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 The purpose of this study is to analyse the combined effects of the heat generation(source)/ 

absorption (sink) and Newtonian heating on the mixed convective micropolar fluid flow past 

over a stretching/shrinking porous sheet. Slip flow model is also taken into account in this 

investigation. The governing flow behaviour is designed by coupled partial differential 

equations and then transformed into a system of coupled nonlinear ordinary differential 

equations with the mixed derivative boundary conditions. A semi-analytical approach named 

Homotopy Analysis Method (HAM) is applied to solve this transformed system of nonlinear 

equations. Influences of the pertinent dimensionless parameters on the prescribed velocities 

and temperature profiles along with the physical quantities are presented in the graphical and 

tabular illustrations. For special cases, it is found that the obtained solutions are excellent in 

agreement with the available results. In this study, it is observed that when the sheet stretches 

or shrinks, the temperature of the micropolar fluid flow increases with an increase in the heat 

generation and Newtonian heating parameters and it decreases with an increase in the heat 

absorption parameter and the Prandtl number. This investigation of the heat generation and 

absorption on the micropolar fluid flow with slip flow effects has shown the useful information 

which could be helpful for crystal growing in the industry and the processes to polish the 

artificial heart valves and the internal cavities.  
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1. INTRODUCTION 

 
Micropolar fluids belong to a subclass of simple microfluids 

with non-symmetric stress tensor and present the micro-

rotational inertia and micro-rotational effects. Geometrically, 

they consist of randomly oriented rigid spherical micro-

particles suspended in a viscous medium where the 

deformation of these particles is not considered. The physical 

properties and behaviour of this viscous medium are affected 

by the prescribed micro-particles contained in each of its 

volume element. The theory of simple microfluids and 

micropolar fluids was proposed by Eringen [1-2]. Various 

concepts, which are not given in the classic fluid mechanics, 

were introduced including the inertial spin, body moments, 

micro-stress averages and stress moments. Eringen [3] later 

extended the theory to thermo micropolar fluids to study the 

heat conduction and heat dissipation effects and moreover, 

reported other aspects in [4]. Detailed treatises on various 

features of micropolar fluids were given by Lukaszewicz [5]. 

In the past few decades, the flow of micropolar fluid past 

over a stretching sheet is under investigation because of its 

numerous applications in industry, for example, paper 

production, crystal growing, tinning and annealing of metals. 

Kelson and Farrell [6] examined the Suction and injection 

effects on the porous stretching sheet. The effect of surface 

condition on the micropolar fluid flows past over a porous 

stretching surface has been studied by Kelson and Desseaux 

[7]. Bhargava et al. [8] extended their work to the mixed 

convective incompressible micropolar fluid flow by using a 

numerical method. Heat source/sink effect of water-based 

nanofluid flow through a permeable stretching tube has been 

analysed by Ahmed et al. [9]. Chand et al. [10] investigated 

the Brownian diffusion and the thermophoresis effects on the 

horizontal layer of the nanofluid. Exact analytical solution for 

the heat transfer micropolar fluid flow over permeable 

shrinking/stretching sheets was reported by Turkyilmazoglu 

[11-12]. The influence of the thermal radiation on the nano 

magneto-micropolar fluid flow over a permeable stretching 

sheet with a non-uniform heat source/sink was numerically 

investigated by Pal and Mandal [13]. 

In many engineering applications, it has been observed that 

the fluid particles close to the solid surface slip along the 

surface due to their finite tangential velocity. This flow regime 

is termed as a slip-flow regime in which shear stress depends 

on the slip velocity. This effect cannot be ignored. The study 

of the slip-flow regime has many technological applications, 

e.g. refrigerating coils, transmission lines, polishing the 

artificial heart valves and internal cavities. Wu [14] derived a 

slip flow model with the help of the kinetic theory for arbitrary 

Knudsen number. He found that it is a preferable approach to 

investigate the slip flow behaviour other than that of the 

Maxwell slip model [15], second-order slip model [16], 1.5th 

order slip model [17] and Fukui–Kaneko slip model [18]. 

Recently, Wu’s slip flow model has been used in many 

investigations of the Newtonian [19-22] and non-Newtonian 

such as micropolar [23-26] fluid flows over different 

geometries. 

