝑦=0

 = 0 

(15) 

 

Invoking (8), (14) and (15) result in an expression for local 

Skin-friction coefficient, the local Nusselt number and the 

local Sherwood number, which are respectively denoted as; 

 

𝑅𝑒𝑥

1
2𝐶𝑓 = (1 − 𝑊𝑒)𝑓′′(0) − 𝑆𝑓′′′(0),   𝑅𝑒𝑥

−
1
2 𝑁𝑢𝑥

= −𝜃′(0), 

  𝑅𝑒𝑥

−
1
2𝑆ℎ𝑥 = −∅′(0) 

(16) 

 

 

3. HOMOTOPY ANALYSIS METHOD (HAM) 
 

The Homotopy Analysis Method is adopted over others 

such as Galerkin Weighty Residual, Finite Element Mothod, 

Variation Iterations Method, Adomial Decomposition, 

Differential Transformation Method and Rung-Kutta with 

Shooting Method e.t.c being a modern method and very 

efficient in solving both bounded and unbounded domain of 

nonlinear differential equations. In accordance with the rule 

of solution and boundary conditions (12) and (13), (See 

Akinbo and Olajuwon [17]) the initial guess 

 

𝑓0(𝜂) = S + [1 − 𝑒𝑥𝑝(−𝜂)],     𝜃0(𝜂) = 𝑒𝑥𝑝(−𝜂) ,   
                                                        ∅0(𝜂) = 𝑒𝑥𝑝(−𝜂) 

(17) 

 

where, auxiliary linear operations Lf, 𝐿𝜃 , and 𝐿∅ in agreement 

with equation (17) are respectively taken as; 

 

𝐿𝑓[𝑓(𝜂; 𝑟)] =
𝜕3𝑓(𝜂; 𝑟)

𝜕𝜂3
−

𝜕𝑓(𝜂; 𝑟)

∂𝜂
,    

 𝐿𝜃[𝜃(𝜂; 𝑟)] =
𝜕2𝜃(𝜂;𝑟)

𝜕𝜂2 − 𝜃(𝜂; 𝑟), 

  𝐿∅[(𝜂; 𝑟)] =
𝜕2∅(𝜂; 𝑟)

𝜕𝜂2
− ∅(𝜂; 𝑟) 

(18) 

 

satisfying  the following properties 

 

𝐿𝑓[𝐶1 + 𝐶2 𝑒𝑥𝑝(𝜂) + 𝐶3 𝑒𝑥𝑝(−𝜂)] = 0,  

                      𝐿𝜃[𝐶4 + 𝐶5 𝑒𝑥𝑝(−𝜂)] = 0  
    𝐿∅[𝐶6 + 𝐶7 𝑒𝑥𝑝(−𝜂)] = 0 

(19) 

where, C1, C2, ..., C7 are constants. 

 

3.1 Zero order deformation  
 

(1 − 𝑟)𝐿𝑓[𝑓(𝜂; 𝑟) − 𝑓0(𝜂)] = 

                     𝑟ℏ𝑓𝐻𝑓(𝜂)𝑁𝑓[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟), ∅(𝜂; 𝑟)]    
(20) 

 

(1 − 𝑟)𝐿𝜃[𝑓(𝜂; 𝑟) − 𝜃0(𝜂)] = 

                                    𝑟ℏ𝜃𝐻𝜃(𝜂)𝑁𝜃[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟)]   
(21) 

 

(1 − 𝑟)𝐿∅[𝑓(𝜂; 𝑟) − ∅0(𝜂)] = 

 𝑟ℏ∅𝐻∅(𝜂)𝑁∅[𝑓(𝜂; 𝑟), ∅(𝜂; 𝑟)]    
(22) 

 

Here, ℏ ≠ 0 and 𝐻 ≠ 0 denotes the auxiliary functions and 

𝑟 ∈ [0,1]  is the embedded parameter, agreed with the 

following boundary conditions. 
 

