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 In the present paper, the effect of temperature dependent viscosity on a Soret driven 

ferrothermohaline convection heated from below and salted from above subjected to a 

transverse uniform magnetic field in the presence of an anisotropic porous medium using 

Brinkman model is studied. For the case of two free boundaries, an exact solution is obtained 

using a linear stability analysis and normal mode technique is applied. The effect of salinity 

has been included in magnetization and density of the fluid. The critical thermal magnetic 

Rayleigh number Nsc for the onset of instability is calculated numerically for sufficiently large 

values of the buoyancy magnetization parameter M1 using the method of computational 

Galerkin technique. It is found that non-buoyancy magnetization parameter, permeability of 

the porous medium, anisotropy effect and temperature dependent viscosity stabilizes the 

system. 
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1. INTRODUCTION 

 

For centuries, many fascinating materials have been 

attracting the scientists and researchers due to their 

extraordinary physical properties and technological usage.  

Magnetic fluids, also called ‘ferrofluids’, are electrically non-

conducting colloidal suspensions of tiny particles of solid 

ferromagnetic material in a non-electrically conducting carrier 

fluid like water, hydrocarbon fuels, etc. These fluids behave as 

a homogeneous continuum and exhibit a variety of interesting 

phenomena. Ferromagnetic fluids are not found in nature but 

are artificially synthesized. The viscosity of a ferrofluid as a 

function of the applied magnetic field, direction of magnetic 

field with respect to the flow direction and temperature. 

Ferrofluids are widely used in magnetic inkjet printers, heat 

transfer, nanomotors, nanogeneratores, inertial dampers, 

switches, sensors, transformer cooling, loudspeakers, micro-

and nanofluidic devices, magnetic targeted drug delivery, etc. 

In the biomedical field, they have been found very useful. 

These can be used to deliver drugs to a certain area of human 

body and also used for cancer treatment by heating the tumor 

soaked in ferrofluids by means of an alternating magnetic field 

[1-3]. An authoritative introduction to the research on 

magnetic fluids has been given in the monograph by 

Rosensweig [4], which reviews several applications of heat 

transfer through ferrofluids, such as enhanced convective 

cooling having a temperature dependent magnetic moment due 

to magnetization of the fluid. This heat transfer through 

ferrofluids is called ferroconvection, which is similar to 

Bénard convection (Chandrasekhar [5]). Convective 

instability of ferromagnetic fluids has been predicted by 

Finlayson [6]. Schwab et al. [7] experimentally investigated 

Finlayson’s problem under a strong magnetic field and 

detected the onset of convection by plotting the Nusselt 

number versus the magnetic Rayleigh number. Later, Stiles 

and Kagan [8] examined the experimental problem reported 

by Schwab et al. [7] and generalized Finlayson’s model 

assuming that under a strong magnetic field, the rotational 

viscosity augments the shear viscosity.  

In many investigations, porous medium is taken to be 

isotropic for geological and pedological process rarely it forms 

isotropic media, as is usually assumed in transport studies. 

Processes such as frost action, sedimentation, compaction and 

reorientation of solid matrix are responsible for the creation of 

anisotropic natural porous media. Ursino et al. [9] studied 

upscaling of anisotropy in unsaturated Miller-similar porous 

media. In this, analytical expressions for the anisotropic 

conductivity tensor are derived based on the dynamic law that 

governs the flow problem at the pore scale and the effects of 

anisotropy on transport parameters are estimated by numerical 

modeling. In chemical engineering processes, anisotropy can 

be characteristic of artificial porous like fiber materials. 

Epherre [10] was the first attempt to study the onset of 

convection in a horizontal porous layer with anisotropic 

thermal conductivity. 

Vaidyanathan et al. [11] studied convective instability of 

ferromagnetic fluid in a porous medium of large permeability 

using Brinkman model. This investigation has been analyzed 

for the effect of temperature dependent viscosity by 

Ramanathan and Muchikel [12] using Galerkin technique. In 

this, temperature dependent viscosity is studied for stabilizing 

effect for different behaviors, which is not much pronounced. 