However, in comparison with the already published work, 

this study has two new features. Firstly, the flow behaviour 

considering the effects of the heat generation and absorption 
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at the weak concentration of microelements. Secondly, the 

Newtonian heating effect on the mixed convective micropolar 

fluid flow over the stretching/shrinking permeable sheet with 

the second order slip flow model is tackled which, to the best 

of our knowledge, has never been investigated before. 

 

 

2. GOVERNING EQUATIONS  

 
Consider a steady state incompressible micropolar fluid 

flow over a vertical permeable stretching/shrinking sheet with 

velocity ( )wu u x= , where ( )wu x ax= along the x –axis 

direction and 0a  , in addition to the slip flow model 

introduced by Wu [14]. The flow is taken along the x –axis 

and the y –axis is normal to the surface, as shown in Figure 1. 

The acceleration due to gravity ( g ) is acted in the downward 

direction and Newtonian heating [27] is introduced in the 

thermal boundary condition. Under thermal boundary layer 

and the usual Boussinesq approximations, the governing 

system of equations [23] 
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where  and u v are the velocities along the axis of flow and the 

normal to it, respectively. The spin gradient viscosity is 

considered as ( 2) (1 2)j K j   = + = + for K  =  

and j a=  are the material parameter and microinertia 

density [28], respectively. 

Moreover, 0 0v   is the suction and 0 0v   is the injection 

velocity of the permeable stretching/shrinking sheet. 

Furthermore, the constant n has the rang 0 1,n  in which 

0n = represents the strong concentration of microelements 

near the sheet which are unable to rotate [10], 0.5n =  shows 

the vanishing of the of antisymmetric stress tensor which 

depicts the weak concentration, and 1n = can be used for the 

turbulent flow. However, 0.5n =  which corresponds to the 

dilute micropolar fluid and this dilute fluid is considered in the 

present study. Furthermore, slipu is slip velocity of the 

stretching ( 0)s  /shrinking ( 0)s  sheet, which is given by  

Wu [14] as 

 

 
    

Figure 1. Flow model 
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where the constant l is chosen from min(1 ,1)nk  which leads 

to 0 1l  for any value of the Knudsen ( )nk number and is 

the momentum accommodation coefficient which is defined as

0 1 . Furthermore, the molecular mean free path d is 

always positive and therefore, B is negative in magnitude. 

However, introducing the following similarity variables with 

velocity components u y=   and v x= −  as follow, 
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where the stream function ( )  usually satisfies the equation of 

the conservation of mass Eq(1), and governing equations 

(Eq(2)-(4)) are transformed into a set of non-linear coupled 

ordinary differential equations as follow, 
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where the prime represents the derivative with respect to  . 

The non-dimensional physical parameters are defined in the 

form of the buoyancy parameter Rex xGr=λ for the local 

Grashof number x TGr g T x a =  and local Reynolds 

number
2Rex ax = , heat generation ( 0) or the heat 

absorption ( 0)  parameter 0 pQ Q a c= and Prandtl number 

Pr pc k=  in Eq(6)-(8). In Eq(9), 1/2
0( )wf a v −= −  is the 

suction ( 0) or injection ( 0)  parameter, 0A a =   

and 0Ba =  are the first and second order slip flow 

parameters and sa h k = is the Newtonian heating 

parameter. Moreover, the physical quantities in the form of the 

local skin friction coefficient ( )fxC , the local wall couple 

stress ( )xM and the local Nusselt number ( )xNu  are expressed 

as 
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and the similarity transformation yields them 
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3. SERIES SOLUTION  

 
A semi-analytical technique named Homotopy Analysis 

Method (HAM), introduced by Liao [29] is applied to solve 

the set of transformed nonlinear Eq(6)-(8) along with the 

boundary conditions Eq(9). HAM has a great advantage to 

control the convergence of the obtained series solutions and 

preferable to apply on the nonlinear ordinary differential 

equations as compared to the perturbation and non-

perturbation, Adomian decomposition method, artificial small 

parameter method and -expansion method (see reference in 

[29]). The basic features of the HAM solution in accordance 

with the nonlinear system of Eq(6)-(8) with corresponding 

boundary conditions  Eq(9) are presented here. 

