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 Network security, as the prerequisite for the normal operation of enterprise network, should 

not focus on a single point, but all aspects of the network, ranging from physics, network, 

system, application to management. To ensure enterprise network security and prevent 

network attacks, it is of great importance to build an intrusion detection system (IDS) 

capable of protecting the network and computers from malicious attacks based on the 

Internet or host. In light of the above, this paper puts forward an intrusion detection method 

for enterprise network based on backpropagation neural network (BPNN), and carries out 

Python simulation of the proposed method on four problems, namely, normal state, the SYN 

flood (denial-of-service attack), snoop (unauthorized access from a remote host), and saint 

(reconnaissance attack). The simulation results show that the BPNN-based method could 

effectively check the network security environment, and accurately identify and detect 

intrusions. 
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1. INTRODUCTION 

 

With the development of Internet technology, network 

security has become an increasingly prominent issue that can 

no longer be guaranteed by firewall alone. This gives rise to 

various intrusion detection systems (IDSs) [1]. The IDS 

mainly enables the enterprise to monitor the data flow in its 

network and identify anomalies, such that no unauthorized 

intruder could enter the network or computer system and cause 

temporary or permanent losses to the enterprise [2]. During the 

operation, the IDS scans the current activities in the network, 

monitors and records network traffic, filters the traffic from 

the host adapter to the network by preset rules, and issue 

alarms in real time. 

There are two main design methods for IDSs: misuse 

detection and anomaly detection [3]. To detect intrusions, the 

IDS for misuse detection looks for activities that correspond 

to the signatures of known intrusions or vulnerabilities, while 

the IDS for anomaly detection searches for abnormal network 

traffic. As a reasonable supplement to firewalls, intrusion 

detection helps the system respond to network attacks, and 

enhances the capacity of system security administrators, 

ensuring the integrity of information security infrastructure. 

Considering the various forms of network intrusions faced 

by enterprises, relevant experts and scholars have applied 

many intelligent algorithms to improve the efficiency of 

network intrusion detection [4]. The existing intrusion 

detection algorithms are based on either support vector 

machine (SVM) or neural networks (NNs) [5-7]. For instance, 

Sani and Ghasemi [8] proposed a method to learn a suitable 

distance function according to the set of monitored 

information, and measured the similarity and difference of 

features by the distance function based on SVM clustering. 

Their approach could effectively improve the performance of 

the IDS. Yang and Karahoca [9] developed a network 

intrusion detection method based on cellular neural network 

(CNN) model, which features a multi-dimensional array of 

neurons and local connections between cells, learned the 

templates and biases in the CNN classifier by the recursive 

perceptron learning algorithm (RPLA), and applied the CNN 

model to select and normalize features from the KDD Cup 

1999 dataset; the results show that the CNN model can 

effectively detect intrusions, and achieve a higher attack 

detection rate and a lower false positive rate than the 

backpropagation neural network (BPNN). 

Later, Yang et al. [10] developed a CNN template learning 

method for network intrusion detection based on tabu search 

(TS), in which the TS is coupled with the CNN with symmetric 

template, and verified the effectiveness of the method by 

simulation; the simulation results show that the TS-based 

template learning method outperforms the genetic algorithm 

(GA) and simulated annealing (SA) algorithm in the 

calculation time and quality of the optimal solution. Based on 

adaptive specifications, Mitchell and Chen [11] designed an 

IDS to detect the malicious drones in airborne systems, and 

proved that the IDS is more accurate and adaptive than multi-

agent system (MAS) and ant colony clustering models. With 

the aid of Gaussian mixture model, Hu et al. [12] improved the 

traditional online AdaBoost intrusion detection method, and 

demonstrated that the improved method has a higher detection 

rate and a lower false alarm rate than the traditional method, 

which is based on decision stumps. Fung et al. [13] suggested 

that the collaborative intrusion detection network can 

effectively detect the knowledge of intrusion events, using the 

distributed IDS, and thus improving the detection ability of 

new intrusion events. 