Govindan et al. [13] studied numerical analysis of 

ferroconvection with temperature dependent viscosity and an 

anisotropic porous medium. Nanjundappa et al. [14] 

introduced magnetic field dependent viscosity on Marangoni-

Bénard ferroconvection without a porous medium under 

microgravity conditions in a horizontal ferrofluid layer in the 

presence of a uniform vertical magnetic field. This work has 

been analyzed to the effect temperature dependent viscosity in 

the absence of magnetic field dependent viscosity by 

Nanjundappa et al. [15]. They used the Rayleigh Ritz method 
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with Chebyshev polynomials of second kind as trial function. 

Siddheshwar [16] studied the thermorheological effect of 

magnetoconvection in fluids with weak electrical conductivity.  

The study of convection in two component ferrofluids will 

throw light on convective instability. This is referred to as a 

type of convection known as ferrothermohaline convection 

studied by Baines and Gill [17]. Vaidyanathan et al. [18-19] 

investigated the presence and absence of a porous medium on 

ferrothermohaline. Furthermore, Vaidyanathan et al. [20] 

attempted to study the Soret effect due to ferrothermohaline 

convection of a sparse distribution and the condition of a 

porous medium of ferroconvective instability of multi-

component fluid heated from below and salted from above was 

analyzed by Sekar et al. [21-22] for isotropic and anisotropic 

models. The effect of rotation on thermohaline convection in 

a ferromagnetic fluid saturating an anisotropic porous medium 

with Soret effect was obtained by Sekar et al. [23] and further 

investigation was carried out for magnetic field dependent 

viscosity by Sekar and Raju [24].   

In the present work, it is attempted to analyze the effect of 

an anisotropic porous medium and temperature dependent 

viscosity on Soret driven ferrothermohaline convection, 

subjected to a vertical magnetic field using the Brinkman 

model and the free boundaries are considered. The resulting 

eigen value problem is solved numerically using the Galerkin 

method. Besides, an analytical formula is obtained for the 

critical magnetic Rayleigh number by a regular perturbation 

method. 

 

 

2. MATHEMATICAL FORMULATION 

 

An infinite spread horizontal layer of an Oberbeck-

Boussinesq ferromagnetic fluid of thickness “d” saturating a 

sparsely distributed anisotropic porous medium heated from 

below and salted from above is considered. The temperature 

and salinity at the bottom and top surfaces are / 2z d=   

0 / 2T T 
and 0 / 2,S S 

 respectively. Both the 

boundaries are assumed to be free and perfect conductors of 

heat and salt. The system is assumed to be anisotropy along 

the vertical direction and isotropy along the horizontal 

direction and the fluid viscosity is assumed to be temperature-

dependent in the following form [16,12] 

 

2
1( ) 1 ( )aT T T   = − −

                            (1) 

 

Considering the Soret effect on the temperature gradient the 

mathematical equations governing the above investigation are 

as follows with the porous medium k = (k1, k1, k2). 

The continuity equation for an incompressible fluid is  

 

. 0 =q
                                                      (2) 

 

The corresponding momentum equation is  

 

( ) ( )0

(T)
( ) TrD

p T
Dt k


   = − + +  +   +  −

 

q
g HB q q q

     
                                                                                               (3) 

 

The temperature equation for an incompressible 

ferromagnetic fluid is  

 

( ) ( ) 2

0 , 0 1, ,
/ ( / ) / ( / )v H o v H v H

C T dT dt T T d dt K T    −   +    =  +
 

H M M H
              

(4) 

 

The conservation of mass flux equation is given by 

 
2 2

0 ( / ? S Tt S K S S T   + =  + q
             (5) 

 

The density equation of state for a Boussinesq two-

component fluid is  

 

0 0 0[1 ( ) ( )]St T T S S   = − − + −
              (6) 

 

Maxwell’s equations, simplified for a non-conducting fluid 

with no displacement currents, become 

 

0, =B
 0 =H                                                                 (7a,b) 

 

where the magnetic induction is given by  

 

( )0= +B M H
              (8) 

 