The homotopy series solution for the ( ), ( )f h   and ( )   

are expressed by a set of base functions 0, 0p qne p q −    

in the form of 
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where ,p qa , ,p qb and ,p qc are constants. The first rule of 

solution expressions and boundary conditions yield the initial 

approximation for Eq(10)-(12) as 
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with the corresponding linear operators 
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satisfying properties (as reported in [29, 30]) such as 

( ) ( )1 2 3 4 50, 0 andf hF F e F e F F e  − −+ + = + =

( )6 7 0h F F e −+ =  in which iF ( i varies from 1 to 7) are the 

arbitrary constants. Moreover, auxiliary functions are defined 

as ( ) ( ) ( ) 1f hH H H  = = =  and the auxiliary parameters 

are set as f h = = = during the computation. 

MATHEMATICA computation software is then used to solve 

the given system. 

 
3.1 Convergence control region  

 
The convergence of the Homotopy series solutions can be 

controlled by the non-zero auxiliary parameter ( ) , which is 

evident in Figure 2. For the sake of the validation of the current 

results and analysing the influence of the governing 

parameters on the prescribed velocities and temperature 

distributions, the appropriate values of  are chosen from the 

common tolerable range 0.55 0−    which is obtained at 

the 20th-order of approximation of the HAM solution for 

0.5, Pr 5, 0.1, 1wn K Q f = = = = = = = =λ and 1 = − . 

Here, it is noticeable that when the sheet stretches ( 1)s = ,  

curves are plotted at 0 = , and when it shrinks, curves are 

sketched at 50 =  to get the smooth horizontal lines. 
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Figure 2.  curves 

 

3.2 Study validation  

 
The present study is validated in three different ways, firstly, 

the case of forced convective micropolar fluid flow over a 

porous shrinking sheet with the slip flow model as presented 

by Rosca and Pop [23] is considered. The obtained HAM 

solutions are in excellent agreements, as depicted in Figure 3 

for the stable and physically reliable solutions as reported in 

[23] at 1, 3, 1, 0wK f s = = = = = − =λ  and 0.2n = . In 

Figure 3, the lower curve is sketched for velocity component 

( f  ) at 0.095= − and an upper curve is plotted for micro-

rotational velocity ( h ) at 0.13= − . 

 
 

Figure 3. Validation with [23] 

 

Secondly, the forced convective micropolar fluid flow over 

a permeable shrinking sheet [11] is validated with the current 

HAM results in a special case at 2.1, 0.5, 1,wf n s= = = −  

0.1K =  and 0 = = =λ as depicted in Figure 4, which is 

again in good correspondence. In Figure 4, it is to be noted that 

the lower and upper curves are for f   and h , respectively, 

which are computed at 0.5= − . Lastly, the present results are 

also in very good compatibility with the analytical results 

reported by Turkyilmazoglu [12] for the stretching sheet case 

at  1, 1, 0wK f s  = = = = = =λ  and 0.5n = , as shown in 

Figure 5. The upper and lower curves are plotted for f   and 

h at 0.25and 0.1= − − , respectively. 

 
 

Figure 4. Validation with [11] 

 

 

Figure 5. Validation with [12] 

 

 

4. RESULTS AND DISCUSSION  

 
In this section, obtained HAM results are discussed at the 

fixed values of the prescribed parameters 1 = − , Pr 5= , 

0.5wK f Q n= = = = = and 1= =λ for the stretching 

( 1)s = /shrinking ( 1)s = − of the sheet or otherwise specified. 

Figures 6-7 illustrate the effect of the material parameter K on 

the velocity component ( f  ) and the micro-rotational velocity

( )h with the increasing value of  , respectively. It is observed 

that when the sheet stretches, with the increase of the 

concentration of microelements in the fluid flow, the 

prescribed velocities increase and generally, the Newtonian 

fluid ( 0)K = has the lowest velocity as compared to the non-

Newtonian, i.e. micropolar ( 0)K   fluid flow. Moreover, 

when the sheet shrinks; the increasing concentration of 

microelements cause to slow down the velocity component 

( )f   and oppositely, enhance the micro- rotational velocity of 

the fluid flow. It is to be noted that Figure 6 is computed at

0.01= −  and in Figure 7, 0.05= −  is used for stretching 

the sheet and 0.015, 0.004,= − −  0.001, 0.0001− −  are set for 

shrinking case along with the increasing value of K , 

respectively. Table 1 is evident that when sheet stretches, the 

local skin friction, local wall couple stress and heat transfer 

rate increase with the increasing concentration of 

microelements in the fluid flow while all of these physical 

quantities show reverse impact when the sheet shrinks as 

tabulated in Table 2. 
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Figure 6. Influence of K on f   