In addition, many enterprises have adopted NNs to detect 

intrusions into enterprise network [14, 15]. Cannady [16] 
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designed a three-layer NN to differentiate between the normal 

and misuse access records offline; instead of a preliminary 

classifier, the designed NN is an independent system, whose 

results can be used in a rule-based system. Ryan et al. [17] 

presented a BPNN-based offline anomaly detection system, 

which relies on the BPNN to identify the user’s configuration 

file and evaluate the user’s commands at the end of each log 

session, thereby detecting possible intrusions. Ke and Hong 

[18] put forward a network intrusion detection algorithm, 

which optimizes the NN weights with GA. Specifically, the 

GA searches for the most suitable NN weights, and the 

optimized NN learns the data on network intrusion detection 

before detecting intrusions. Proposed by Rumelhart and 

McClelland in 1986, the BPNN is a multi-layer feedforward 

NN trained by the error backpropagation algorithm [19]. Being 

an important pattern recognition method, the BPNN is capable 

of self-organization, self-learning and generalization. If 

applied to the IDS, the BPNN could promote the system 

capabilities to identify known attacks and to detect unknown 

attacks. 

Drawing on the above results, this paper presents an 

intrusion detection algorithm based on the BPNN. The 

proposed algorithm can distinguish attack records from 

normal records, and identify the type of attacks. The remainder 

of this paper is organized as follows: Section 2 models the 

BPNN-based intrusion detection algorithm, according to the 

features of network intrusions; Section 3 carries out an 

example analysis on the proposed method, revealing the 

effectiveness of our method; Section 4 puts forward the main 

conclusions. 

 

 

2. BPNN-BASED INTRUSION DETECTION 

ALGORITHM 

 

The BPNN is an information processing paradigm inspired 

by the way our brain processes information [20]. As shown in 

Figure 1, the BPNN is a multi-layer feedback network, 

consisting of an input layer, multiple hidden layers, and an 

output layer. The main advantage of the BPNN lies in the 

quick classification of highly nonlinear problems. 
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Figure 1. The structure of the BPNN  

 

2.1 Hypotheses 

 

The BPNN algorithm mainly divides the learning process 

into two stages: the forward computation and the reverse 

computation. During the first stage, the hidden layer(s) 

processes the input layer information, and computes the actual 

output of the output layer. During the second stage, if the 

output is below the expected level, the error between the actual 

value and the desired value will be calculated to adjust the 

network weights. The two stages are repeated until the output 

value is as desired. Mathematically, the BPNN algorithm can 

be described as follows: 

Suppose that the BPNN has n nodes and L layers. The nodes 

on each layer can receive the information from the nodes on 

the previous layer and forward it to the nodes on the next layer. 

Every node satisfies the Sigmoid function. 

For simplicity, it is hypothesized that the entire BPNN has 

only one output y. For N given samples (xk, yk)(k=1,  2,…, N), 

it is assumed that any node i outputs Oi, and the output is yk 

corresponding to the input of xk. In this case, the output of node 

i is Oik. When the k-th sample is inputted to node j on the l-th 

layer, then the input of node j can be expressed as: 

 

𝑛𝑒𝑡𝑖𝑗
𝑙 =∑𝑤𝑖𝑗

𝑙 𝑂𝑗𝑘
𝑙−1

𝑗

 (1) 

 

𝑂𝑗𝑘
𝑙 = 𝑓(𝑛𝑒𝑡𝑗𝑘

𝑙 ) (2) 
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where, 𝑂𝑗𝑘
𝑙−1 is the output of node j on the l-1-th layer at the 

input of the k-th sample; wij is the connection weight between 

nodes i and j; f(x) is the Sigmoid function. 

 

The error function can be defined as: 

 

𝐸𝑘 =
1

2
∑(𝑦𝑙𝑘 − 𝑦𝑙𝑘)

2

𝑙

 (3) 

 

where, 𝑦
𝑙𝑘

 is the actual output of node j. 