In general, the pressure of ferromagnetic fluid can distort an 

external magnetic field if magnetic interaction (dipole-dipole) 

takes place, but this is negligible for small particle 

concentration, as is assumed here. We assume that the 

magnetization is aligned with the magnetic field, but allow a 

dependence on the magnitude of the magnetic field, 

temperature and salinity, so that  

 

= ( , , )M H T S
H

H
M

                                                                          (9)   

 

The linearized magnetic equation is  

 

0 0 0 2 0(H ) ( ) ( ),M M H K T T K S S= + − − − + −
   (10) 

 

The basic state is assumed to be quiescent state and is given 

by  

 
0 0 0

2 2
0 0

 (0,0,0), , , ( ) [1 ],

( ), ( ) , ( ) .
1 1 1 1

b b b S S S

S S
b b b

t t t

t t

T T T z S S S z z z z

K z K zK z K z
p p z H z H M z M

       

  

   

= = = = − = = − = + − 


    
= = − + = + −    + + + +    

q q

k k

     
                                                                                             (11) 

 

Let the component of the perturbed magnetization and the 

magnetic field be 1 2 3
' ' '( , , ( ) )bM M M z M+ and 

1 2 3
' ' '( , , ( ) ),bH H H z H+

respectively. The perturbed 

viscosity and temperature are taken as 
( ) 'b z +

 and 

( ) ',bT z T+
 respectively. Moreover, the basic state is 

disturbed by an infinitesimal thermal perturbation and the 

basic state quantities are obtained by substituting the velocity 

of quiescent state in the governing Eqs. (1) – (4). The 

techniques of linearization and normal mode. [22,23] are used 

to finding the solutions of Eqs. (1) – (7). This can be written 

as  
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  ( )( , , , ) ( , ), ( , ), '( , ), '( , ) exp ( )x yw T S w z t T z t z t S z t i k x k y = +
 

                                                                   (12) 

 

The vertical component of momentum equation can be 

written as     

 
2

2
0 02

2 2 2
2 2 2 0 0 0 2 0

0 0 0 0 0

2
2 2 2 2

2 2 20 2 0 0 0
0 0 0 2 0 02

1

2 2
2
02 2

(1 ) (1 )'
' ' ' '

1 1

'
' '

1 1

2

T S T
S

S
S

t
t t

t b

b

k w
t z

K k S KK k S
g k S g k T K k T T

z

KK k K k
S S k w K k k w

z kz

k w
z z



   
    

 

    
  

 



  
− 

  

− −
= − + − +

 + +

  
+ − + − + + 

+ +  

  
+ − + 

  

2
2
02

2

1b b w
k w

z z k z zz

       
− −                           

(13) 

 

The modified Fourier heat conduction equation is  

 
2 22

2 0 0 0 2 0
0 , 0 0 1 0 02

,
1 1

S
v H

t
t

K T K K T
C K T K k c w

t t z z

    
    

 

         
− = − + − +           + +              

(14) 

 

where  0 0 , 0 0.v HC C K H  = +
 

The salinity equation is 

 

2 2
2 2
0 02 2

.S S T

S
w K k S S k

t z z
 

     
+ = − + −   

                 (15) 

 

Using the analysis similar to Sekar et al. [23] one gets 

 
2

20
0 22

0

(1 ) 1 0.T

M S
k K K S K

H z z zz

  
 

    
+ + + − + + = 

       
                                        (16) 

 

where 
2 2 2 2 2
1 ( / ) ( / )x y =   +   and 

2 2 2 2
1 ( / ).z =  +  

 

The non-dimensional numbers can be written using 

 
1/2 1/2

1 1
02 2

0 , 0 ,

21/2 2
0 0

1 22
0 , 0 0 0 ,

0 0
3

(1 )
* , * , * , * , * , ,

, * , , * , , ,
* (1 ) (1 )

1 ( / )

(1

v H v H

S S

v H S v H

t t

t

t

K aR K aRwd t z
w t T z a k d

C d dd C K d

KK aR K Tk
D S S k M M

z C d g Cd

M H
M


  

      

  


        

   +
= = = = = =  

   
   

 
= = = = = = 

  + + 

+
=

+

2
,0 2

4 5 6

0 1 1

, , , ,
) (1 )

v HS S S
r

S t

CK K K
M M M P

g K K K

  

    
= = = =

+  
 

4 4
0 , 0 ,

0 ,

1 1

, , .
v H v H S S S

S v H

S

t tC gd C gd K
R R C

K K K

     
 

 

 
= = =  

   (17) 

 

where R is the thermal Rayleigh number, SR
is the salinity 

Rayleigh number, rP
is the Prandtl number.  