 

 
 

Figure 7. Influence of K on h  

 

The influence of the buoyancy parameter is depicted in  

Figure 8. It is observed that mixed convective micropolar fluid 

flow has higher velocity component as compared to the forced 

convective flow for both cases of the stretching and shrinking 

of the sheet. However, the velocity component is increasing 

with the increasing value of the buoyancy parameter when the 

sheet stretches or shrinks. Figure 8 is plotted at 0.01= − for

1s = and 0.005= −  for 1s = − . When the sheet stretches, an 

increase in the buoyancy parameter yields higher local skin 

friction and heat transfer rate in the micropolar fluid flow 

while it reduces the local wall couple stress as shown in Table 

1. However, local skin friction and wall couple stress decrease 

and the local Nusselt number increases with the increasing 

value of the λ  for 1s = −  as shown in Table 2. 

 

 
Figure 8. Influence of λ on f   

 

Figure 9 displays the impact of various values of the Prandtl 

number with the increasing value of the similarity variable ( ) . 

It shows that either the sheet stretches or shrinks, a decrease in 

the thermal diffusivity or an increase in the momentum 

diffusivity, in other words, an increase in the Prandtl number 

causes to reduce the temperature of the micropolar fluid flow. 

It is also noted that at the constant concentration of micro-

elements at ( 0) = , stretching sheet causes to reduce the

25%  more temperature as compared to the shrinking of the 

sheet. However, the thickness of the thermal boundary layer is 

shorter in the shrinking case. Moreover, 0.01, 0.007,= − −  

0.006, 0.003, 0.0015, 0.0009, 0.0005, 0.0004, 0.0001− − − − − − −  

and  

 

 
 

Figure 9. Influence of Pr on   

 
0.01, 0.007, 0.006, 0.003, 0.0015, 0.0007, 0.0002,= − − − − − − −  

0.00006, 0.000001− −  are used for 1s =  and 1s = −  with the 

increasing value of the Pr , respectively. When the momentum 

diffusivity is dominant on the thermal diffusivity, it is 

interesting to note that the heat transfer rate increases along 

with the local skin friction in both cases of the stretching and 

shrinking of the sheet as displayed in Tables 1–2. Furthermore, 

local wall couple stress increases for 1s = , and it decreases 

for 1s = − . 

 

 
 

Figure 10. Influence of Q on  

 

Figure 10 shows the influence of the heat generation ( 0)  

and absorption ( 0)  parameter on the temperature profile at 

0.001= − . It is observed that an increase in the heat 

generation parameter results in an increase in the thermal 

boundary layer thickness which shows a rise in the 

temperature of the micropolar fluid flow and on the other hand, 

temperature reduces when heat absorption parameter increases. 
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This flow behaviour is noticed when the sheet stretches or 

shrinks. An increase in the heat generation parameter yields a 

decrease in the local skin friction and contrastively, reduces 

the heat transfer rate. In addition, the local wall couple stress 

decreases. Furthermore, increasing value of the heat 

absorption parameter produces an increase in the local skin 

friction, and local wall couple stress and adversely, rising the 

heat transfer rate. This flow behaviour is numerically reported 

in the Tables 1–2. 

 

 
Figure 11. Influence of wf on f   

 
Suction and injection effect on the velocity component is 

illustrated in Figure 11 at 0.005= − . Obtained results show 

that when the sheet stretches or shrinks, higher the suction 

parameter lower the velocity component and higher the 

injection parameter, higher the velocity component of the 

micropolar fluid flow. It is seen from the Tables 3–4, local skin 

friction, local wall couple stress and local Nusselt number 

increase as the suction parameter increases, on the other hand, 

these physical quantities decrease with the increasing value of 

the injection parameter. 