 

The total error can be computed by: 

 

𝐸 =
1

2𝑁
∑𝐸𝑘

𝑁

𝑘=1

 (4) 

 

It is further assumed that: 

 

𝛿𝑗𝑘
𝑙 =

𝜕𝐸𝑘

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙  (5) 

 

Then, we have: 

 

𝜕𝐸𝑘

𝜕𝑤𝑖𝑗
𝑙
=

𝜕𝐸𝑘

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙

𝜕𝑤𝑖𝑗
𝑙
=

𝜕𝐸𝑘

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙
𝑂𝑗𝑘
𝑙−1 = 𝛿𝑗𝑘

𝑙 𝑂𝑗𝑘
𝑙−1 (6) 

 

𝛿𝑗𝑘
𝑙 =

𝜕𝐸𝑘

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙 =

{
 
 

 
 𝜕𝐸𝑘
𝜕𝑦

𝑗𝑘

𝜕𝑦
𝑗𝑘

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙 = −(𝑦𝑘 − 𝑦𝑘)𝑓

′(𝑛𝑒𝑡𝑗𝑘
𝑙 ), 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑑𝑒, 𝑎𝑛𝑑 𝑂𝑗𝑘

𝑙 = 𝑦
𝑗𝑘

𝜕𝐸𝑘
𝜕𝑦

𝑗𝑘

𝜕𝑂𝑗𝑘
𝑙

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙 =

𝜕𝐸𝑘

𝜕𝑂𝑗𝑘
𝑙 𝑓

′(𝑛𝑒𝑡𝑗𝑘
𝑙 ), 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑑𝑒

 (7) 

 

2.2 Solving algorithm 

 

The workflow of BPNN algorithm is illustrated in Figure 2. 

Note that the error index is calculated iteratively until the 

index meets the precision requirement: 

 

𝐸 =
1

2𝑁
∑𝐸𝑘 < 𝜀

𝑁

𝑘=1

 (8) 

 

where, ε is the precision requirement. 

 

 
 

Figure 2. The workflow of BPNN algorithm 
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If k=1,2……, N, the forward calculation will compute the 

𝑂𝑗𝑘
𝑙−1 of the nodes on each layer; the reverse calculation will 

compute the 𝑂𝑗𝑘
𝑙−1 and 𝛿𝑗𝑘

𝑙  of the nodes on each layer. If the 

error index does not meet the precision requirement, the 

weights will be modified according to: 

 

𝜔𝑖𝑗 = 𝜔𝑖𝑗 − 𝜇
𝜕𝐸

𝜕𝑤𝑖𝑗
, 𝜇 > 0 (9) 

 

And the previous step will be executed again until the index 

meets the requirement. 

During the solving process, the training samples of the 

BPNN algorithm are generated randomly, and the learning rate 

is adjusted dynamically with the number of iterations. 

 

 

3. EXAMPLE ANALYSIS 

 

3.1 Classification of attacks on enterprise network 

 

The enterprise network mainly faces four kinds of attacks 

[21]. The first kind is denial-of-service (DoS) attacks. During 

a DoS attack, the attacker or hacker generates a huge amount 

of traffic to occupy memory resources, leaving no room for 

legitimate network requests. In this way, any user access to the 

computer will be rejected. The common DoS attacks include 

SYN flood, teardrop attack, low-rate DoS attack, Internet 

Control Message Protocol (ICMP) flood, and peer-to-peer 

(P2P) attack. 

The second kind is the unauthorized access from a remote 

host. During such an attack, the attacker sends data packets to 

the computer through the Internet, making users inaccessible. 

The common types include xlock, guest, snoop, etc. 

The third kind is reconnaissance attacks, which collects the 

weaknesses in the network for further attacks. Reconnaissance 

attacks are divided into scanning attacks and network 

monitoring. Scanning attacks include port scanning, host 

scanning and vulnerability scanning. Meanwhile, network 

monitoring mainly refers to setting the network card in user’s 

computer to promiscuous mode via software only, and then 

viewing important plaintext information passing through the 

network. The common reconnaissance attacks include 

ipsweep, mscan, nmap, portsweep, saint, and satan. 