𝜕𝑓(𝜂; 𝑟)

∂𝜂
│𝜂=0   = 1,   𝑓(𝜂 = 0, 𝑟) = 𝑆, 

𝜃(𝜂 = 0, 𝑟) = 1,     ∅(𝜂 = 0, 𝑟) = 1 

(23) 

 

𝜕𝑓(𝜂; 𝑟)

∂𝜂
│𝜂→∞ = 0 , 𝜃(𝜂 → ∞, 𝑟) = 0

= ∅(𝜂 → ∞, 𝑟) 

(24) 

 

The nonlinear operators Nf, 𝑁𝜃 , and 𝑁∅  are respectively 

expressed as:  
 

𝑁𝑓[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟), ∅(𝜂; 𝑟)] =  
𝜕3𝑓

𝜕𝜂3 + 𝑓(𝜂)
𝜕2𝑓

𝜕𝜂2 − (
𝜕𝑓

𝜕𝜂
)

2

 

        −𝑀𝑛
𝜕𝑓

𝜕𝜂
+ 𝑊𝑒 [(

𝜕2𝑓

𝜕𝜂2)

2

− 2
𝜕𝑓

𝜕𝜂

𝜕3𝑓

𝜕𝜂3 + 𝑓(𝜂)
𝜕4𝑓

𝜕𝜂4] 

                                      +𝜆𝑇𝜃(𝜂) + 𝜆𝑀∅(𝜂) = 0 

(25) 

 

𝑁𝜃[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟)] =  
𝜕2𝜃

𝜕𝜂2 + 𝑃𝑟𝑓(𝜂)
𝜕𝜃

𝜕𝜂
+ 𝑃𝑟𝐸𝑐 (

𝜕2𝑓

𝜕𝜂2)

2

 

   −𝛿𝑊𝑒𝑃𝑟𝐸𝑐 [
𝜕𝑓

𝜕𝜂
(

𝜕2𝑓

𝜕𝜂2)

2

− 𝑓(𝜂)
𝜕2𝑓

𝜕𝜂2

𝜕3𝑓

𝜕𝜂3] + 𝑄𝜃(𝜂) 

(26) 

 

𝑁∅[𝑓(𝜂; 𝑟), ∅(𝜂; 𝑟)] =
𝜕2∅

𝜕𝜂2 + 𝑆𝑐𝑓(𝜂)
𝜕∅

𝜕𝜂
− 𝑅𝑆𝑐∅(𝜂) = 0 (27) 

 

Introducing r=0 and r=1, we have: 
 

𝑓(𝜂; 0) = 𝑓0(𝜂),   𝜃(𝜂; 0) = 𝜃0(𝜂),    ∅(𝜂; 0)
= ∅0(𝜂) 

(28) 

 

𝑓(𝜂; 1) = 𝑓(𝜂),   𝜃(𝜂; 1) = 𝜃(𝜂),     ∅(𝜂; 1) = ∅(𝜂) (29) 
 

As 𝑟 varies from zero to one, the function 𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟) 

and  ∅(𝜂; 𝑟)  approaches  𝑓0(𝜂) , 𝜃0(𝜂)  and ∅0(𝜂)  to be 

solutions  𝑓(𝜂) , 𝜃(𝜂) and ∅(𝜂) . In Taylor series, the 

expansion for  𝑓(𝜂; 𝑟) , 𝜃(𝜂; 𝑟)  and  ∅(𝜂; 𝑟)  are respectively 

expressed as; 
 

𝑓(𝜂; 𝑟) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)𝑟𝑚

∞

𝑚=1

 ,  

  𝜃(𝜂; 𝑟) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)𝑟𝑚

∞

𝑚=1

   

   ∅(𝜂; 𝑟) = ∅0(𝜂) + ∑ ∅𝑚(𝜂)𝑟𝑚

∞

𝑚=1

 

(30) 
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where, 

 

 𝑓𝑚(𝜂) =
1

𝑚!

𝜕𝑚𝑓(𝜂; 𝑟)

𝜕𝜂𝑚
│𝑟=0,   𝜃𝑚(𝜂) =

1

𝑚!