 

 
Figure 12. Influence of s on f   

 
An increase in the stretching parameter leads to an increase 

in the velocity component and an increase in the shrinking 

parameter results in a lower velocity component as sketched 

in Figure 12 at 0.01= − . The impacts of the first order ( )  

and second order ( )  slip flow parameters on the velocity 

component are plotted in the Figures 13–14. It can be seen that 

increasing value of the slip flow parameters reduces the 

velocity component when the sheet stretches and in the 

shrinking case, velocity component shows reverse behaviour. 

In Figures 13–14, all curves are plotted at 0.01= −  and 

0.005= − is used for all values of  for 1s = − . From the 

Tables 3–4, it is depicted that the increasing value of both slip 

flow parameters causes to reduce the local skin friction, local 

wall couple stress and local Nusselt number for 1s = , a 

reverse phenomenon is observed for 1s = − . 

 

 
Figure 13. Influence of  on f   

 

 
Figure 14. Influence of  on f   

 
An increase in the Newtonian heating parameter produces a 

higher thermal boundary layer thickness which results in a 

higher temperature of the micropolar fluid flow with the 

stretching or shrinking the sheet at 0.005= −  as illustrated in  

Figure 15. It is observed from the sketch; shrinking sheet rises 

the 165%  more temperature of the micropolar fluid flow as 

compared to the stretching of the sheet at ( 0) = . This 

increase in temperature reinforces the heat transfer rate from 

the bonding surface of the micropolar fluid flow. However, 

local skin friction and local wall couple stress increase with 

stretching the sheet and decrease with shrinking the sheet as 

shown in Tables 3–4. 

 
Figure 15. Influence of  on  

 



473 

Table 1. Influence of physical quantities for stretching sheet ( 1)s =  

K   λ   Pr   Q   1/2Refx xC     Rex xM    1/2Rex xNu −
   

0.0 1.0 5 0.5 0.334177 -0.01 0.164332 -0.01 1.02377 -0.01 

1.0    0.499265 -0.01 0.216982 -0.01 1.03024 -0.01 

2.0    0.663223 -0.01 0.260292 -0.01 1.03686 -0.01 

3.0    0.82599 -0.01 0.296952 -0.01 1.0436 -0.01 

0.5 0   0.416618 -0.01 0.194074 -0.01 0.986943 -0.01 

 0.5   0.416762 -0.014 0.19298 -0.01 1.00647 -0.01 

 1   0.416863 -0.01 0.192078 -0.01 1.02699 -0.01 

 1.5   0.417499 -0.01 0.191363 -0.01 1.04855 -0.01 

 2   0.418466 -0.01 0.190831 -0.01 1.07124 -0.01 

 1 0.1  0.411391 -0.01 0.189034 -0.01 0.849324 -0.01 

  0.71  0.414399 -0.007 0.195391 -0.007 0.897439 -0.007 

  1  0.415103 -0.006 0.197387 -0.006 0.914727 -0.006 

  5  0.416614 -0.003 0.2031650 -0.003 0.995062 -0.003 

  10  0.416704 -0.001 0.205789 -0.0015 1.02511 -0.0015 

  20  0.416795 -0.001 0.206829 -0.0009 1.05115 -0.0009 

  50  0.417069 -0.001 0.207517 -0.0005 1.09526 -0.0005 

  100  0.417501 -0.001 0.207708 -0.0004 1.27744 -0.0005 

  500  0.418479 -0.0014 0.208182 -0.0001 1.29224 -0.0001 

  5 1.0 0.399504 -0.01 0.182218 -0.01 0.948628 -0.001 

   0.5 0.416863 -0.01 0.192078 -0.01 0.997226 -0.001 

   0.0 0.422514 -0.01 0.195484 -0.01 1.04874 -0.001 

   -0.5 0.424472 -0.01 0.196784 -0.01 1.10293 -0.001 

   -1.0 0.425194 -0.01 0.197342 -0.01 1.1595 -0.001 

 

Table 2. Influence of physical quantities for shrinking sheet ( 1)s = −  

 