The fourth kind is worms, viruses and Trojan horses. 

Sometimes, the host is infected with malicious software, 

which damages the system, duplicates itself or denies access 

to the network, system or service. Such software is either a 

worm, a virus or a Trojan horse. 

 

3.2 Problem description 

 

The proposed intrusion detection algorithm was applied to 

solve four problems: normal state, the SYN flood (DoS attack), 

snoop (unauthorized access from a remote host), and saint 

(reconnaissance attack). The attacks in the problems are all 

typical ones that may occur in other cases. 

The BPNN transforms the input into output of attack type, 

indicating the probability of each kind of attacks. Here, the 

four states of each problem are expressed in the form of a 

matrix, where 1 means the corresponding problem has 

occurred and 0 means the corresponding problem has not 

occurred. Hence, the matrices for the four problems can be 

expressed as [1, 0, 0, 0] for normal state, [0, 1, 0, 0] for SYN 

flood, [0, 0, 1, 0] for snoop, and [0, 0, 0, 1] for saint. 

According to the states detected above, four kinds of nodes 

were placed in the input layer, provided that each node 

satisfies the Sigmoid function. To prevent the BPNN from 

overfitting, the early stopping criteria (ESC) [22] was 

introduced to divided the sample data into a training set, a 

verification set, and a test set. The training set was used to train 

and update the BPNN parameters, the verification set was used 

to identify the errors in the training set, and the test set was 

used to evaluate the goodness-of-fit of the BPNN. The 

principle of the ESC is that, once the overfitting occurs, the 

error in the verification set will increase. Thus, the training 

will stop at the point of error increment, and the weights at this 

time will be selected to check the network performance on the 

test set [23]. 

 

3.3 Simulation 

 

The BPNN-based IDS was simulated based on Python. It is 

assumed that the first hidden layer has 50 nodes and the second 

has 30 nodes. The connection weights were maximum 

between the input layer and the first hidden layer, and 

minimized between the second hidden layer and the output 

layer. 

Figure 3 shows the cross-validation error rates on the 

training set (red line) and the validation set (blue line). It can 

be seen that the ESC point appeared at the 100-th iteration on 

the verification set, corresponding to the cross-validation error 

rate of 0.10. 

Then, the data training continued until the 1,000-th iteration. 

It is observed that the cross-validation error rate started to 

grow after the 100-th iteration, indicating that this point is the 

ESC point. The weights at this point were chosen to verify the 

performance of the BPNN on the test set. As shown in Table 

1, the correct classification rates of the BPNN averaged at 

94.50%. 

 

 
 

Figure 3. The cross-validation error rates on the training set 

and the validation set 
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Table 1. The correct classification rates of the BPNN on four problems and the average values  

 
                      Problem 

Index 
Normal state SYN flood snoop saint Average 

Number of test samples 1045 1045 1045 1045 1045 

Number of correctly classified samples 982 965 1018 985 987.5 

Correct classification rate 93.97% 92.34% 97.42% 94.26% 94.50% 

 

 

4. CONCLUSIONS 

 

This paper probes deeply into the intrusion detection 

problem of enterprise network. Considering the types of 

enterprise network intrusions, an intrusion detection method 

was proposed based on the BPNN algorithm. Then, the 

enterprise network intrusions were classified into four kinds. 

After that, four problems were selected to verify the 

effectiveness of the BPNN-based method through Python 

simulation, namely, normal state, SYN flood, snoop, and saint. 

The simulation results show that our method can effectively 

detect the network security environment, and classify 94.50% 

of all attack states correctly. Therefore, our intrusion detection 

method is an excellent tool to identify and detect intrusions, 

providing an easy yet effective solution to the security of 

enterprise network.  
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