𝜕𝑚𝜃(𝜂; 𝑟)

𝜕𝜃𝑚
│𝑟=0,  

                                    ∅𝑚(𝜂) =
1

𝑚!

𝜕𝑚∅(𝜂; 𝑟)

𝜕∅𝑚
│𝑟=0  

 

note that the convergence of the series (30) is subject to the 

auxiliary parameter ℏ. Assuming ℏ is chosen such that the 

series (30) converge at 𝑟 = 1, we have 

 

𝑓(𝜂) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)

∞

𝑚=1

,  

    𝜃(𝜂) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)

∞

𝑚=1

, 

  ∅(𝜂) = ∅0(𝜂) + ∑ ∅𝑚(𝜂)

∞

𝑚=1

 

(31) 

 

The mth-order deformation are expressed as 

 

𝐿𝑓[𝑓𝑚(𝜂) − 𝜒𝑚𝑓𝑚−1(𝜂)] = ℏ𝑅𝑚
𝑓 (𝜂), 

    𝐿𝜃[𝜃𝑚(𝜂) − 𝜒𝑚𝜃𝑚−1(𝜂)] = ℏ𝑅𝑚
𝜃 (𝜂) 

   𝐿∅[∅𝑚(𝜂) − 𝜒𝑚∅𝑚−1(𝜂)] = ℏ𝑅𝑚
∅ (𝜂) 

(32) 

 

and 

 
𝜕𝑓𝑚(𝜂)

∂𝜂
│𝜂=0   = 0, 𝑓𝑚(𝜂 = 0) = 0,    

   𝜃𝑚(𝜂 = 0) = 0,     ∅𝑚(𝜂 = 0) = 0 

(33) 

 
𝜕𝑓𝑚(𝜂)

∂𝜂
│𝜂→∞ = 0,   𝜃𝑚(𝜂 → ∞) = 0 = ∅𝑚(𝜂 → ∞) (34) 

 

where, 

 

𝑅𝑚
𝑓 (𝜂) =

𝑑3𝑓𝑚−1(𝜂)

𝑑𝜂3 + ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2  

             − ∑
𝑑𝑓𝑛(𝜂)

𝑑𝜂

𝑚−1

𝑛=0

𝑑𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂
− 𝑀𝑛

𝑑𝑓𝑚−1(𝜂)

𝑑𝜂
 

−𝑊𝑒 [2 ∑
𝑑𝑓𝑛(𝜂)

𝑑𝜂

𝑚−1

𝑛=0

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2

− ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑4𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂4

− ∑
𝑑2𝑓𝑛(𝜂)

𝑑𝜂2

𝑚−1

𝑛=0

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2 ]

+ 𝜆𝑇𝜃𝑚−1 + 𝜆𝑀 ∅𝑚−1 

(35) 

 

  𝑅𝑚
𝜃 (𝜂) =

𝑑2𝜃𝑚−1(𝜂)

𝑑𝜂2 + 𝑃𝑟 ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑𝜃𝑚−1−𝑛(𝜂)

𝑑𝜂
   

     +𝑃𝑟𝐸𝑐 ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑2𝑓𝑛(𝜂)

𝑑𝜂2

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2 − 

  𝛿𝑊𝑒𝑃𝑟𝐸𝑐 [ ∑
𝑑2𝑓𝑚−1−𝑙(𝜂)

𝑑𝜂2

𝑚−1

𝑙=0

(∑
𝑑2𝑓𝑙−𝑗(𝜂)

𝑑𝜂2

𝑑𝑓𝑗(𝜂)

𝑑𝜂

𝑙

𝑗=0

)

− ∑ 𝑓𝑚−1−𝑙(𝜂)

𝑚−1

𝑙=0

(∑
𝑑2𝑓𝑙−𝑗(𝜂)

𝑑𝜂2

𝑑3𝑓𝑗(𝜂)