K   λ   Pr   Q   1/2Refx xC     Rex xM    1/2Rex xNu −
   

0.0 1.0 5 0.5 -0.344184 -0.01 -0.148705 -0.01 0.719818 -0.01 

1.0    -0.518381 -0.01 -0.221603 -0.01 0.717166 -0.01 

2.0    -0.6933 -0.01 -0.289342 -0.01 0.714596 -0.01 

3.0    -0.868475 -0.01 -0.351286 -0.01 0.712104 -0.01 

0.5 0   -0.416061 -0.01 -0.168036 -0.01 0.700696 -0.01 

 0.5   -0.423981 -0.01 -0.177102 -0.01 0.709329 -0.01 

 1   -0.431161 -0.01 -0.18571 -0.01 0.718481 -0.01 

 1.5   -0.437622 -0.01 -0.193871 -0.01 0.728196 -0.01 

 2   -0.44338 -0.01 -0.201594 -0.01 0.73852 -0.01 

 1 0.1  -0.423092 -0.01 -0.180243 -0.01 0.844706 -0.01 

  0.71  -0.420096 -0.007 -0.185385 -0.007 0.871355 -0.007 

  1  -0.419283 -0.006 -0.187689 -0.006 0.881855 -0.006 

  5  -0.417694 -0.003 -0.196629 -0.003 0.897228 -0.003 

  10  -0.417033 -0.0015 -0.202079 -0.0015 0.920888 -0.0015 

  20  -0.416793 -0.0007 -0.20531 -0.0007 0.938033 -0.0007 

  50  -0.416688 -0.0002 -0.207447 -0.0002 0.961458 -0.0002 

  100  -0.416671 -0.00007 -0.208065 -0.00006 0.9783 -0.00006 

  500  -0.416667 -0.000001 -0.208329 -0.000001 0.998309 -0.000001 

  5 1.0 -0.474301 -0.01 -0.214164 -0.01 0.91759 -0.001 

   0.5 -0.431161 -0.01 -0.18571 -0.01 0.964104 -0.001 

   0.0 -0.416723 -0.01 -0.175265 -0.01 1.01365 -0.001 

   -0.5 -0.411559 -0.01 -0.171018 -0.01 1.066050 -0.001 

   -1.0 -0.409513 -0.01 -0.169035 -0.01 1.12102 -0.001 

 

Table 3. Influence of physical quantities for stretching sheet ( 1)s =  

 

wf            1/2Refx xC     Rex xM    1/2Rex xNu −
   

1.0 1 -1 0.5 0.423989 -0.01 0.21345 -0.01 1.05015 -0.001 

0.5    0.416863 -0.01 0.192078 -0.01 0.997226 -0.001 

0.0    0.400699 -0.01 0.166242 -0.01 0.949626 -0.001 

-0.5    0.366701 -0.01 0.131686 -0.01 0.906789 -0.001 

-1.0    0.297985 -0.01 0.0802991 -0.01 0.868219 -0.001 

0.5 1   0.416863 -0.01 0.192078 -0.01 1.02699 -0.01 

 2   0.311641 -0.01 0.140045 -0.01 0.976273 -0.01 

 3   0.248795 -0.01 0.109639 -0.01 0.947576 -0.01 

 1 -1  0.416863 -0.01 0.192078 -0.01 1.02699 -0.01 

  -2  0.344601 -0.01 0.156269 -0.01 0.983415 -0.01 
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  -3  0.302009 -0.01 0.135619 -0.01 0.958261 -0.01 

  -1 0.1 0.416665 -0.001 0.193816 -0.01 0.989341 -0.005 

   0.2 0.416664 -0.001 0.193506 -0.01 0.990621 -0.005 

   0.3 0.416663 -0.001 0.193128 -0.01 0.992267 -0.005 

   0.4 0.416661 -0.001 0.19266 -0.01 0.994465 -0.005 

   0.5 0.416659 -0.001 0.192078 -0.01 0.997557 -0.005 

 

Table 4. Influence of physical quantities for stretching sheet ( 1)s = −  

 