Then the Eqs. (13) – (16) become 

 

 2 2 1/2 1/2 1/2
1 1 1 5 1 5

2 2 2 1/2 1 2 2 2 2
4 4 5

2
2 2 2 2 2 2

( ) * * (1 (1 ) *) * (1 ) *
*

( ) * 1 * (1 * )( ) *

(1 * ) 2 *
( ) * 2 ( ) * 4 *( ) * *

* *

T T

S

D a w a R M D M S T M M a R D M M a R S T
t

D a w a R M M M S Vz D a w

Vz Vz
D a w V D a w Vz D a Dw Dw

k k

 

−


− = − + − + − −



 + − + + + + − − 

−
− − − − − − +

            
                                        (18)  

 

2 2 1/2
2 2 2 5

*
( *) ( ) * (1 ) *,

* *
r

T
P M D D a T aR M M M w

t t


  
− = − + − −    (19) 

 

( )
1/22 2 1/2 1 2 2

6 5 6

*
( ) * * / ( ) *,

*
r S T S

S
P D a S aR M w S M M R R D a T

t
 −

= − − + −
      

(20) 

 

( )
1/22 2 1

3 5 6* * (1 ) * / * 0,T SD M a S DT M M R R DS  −− − − + =
 

                                                     (21) 

 

where the following non-dimensional parameters are 

introduced. 

 

 

3. EXACT SOLUTION FOR FREE BOUNDARIES 

USING GALERKIN TECHNIQUE 

 

The simplest boundary conditions chosen, namely free-free, 

isothermal with infinite magnetic susceptibility 


in the 

perturbed field keep the problem analytically tractable and 

serve the purpose of providing a qualitative insight into the 

problem. The case of two free boundaries is of little physical 

interest, but it is mathematically important because one can 

derive an exact solution, whose properties guide our analysis. 

Thus the exact solution of the system subjected to the 

boundary conditions 

 
2* * * * * 0w D w T D S= = = = =

 at * 1/ 2z =− and  

 

* 1/ 2.z =+
                           (22) 

 

is written in the form 

 
* * *

1 1 1

* *

1 1

* ( ) cos *, * ( ) cos *, * ( ) cos *

* ( ) cos *, * ( ) sin *

t t t

t t

w Aw z e z T BT z e z S CS z e z

F
D F z e z z e z

  

 

  

     


= = =

= =
                                    

(23) 

 

Substituting Eq. (23) in linearized perturbation 

dimensionless equations (Eqs 18-21), we get the following 

equations  

 

 

 

2 2 2 2 2 2 2

1 1

2 2
2 2

1 1 1

1 2

1/2 1/2 1

1 5 1 4 4 5 1

1/2

1 5 1

( ) ( ) (1 )( ) ( )

(1 )a 1
2 ( ) 1 2 ( ) ( ) 2 ( )

1 (1 )(1 ) ( ) (1 ) ( )

(1 ) ( ) 0

T S

D a w z Vz D a w z

AVz
V D a zDw z w z vzDw z

k k

aR M M S T z B aR M M M S z C

aR M M D z F





−

 − − − −
 

  −
+ − + + −  

  

+ + + − − + +

+ + =   
(24) 

 
1/2 2 2

2 2 5 1 1 2 1(1 ) ( ) ( ) ( ) ( ) 0,r raR M M M w z A D a P T z B P M D z F  − − + − − + =
                                                    

(25) 

 