𝑑𝜂3

𝑙

𝑗=0

)] + 𝑄𝜃𝑚−1   

(36) 

𝑅𝑚
∅ (𝜂) =

𝑑2∅𝑚−1(𝜂)

𝑑𝜂2
+ 𝑆𝑐 ∑ 𝑓𝑚−1−𝑛(𝜂)

𝑚−1

𝑛=0

𝑑𝑓𝑛(𝜂)

𝑑𝜂

− 𝑅𝑆𝑐∅𝑚−1 

(37) 

 

and       

 

𝜒𝑚 = 0   𝑓𝑜𝑟   𝑚 ≤ 1, 
  𝜒𝑚 = 1   𝑓𝑜𝑟   𝑚 > 1 

 

Therefore, the general solutions of equations (32) are 

 

𝑓𝑚(𝜂) = 𝑓𝑚
∗ (𝜂) + 𝐶1 + 𝐶2 𝑒𝑥𝑝(−𝜂) + 𝐶3 𝑒𝑥𝑝(𝜂)   (38) 

 

𝜃𝑚(𝜂) = 𝜃𝑚
∗ (𝜂) + 𝐶4 + 𝐶5 𝑒𝑥𝑝(𝜂) (39) 

 

∅𝑚(ղ) = ∅𝑚
∗ (𝜂) + 𝐶6 + 𝐶7 𝑒𝑥𝑝(𝜂) (40) 

 

3.2 Convergence of the (HAM) solution 

 

In accordance with Hayat et al. [15], Liao [18] and Akinbo 

and Olajuwon [19] suggestions, the non-zero auxiliary 

parameters hf, ℏ𝜃 and ℏ∅ play a crucial role in adjusting and 

controlling the convergence region of the series solution. 

Subject to the introduction of the following embedded 

parameters Ec=0.1, We=0.1, Mn=1, λT=0.1, λM=0.1, Pr=0.72, 

Sc=0.62, δ=1, R=0.1, Q=0.1 and S=0.2, the acceptable values 

of hf, ℏ𝜃  and ℏ∅  are chosen at a region where ℏ − curve 

becomes parallel, such as  −1.4 ≤ ℏ𝑓 ≤ −0.3,  −1.5 ≤ ℏ𝜃 ≤

−0.3 and −1.6 ≤ ℏ∅ ≤ −0.4 (See Figures 2-4).  

 

 
 

Figure 2. hf-curve of 𝑓′′(0) at 10th order of approximation 

 

 
 

Figure 3. ℏ𝜃-curve of 𝜃′(0) at 10th order of approximation 
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Figure 4. ℏ∅-curve of ∅′(0) at 10th order of approximation 

 

Table 1 gives the details of the convergence of the 

iterations with the far field boundary conditions. As 

illustrated in the table, the momentum and concentration 

equations demonstrated quick convergence at 16th-order of 

iterations while the energy equations meet the unbounded 

domain at 26th-order of iterations.  

 

Table 1. Convergence of solution 

 
Order of Approximation 𝑓′′(0) −𝜃′(0) −∅′(0) 

5 -1.5210 0.4845 0.5412 

10 -1.5209 0.4723 0.5341 

12 -1.5208 0.4713 0.5337 

14 -1.5208 0.4707 0.5336 

16 -1.5207 0.4705 0.5335 

18 -1.5207 0.4704 0.5335 

20 -1.5207 0.4703 0.5335 

22 -1.5207 0.4702 0.5335 

24 -1.5207 0.4701 0.5335 

26 -1.5207 0.4700 0.5335 

30 -1.5207 0.4700 0.5335 
 

 

Table 2. Numerical values of the local Skin-friction coefficient, Local Nusselt number and Local Sherwood number 

 