wf           1/2Refx xC     Rex xM    1/2Rex xNu −
   

1.0 1 -1 0.5 -0.416111 -0.01 -0.18238 -0.01 1.01385 -0.001 

0.5    -0.431161 -0.01 -0.18571 -0.01 0.964104 -0.001 

0.0    -0.463233 -0.01 -0.188376 -0.03 0.919418 -0.001 

-0.5    -0.529064 -0.01 -0.210515 -0.01 0.879249 -0.001 

-1.0    -0.660126 -0.01 -0.269144 -0.01 0.843118 -0.001 

0.5 1   -0.431161 -0.01 -0.18571 -0.01 0.718481 -0.01 

 2   -0.321567 -0.01 -0.142255 -0.01 0.745677 -0.01 

 3   -0.256442 -0.01 -0.115679 -0.01 0.76341 -0.01 

 1 -1  -0.431161 -0.01 -0.18571 -0.01 0.718481 -0.01 

  -2  -0.290721 -0.01 -0.128278 -0.01 0.748154 -0.01 

  -3  -0.205674 -0.01 -0.092495 -0.01 0.768015 -0.01 

  -1 0.1 -0.417693 -0.01 -0.169863 -0.01 0.814081 -0.005 

   0.2 -0.419752 -0.01 -0.172195 -0.01 0.818069 -0.005 

   0.3 -0.422429 -0.01 -0.175274 -0.01 0.82299 -0.005 

   0.4 -0.426042 -0.01 -0.179516 -0.01 0.829213 -0.005 

   0.5 -0.431161 -0.01 -0.18571 -0.01 0.837334 -0.005 

 

 

5. CONCLUSIONS  
 

In this investigation, heat generation/absorption effect on 

the mixed convective micropolar fluid flow over a permeable 

stretching/shrinking sheet has been analysed with the second 

order slip flow model. Newtonian heating is considered for 

this flow phenomenon. The transformed set of ordinary 

differential equations is solved by using an analytical method 

named as Homotopy Analysis Method (HAM). The current 

results are validated with the already published numerical and 

analytical results in an excellent manner. The following 

conclusions can be concluded from the present study, 

• When sheet stretches or shrinks with the constant 

concentration of the microelements, higher the heat 

generation parameter; higher the thermal boundary 

layer thickness and on the other hand, higher the heat 

absorption parameter; lower the thermal boundary 

layer thickness. 

• While analysing the Prandtl number impact, it is 

observed that an increase in the momentum 

diffusivity produces a fall in the temperature of the 

micropolar fluid flow and oppositely, it enhances the 

heat transfer rate. 

• However, slip flow parameters (  and )   show an 

exact correspondence with their definition in this 

fluid flow. When stretching of the sheet takes place, 

velocity component decreases with the increasing 

value of the slip flow parameters, and when the sheet 

shrinks, local skin friction enhances in fluid flow. 

• Furthermore, the higher value of the Newtonian 

heating parameter rises the temperature of the 

micropolar fluid flow, which also results in a higher 

heat transfer rate. 
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NOMENCLATURE 

 

A   constant coefficient for mean free path, m  

B   square of constant coefficient for mean free 

path, 2m  

pc   specific heat at constant pressure, 1 1. .J K Kg− −   

d   mean free path, m   

f   dimensionless velocity 

wf   dimensionless suction/injuction parameter 
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g  
gravitational acceleration, 2.m s−  

xGr   dimensionless local Grashof number  

sh   surface heat transfer coefficient, 2 1. .W m K− −  

h   dimensionless micro-rotational velocity 

j   microinertia per unit mass, 2m   

K   dimensionless material parameter 

k  thermal conductivity, 1 1. .W m K− −   

nk   Knudsen number 

,l n   constant 

Pr   dimensionless Prandtl number 

Q   dimensionless heat generation/absorption 

parameter 

0Q   volumetric rate of heat generation, 3 1. .W m K− −   

Rex  dimensionless local Reynolds number  

s   stretching/ shrinking constant 

T   fluid temperature, K  
u   horizontal velocity component, 1.m s−   

v  vertical velocity component, 1.m s−  

0v  suction/injection velocity, 1.m s−  

x   horizontal Direction, m  
y   transverse directions, m    

Greek symbols 

 
   dimensionless first order slip flow parameter 

   dimensionless second order slip flow parameter 

T   coefficient of thermal expansion, 1K−   
   

spin gradient viscosity coefficient, 1. .Kg m s−   

   dimensionless Newtonian heating parameter  

   momentum accommodation coefficient 

   dimensionless temperature 

λ   mimensionless Buoyancy parameter 
  

dynamic viscosity, 2. .N s m−   

   kinematic viscosity, 2 1.m s−   

   
stream function, 2 1.m s−  

  
fluid density, 3.Kg m−   

  
micro-rotation viscosity, 1 1. .Kg m s− −  

  micro-rotational velocity (cartesian), 1.m s−  

 

Subscripts 

 
p   constant pressure 

   free stream 

 