 
1/2

1/2 1 2 2 2 2

6 1 5 6 1 1( ) ( ) ( ) ( ) ( ) 0,S T r

S

R
aR M w z A S M M D a T z B D a P S z C

R
 −  

− + − + − − = 
                                   

(26) 

 
1/2 2 1/2 1 1/2 2 2

1 5 6 1 3 1(1 ) ( ) ( ) ( ) ( ) 0,S T SR S DT z B R M M DS z C R D a M z F −− − + + − =                                                                                                  
(27) 
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For existence of non-trivial solutions, the determine of the 

coefficients of A, B, C and F must vanish. This determinant on 

simplification yields 

 
3 2 0.X Y Z W  − + + =                                (28) 

 

where,  

 

5 1 1 1 1 1r rX c P S P T c w = −
 

 

1 5 1 1 1 1 1 5 1 1 1 1 1r rY c c T P S c w c P c T S w  = −
  

 

 

 

2
2 2

5 1 1 1 1 1 1 1 1 1 1
1

2 2
5 1 1 1 1 5 1 1 1 1 1 1 1 5 1 1 1 1 1

2

2 2
2 1 1 1 1 1 5 1 1 1 1 1 1 2 4 1 1 6 1 1

2
3 5 1 1 6 1 1

(1 ) (1 )

2
c (1 )

(1 )

(1

r r

r r r

T r r

S r

a
Z c P T c S Vz w c T P S Vz w

k

c VzDw c T P S c Dw P T c S c Vz w P T b S
k

a R c D S DT w P S c c T c w c S a Rc c D P T M w DS

a R c c S P T M w

  

    

   



= + − − −

+ − − −

− − +

+ + 2 2
1 1 1 1 1 5 1

2
1 1 1 1 1 5 1 2 1 1 1 5 1

1 5 1 1 1 1 1

) c

2 (1 2 ) (1 (1 ) )

2 (1 2 )

r

r T r

r

Vz w c T P S c

Vc zDw c T P S c a R c S T w P S c

c c P T c S V zDw



 

 

−

− + + + −

+ +  
 

2 2 2
4 2 1 1 1 4 1 1 1 5 1 1 1 1 1 1

1 1 1 1 1 1 5 1

2
2

1 1 5 1 1 1 5 1 1 1 1 1 1
2 1

2 2
5 2 1 1 1 1 1 3 1 1 1 4 1 5 1

2
1 2 1 1

c (1 )

2 (1 2 )

2
(1 )

(1 (1 ) )

(1 )

T

T S T

T

W a Rc c D w S c c T DS c Vz w c T c S

Vc zDw c T c S c

a
VzDw c T c c S c Vz w c T c S

k k

a Rc c S T w c S a R c S w S c c T c

a R c c D w S DT

  

 

   

  

 

= + −

− +

+ − −

+ + − +

+ − 1 1

2 2
2 4 1 1 1 6 1 1 3 5 1 1 6 1 1S r

S

a Rc c D c T M w DS a R c c S P T M w + +
 

 

For obtaining stationary instability, the time-dependent 

term T4 is equal to zero. From Eq. (28) it is easy to obtain the 

eigenvalue Rsc and upon using 2 1,k k=
 where  is non – 

dimensional parameter governing anisotropy. 

 

( )

( ) ( )

2
1 2 3

4 1 5 5 6 7 8(1 ) 1 1

S T
sc

T T T

x a R x S x
R

x M M S x x S S x x  

− +
=

 + + − + + − +   
 

where  

 
2

2 2 2
1 1 1 1 1 1 1 5 1 1 1 1 1 1 5 1

1

1 1 5 1 1 1 5 1 1 1 1 1 1 1
1

(1 )c (1 )

2
2 (1 2 )

a
x Vz w c S c T c Vz w c T c S c

k

VzDw c T c c S c c T c S Vc zDw
k

   

   


= − − −

+ − +

 

2 3 5 1 1 1 4 1 1x c c w c c T S=
 

3 3 5 1 1 6 1 1rx c c S P T M w =
 

4 1 1 1 5 1

5 1 1 5 1 1 1

6 4 1 1 1 4 1 1

7 1 1 1 1 1

8 4 1 1 1 6 1 1

1x w c S c

x c S c T w

x c DS w c c T D

x c D w DT S

x c D c T M w DS

 