We Mn λT λM Pr Sc Ec Q R S δ 𝑅𝑒𝑥

1
2𝐶𝑓 𝑅𝑒𝑥

−
1
2 𝑁𝑢𝑥 𝑅𝑒𝑥

−
1
2𝑆ℎ𝑥 

0.1 1.0 0.1 0.1 0.72 0.62 0.1 0.01 0.1 0.2 1.0 -1.856442 0.450873 0.533592 

0.3           -2.114855 0.418395 0.506983 

0.4           -2.580542 0.389764 0.484247 

 0.1          -1.247805 0.523830 0.575967 

 3.0          -2.970111 0.354152 0.483914 

  1.0         -1.182043 0.549533 0.591995 

  3.0         0.294860 0.657320 0.669378 

   1.0        -1.184597 0.549435 0.591925 

   3.0        0.298258 0.659895 0.671135 

    1.0       -1.860864 0.586667 0.531409 

    3.0       -1.874747 1.334314 0.526729 

     0.24      -1.847074 0.460574 0.282197 

     0.78      -1.859150 0.448428 0.627121 

      2.0     -1.848642 -0.335301 0.535973 

      4.0     -1.840715 -1.137066 0.538350 

       0.05    -1.854694 0.389698 0.534445 

       0.1    -1.851608 0.291237 0.535956 

        0.5   -1.861624 0.446613 0.763200 

        1.0   -1.865162 0.444121 0.965390 

         0.4  -2.726336 0.549444 0.613375 

         0.8  -5.951097 0.758515 0.784542 

          2.0 -1.856506 0.457345 0.533572 

          4.0 -1.856635 0.470294 0.533533 

 

 

4. DISCUSSION OF RESULTS 

 

This section presents the dynamics of the different patients 

for better understanding of the study. The parameters are 

discussed by keeping Ra=0.7, Ec=1, We=0.1, Mn=1, Ps=1, 

λT=0.1, λM=0.1, Pr=0.72, Sc=0.62, δ=0.1, A=0.2, R=0.1 and 

Q=0.1, fixed for each varying parameter. The drag force 

effect is active on the surface due to the negative values of 

𝑅𝑒𝑥

1
2𝐶𝑓  which inturns impede the flow. However, the large 

values of Prandtl number (Pr), thermal and mass buoyancy 

parameter (λT,, λM) conttibutes to the enhancement of the 

Nusselt number 𝑅𝑒𝑥

−
1
2 𝑁𝑢𝑥 and consequently improve the rate 

of heat transfer while the Sherwood number 𝑅𝑒𝑥

−
1
2𝑆ℎ𝑥  is 

strengthen for large values of Schmidt number (Sc), thermal 

and mass buoyancy parameter (λT,, λM). This inturn enhances 

the rate of mass transfer. 

 
 

Figure 5. Temperature profile for different values of Sc 
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Figure 6. Temperature profile for different values of Pr 

 

 
 

Figure 7. Velocity profile for different values of We 

 

 
 

Figure 8. Temperature profile for different  values of We 

 

Figure 5 elucidates the effect of Schmidt number (Sc) on 

concentration profile. The diffusion properties of the fluid 

experiences greater fall for large values of Sc (due to the low 

molecular diffusivity). This inturns declines the concentration 

boundary layer thickness. Figure 6 presents the effect of 

Prandtl number (Pr) on temperature profile. It is noticed that 

increase in Pr due to low thermal diffusivity rapidly thins the 

temperature profile. However, this indicates that at small 

values of Pr, the fluid is highly conductive. 

Figures 7-8 illustrate the behavior of Weissenberg number 

(We) on velocity and temperature profiles. Increase in We 

pioneer the effectiveness of the tensile stress which in turn 

steer-up the viscoelasticity impact across the boundary layer 

that consequently reduces the velocity of the fluid and 

momentum layer thickness. The reverse phenomenon is 

observed on temperature profile that ultimately strengthens 

the thermal layer thickness. Figures 9-10 present the 

behaviors of Magnetic Parameter (Mn) on velocity and 

temperature profiles. Obviously from Figure 9 due to the 

magnetic interaction, an electric field, produces a resistive 

forces called Lorentz force. This force acts against the flow 

and contract the velocity distribution and its layer thickness. 