 







=

=

=

=

=
 

2 2
1 2 1 5 3 4 4 5

2 2
4 5 6 5 3

, (1 ), 1 ( / ),

( / ) and .

c D a c M M c M M M

c M M c D a M

= − = + = + +

= = −
 

 

where 

1/2

1/2

,u v uv dz

−

= 
 and 1 1 1, ,w T 

 and 1S
are trial 

functions that satisfy the boundary conditions. The above 

choice of trigonometry function tacitly implies the use of a 

higher order Galerkin method. For very large M1, one gets the 

results for the magnetic mechanism, and the critical 

thermomagnetic Rayleigh number for stationary mode is 

calculated using 
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4. DISCUSSION OF RESULTS 

 

The effect of temperature dependent viscosity on Soret 

driven thermohaline convection in a ferromagnetic fluid layer 

heated from below and salted from above saturating an 

anisotropic porous medium subjected to a transverse uniform 

magnetic field has been considered by using the Brinkman 

model and the linear stability analysis. The small thermal 

perturbation technique is used and normal mode technique is 

applied for the perturbation quantities. Here, the free-free 

boundary conditions are used. The present investigation is 

carried out through stationary instability. 

Before we discuss the important results of the system, we 

turn our attention to the possible range of values of different 

parameters arising in the study. The range of values of the 

temperature dependent viscosity parameter V is assumed from 

0.1 to 0.5 [12]. The value of anisotropic effect is considered 

from 0.03 to 3.1 [22]. The buoyancy magnetization parameter 

M1, is assumed to be 1000 [6]. For these type of fluids M2 will 

have a negligible value and hence taken to be zero. The range 

of Salinity Rayleigh number RS is between -500 and 500 and 

Soret parameter ST ranges from -0.002 to 0.002 [22]. The 

Brinkman model has been used for permeability k ranges from 

0.1to 0.9 [20] and the non-buoyancy magnetization parameter 

M3 is taken to have from 5 to 25 [22]. The Prandtl number Pr 

is taken to be 0.01 [20] and the magnetic number M4, M5 and 

M6 are taken to be 0.1 [18]. The ratio of mass transport to heat 

transport  is assumed from 0.03 to 0.011 [20].  
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Figure 1. Marginal instability curve for variation of Nsc 

versus V for various values of anisotropy effect ,  RS = -500, 

ST = -0.002, k = 0.1, M3 = 5 and 0.03 =  
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Figure 1 gives the critical magnetic thermal Rayleigh 

number Nsc versus the temperature dependent viscosity V for 

different values of an anisotropy parameter .  It is observed 

from Figure 1 that the temperature dependent viscosity V has 

a stabilizing on the system when V increases, Nsc increases and 

this stabilizing effect of V is much pronounced. Figure 2 

represents the plots of critical magnetic thermal Rayleigh 

number Nsc with respect to non-buoyancy magnetization effect 

M3 for various values of temperature dependent viscosity V, ST 

= -0.002, RS = -500, 0.05, 0.03 = =  and k = 0.1. When M3 

and V increases, Nsc gets decreasing values. Therefore, the 

convective system has a destabilizing effect, which is not 

much pronounced. This is because variation in magnetization 

releases extra energy which adds up to the thermal energy to 

destabilize the system.  
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Figure 2. Marginal instability curve for variation of Nsc 

versus M3 for various values of temperature dependent 

viscosity effect V, 0.03, =  RS = -500, ST = -0.002, k = 0.1 

and 0.03 =  
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Figure 3. Marginal instability curve for variation of Nsc 

versus M3 for various values of anisotropy effect ,  RS = -

500, ST = -0.002, k = 0.1, V = 0.1 and 0.03 =  

 

In figure 3, the varation of Nsc versus M3 for different values 

of anisotropy effect of  , ST = -0.002, RS = -500, 0.05 =  and 

k = 0.1. It gives that the non-buoyancy magnetization 

parameter M3 has a destabilizing behavior. Also, in the value 

0.03 and 0.07, =
 the Nsc gets an exact same effect on the 

convective system. There is no much variations in Nsc due to 

the increasing values of M3 and  , which is depicted in figure 

3.  But, there are variations in Nsc due to the increasing values 

of M3 and V, which is depicted in figure 2. It seems that M3 has 

little effect on the stability. Figure 4 represents the plots of Nsc 

versus the salinity Rayleigh number RS for different values of 

temperature dependent viscosity V, ST = -0.002, 
0.05, 0.03 = =  and k = 0.1. It shows that the salinity 

Rayleigh number RS has a stabilizing behavior on the 

convective system. The increasing effect of salt on the system, 

the system gets more thermal energy and it has stabilizing 

effect. 
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Figure 4. Marginal instability curve for variation of Nsc 

versus RS for various values of temperature dependent 

viscosity effect V, 0.03, =  M3 = 5, ST = -0.002, k = 0.1 and 
0.03 =  
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Figure 5. Marginal instability curve for variation of Nsc 

versus  for various values of salinity Rayleigh number RS, 

ST = -0.002, k = 0.1, M3 = 5, V = 0.1, and 0.03 =  

 

In figure 5, the variation of Nsc versus   for different 

salinity Rayleigh number RS is investigated. This figure 

exhibits a stabilizing effect is not much pronounced because 

the presence of salinity Rayleigh number RS increase from -

500 to 500, Nsc increases. Figure 6 indicates the variation of 

Nsc versus the interdiffusion of heat and mass, namely Soret 

effect ST for different V. This figure gives as increase of ST, 

increase of Nsc. This leads to stabilizing effect is much 

pronounced. But, introducing and increasing of   on the 
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convective system has a stabilizing behavior is not pronounced 

much which is depicted in figure 7. 
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Figure 6. Marginal instability curve for variation of Nsc 

versus ST for various values of temperature dependent 

viscosity effect V, 0.03, =  M3 = 5, ST = -0.002, k = 0.1 and 
0.03 =  
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Figure 7. Marginal instability curve for variation of Nsc 

versus  for various values of Soret coefficient ST, RS = - 

500, k = 0.1, M3 = 5, V = 0.1 and 0.03 =  

 

It is observed from figure 8 that the increase in the ratio of 

mass transport to the heat transport  shows a uniform 

stabilizing behavior, for increasing value of V and ,  ST = -

0.002, RS = -500, 0.05 =  and k = 0.1. In this figure, the 

system is analyzed for stabilizing effect and when increasing 

of   from 0.03 to 3.1, the Nsc has same effect. This is because 

the increase in mass transport adds up to the system to be top 

heavy. Figure 9 illustrates that Nsc versus V for different values 

of permeability of the porous medium k. When increasing of 

V from 0.1 to 0.5 and k from 0.1 to 0.9, Nsc is increased. It 

seems that the system stabilization and which is plotted form 

positive value of RS (= 500) and ST (= 0.002) and negative 

range of RS (= -500) and ST (= -0.002), there is no change on 

the situation of the system. It is also observed from the figures 

that the increase in pore size make the fluid flow easy to cause 

convection early. 

 
 

Figure 8. Marginal instability curve for variation of Nsc 

versus  for various values of V, ST =- 0.002, RS = - 500, k = 

0.1, 0.03 =  and M3 = 5 
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Figure 9. Marginal instability curve for variation of Nsc 

versus V for various values of k (RS = - 500, ST = -0.002 and 

RS = 500, ST = 0.002), 0.03, =  M3 = 5 and 0.03 =  

 

 

5. CONCLUSION 

 

Ferro thermoconvective instability of magnetic fluid layer 

heated from below and salted from above in the presence of an 

anisotropic porous medium and temperature field dependent 

viscosity suspended to a transverse uniform magnetic field has 

been investigated using Brinkman model with Soret effect. 

The computational Galerkin method is used. In this analysis, 

we have analyzed the effect of various parameters like medium 

permeability k, anisotropic parameter ,  ratio of mass 

transport to heat transport , non- buoyancy magnetization 

parameter M3, temperature dependent viscosity parameter V, 

Soret coefficient ST and Salinity Rayleigh number RS.  