Moreover, the reverse phenomenon is observed on 

temperature profile due to the frictional heating with the 

impact of the Lorentz, thereby improves the thermal 

boundary layer thickness. 

 

 
 

Figure 9. Velocity profile for different values of Mn 

 
 

 
 

Figure 10. Temperature profile for different values of Mn 

 

The presence of thermal and mass buoyancy parameters 

(λT,, λM) accelerate the motion of the fluid as shown in Figure 

11 and Figure 13. These in turn improves the momentum 

layer thickness. However, reverse phenomenon is observed 

on temperature and concentration which consequently 

declines the thermal and concentration boundary layers 
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thicknesses as shown in Figure 12 and Figure 14 respectively. 

      

 
 

Figure 11. Velocity profile for different values of λT 

 

 
 

Figure 12. Temperature profile for different values of λT 

 

 
 

Figure 13. Velocity profile for different values of λM 

 

Figure 15 describes the behavior of internal heat 

generation (Q) on temperature profile. Large values of Q 

magnifies the random movement of the fluid molecules 

which in turns energies the temperature profile and thermal 

boundary layer thickness. Figure 16 depicts the behaviors of 

Eckert number (Ec) on temperature profile. However, the 

temperature of the fluid improves with the enhancement in 

viscous dissipation, since the heat energy is stored in the fluid 

due to frictional heating which consequently boosts thermal 

layer thickness. Figure 17 reveals the effect of chemical 

reaction (R) on concentration profile. Large values of R 

deteriorates the concentration buoyancy effect of which the 

resulting effect thins the concentration profile as well as its 

layer thickness. 

 

 
 

Figure 14. Concentration profile for different values of λM 

 

 
 

Figure 15. Temperature profile for different values of Q 

 

 
 

Figure 16. Temperature profile for different values of Ec 
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The presence of Suction parameter (S>0) moves the 

motion of the fluid, temperature distribution as well as 

concentration of the fluid towards the boundary as shown in 

Figures 18-20. This inturns lower their layers thicknesses. It 

is noteworthy that the porous stretching sheet of this type 

with suction beneath it is sometimes used to prevent the 

boundary layer from separating (see Hayat et al. [15]). 

 

 
 

Figure 17. Concentration profile for different values of R 

 

 
 

Figure 18. Velocity profile for different  values of S 

 

 
 

Figure 19. Temperature profile for different values of S 

 

 
 

Figure 20. Concentration profile for different  values of S 

 

 

5. CONCLUSION 

 

In this article, Computational investigation of Heat and 

Mass Transfer on MHD Walters’ B Fluid over a vertical 

stretching Surface with Suction\Injection has been studied. 

The problem is solved by HAM at 20th-order of 

approximation due to the unbounded domain to meet the far 

field boundary condition and the parameters encountered are 

discussed accordingly with the following conclusions. 

 

❖ The enhancement in Magnetic field pioneer frictional 

heating which in turns strengthen the thermal layer 

❖ The non-Newtonian properties is possessing in the 

presences of Weissenberg number, with the great 

industrial application such as plastic film, artificial 

fibers and higher molecular-weight liquid used in 

Science discipline. 

❖ Large values of thermal and mass buoyancy parameters 

accelerate the motion of the fluid while higher values of 

internal heat generation magnifies the random 

movement of the fluid molecules which in turns 

energies the operating temperature and enable 

penetration of thermal effect to the quiescent fluid. 

❖ Large values of Prandtl number due to low thermal 

diffusivity contributes to the falling of the temperature 

across the layer, indicating that at small values of 

Prandtl number, the fluid is highly conductive. 
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NOMENCLATURE 

 

W Weissenberg number 

M Magnetic field parameter 

Pr prandtl number 

Ec Eckert number 

β Reaction rate parameter 

Q Heat Absorption parameter 

λT Thermal buoyancy parameter 

λM Mass buoyancy parameter 

Sc Schmidt number 

Q Heat Absorption parameter 

 

Greek symbols 

 

η Similarity variable 

ψ Stream function 
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