The destabilizing behavior is analyzed for non-buoyancy 

magnetization parameter M3 on the convective system. The 

stabilizing effect is investigated for the temperature dependent 

viscosity parameter V in a very small and large value of 

salinity concentration, which is depicted in figure 9. In this 

moment, the system gets slight variation in convection process. 

Moreover, in some investigations, the porous medium k and 

anisotropy effect   are analyzed for destabilizing effect [22]. 

But the introduction of temperature dependent viscosity V, the 

permeability of the porous medium k and anisotropy effect   

have a stabilizing effect.   
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Thus, from above analysis, one can conclude that the non-

buoyancy magnetization parameter, temperature gradient, 

porous medium, anisotropic porous medium and salinity 

gradient have a profound influence on the onset of convection.  
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NOMENCLATURE 

 

B Magnetic induction (T) 

Cv H Effective heat capacity at constant volume and 

magnetic field (kJm-3K-1) 

d Thickness of the fluid layer (m)   

  

D/Dt  Convective derivative [ / / .D Dt t q=   +  ](s-

1) 

g Gravitational acceleration (0,0-g) (ms-2) 

445

https://doi.org/10.1017/S0022112070000423
https://doi.org/10.1016/0304-8853(83)90412-2
https://doi.org/10.1016/0304-8853(83)90412-2
https://doi.org/10.1016/0304-8853(90)90050-Z
https://doi.org/10.1029/1999WR900320
https://doi.org/10.1016/0020-7225(91)90029-3
https://doi.org/10.1016/0020-7225(91)90029-3
https://doi.org/10.1016/j.jmmm.2010.02.021
https://doi.org/10.1017/S0022112069000553
https://doi.org/10.1016/0304-8853(95)00356-8
https://doi.org/10.1016/S0304-8853(97)00468-X
https://doi.org/10.1016/j.jmmm.2004.09.137
https://doi.org/10.1016/j.jmmm.2005.08.008
https://doi.org/10.1016/j.jmmm.2012.10.028
http://dx.doi.org/10.14419/gjma.v1i2.858


 

H Magnetic field (Am-1)  

0k
 Resultant wave number [ 0

2 2
x yk k k= +

] (m-1) 

k1 Permeability of the porous medium  

K1 Thermal diffusivity (Wm-1K-1) 

K2 Salinity magnetic coefficient [ 0 0,( M / )H TS  
] 

kx ,ky Wave number in the x and y direction m-1 

Ks Concentration diffusivity (Wm-1k-1g-1) 

k Unit vector in vertical direction  

K 
Pyromagnetic coefficient [ 0 0,( M / )H TT −  

]   

M Magnetization (Am-1)  

M0 Mean value of the magnetization at H = H0 and T 

= T0. 

P Hydrodynamic pressure (Nm-2) 

q Velocity of the ferrofluid (u 

v w) (ms-1) 

S Solute concentration (kg) 

S0 Average salinity  

ST Soret coefficient  

T Temperature (K) 

T Time (s) 

T0 Average temperature  
  Anisotropy parameter 

t
  

Coefficient of thermal expansion (K-1) 

s
  

Solvent coefficient of expansion (K-1) 

t
  

Uniform temperature gradient (Km-1) 

s
  

Uniform concentration gradient (kgm-1) 

    Small positive quantity       

0
  

Magnetic permeability of vacuum (NA-2) 

1
 

Reference viscosity at T = T0 


 Dynamic viscosity (kgm-1s-2) 

0
 

Mean density of the clean fluid (kgm-3) 


 Density of the fluid (kgm-3) 

  Growth rate (s-1) 


 Viscous dissipation factor containing second order 

terms in velocity 
  Magnetic scalar potential (A) 

  Perturbation in temperature (K) 


  
Magnetic susceptibility [ 0 0,( M / )H TH  

] 
      Vector different operator 

[
i( / ) ( / ) ( / )x j y k z   +   +  

] 

 
 

446




