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 In this article, we have investigated the influence of magneto-hydro-dynamic (MHD) 

Powell–Eyring fluid flow in the presence of non-linear radiation, space dependent internal 

heat source and variable thermal conductivity over a permeable cylinder with 

suction/injection effects. We have considered Soret, Dufour and non-linear chemical 

reaction effect on heat and concentration equations. Using similarly transformation, the 

governing PDEs are changed into non-linear coupled ODEs and solved by R-K forth order 

with shooting method. The impact of various parameters such as Powell- Eyring fluid 

parameters (K), Dufour parameter (Du), radiation parameter (R), small scale parameter (  ), 

Prandtl number (Pr), curvature parameter (  ), Schmidt number (Sc), chemical reaction 

parameter (Kn), Eckert number (Ec), relative temperature ratio parameter ( w ), Soret 

parameter (Su), magnetic field parameter (M) and (A*) and (B*) are specific and 

temperature heat source on axial momentum, heat and concentration profiles have been 

analyzed graphically and skin friction coefficient, local Nusselt number and local Sherwood 

number can be discussed tabulated. 
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1. INTRODUCTION 

 

Non-Newtonian fluids have greatest importance role in the 

theory of fluid mechanics. Fluids which shear stress and shear 

rate are non-linear called non -Newtonian fluid. Tooth paste, 

food oil, blood etc. are non-Newtonian fluids. The Powell-

Eyring model, firstly in the phenomena of power -law model, 

it is assumed from kinematic theory of liquid rather than the 

experiential relation. Khan et al. [1] investigated MHD fluid 

flow with variable properties. Krishna et al. [2] studied 

unsteady Powell-Eyring fluid flow past an inclined stretching 

sheet. Mahanthesh et al. [3] examined unsteady 3-D MHD 

Eyring-Powell fluid past a convectively heated stretching 

sheet. Several researchers investigated (Akbar et al. [4], Javed 

et al [5], Hayat et al. [6-10] and Gaffar et al. [11]) 2D and 3D 

flow for MHD and radiative Powell-Eyring fluid towards a 

stretching sheet with various boundary condition. 

Heat transfer phenomena has significant applications of 

plastic sheets, spinning of fibers, polymer, plasma studies, 

MHD power generator, petroleum industries, cooling of 

nuclear reactors, glass fiber production and paper production 

etc. Radiation effects may be important role in controlling heat 

transfer.  

MHD (magneto-hydro-dynamic) is the study of the magnetic 

properties of electrically conducting fluids. Magneto-fluids 

include salt water or electrolytes, liquid metals and plasmas. 

Several researchers (Madhu et al. [12], Makinde [13], Jain et 

al. [14-18], Dasa et al. [19] and Chauhan et al. [20-22]) 

proposed heat transfer phenomena for the impact of various 

physical condition with various geometries and surface 

conditions. 

Keeping all these specifics in mind, we intend to study the 

boundary layer flow and heat transfer of MHD Powell–Eyring 

fluid flow in the presence of non-linear radiation, space 

dependent internal heat source and variable thermal 

conductivity over a permeable cylinder with suction/injection 

effects. We have considered Soret, Dufour and non-linear 

chemical reaction effect on heat and concentration equations. 

 

 
 

Figure 1. Physical diagram of the problem 

 

 

2. MATHEMATICAL FORMULATION 
 

2D boundary layer flow for Power-Eyring fluid over a 

permeable cylinder is considered. The axis of the cylinder is 

taken along the x  axis and r  is taken along radial direction. 
The coordinate system and flow regime is illustrated as 
exposed in the Figure 1.  The Cauchy stress tensor in Power-

Eyring fluid is given by 
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where μ: viscosity coefficient, β and γ: material fluid 

parameters. The governing equations can be written as Khan 

et.al [1]. 
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The boundary conditions are 
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where wU = 0xU

l
, eU =

xU

l

 , 

 

Rosseland approximation can be considered, the radiative 

heat flux, rq  becomes (Ska et.al [23])    
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σ: Stefan–Boltzmann constant: *k absorption coefficient and 

the equation (4) become 
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where t: time, pC : Specific heat, ( ) (1 )K T k   : thermal 

conductivity depending of temperature (ref. [24])  : fluid 

density, T: fluid temperature, C: fluid concentration. 

The similarity transformations (Khan et.al [1]) as given 

below are introduced: 
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Boundary conditions are following as: 
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where prime denotes with respect to  , f : dimensionless 

stream function,  : dimensionless temperature  : 
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Skin friction coefficient, local Nusselt number and local 

Sherwood number can be defined as follows: 
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  is the local Reynolds number.  

 

Table 1. Comparison table of ''(0)f  for different values M 
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3. RESULTS AND DISCUSSION 

 

In this paper, calculations were carried out for different 

values of the parameters. The following default parameter 

values are adopted for computation: A=0.1, 2 =0.1, n= 1, S= 

0.5, K= 0.1, Du= 0.1, R=0.5,  =0.1, Pr= 1.5,  = 0.1, Le= 5, 

Kn=0.1, w = 1.5, Su= 0.1, M= 0.5, A*= 0.1, B*= 0.1 have 

been analyzed on axial 'f ,  and  profiles. Figures (2-4) 

show the behavior of M on 'f ,  and  profiles. Indicates 

that the dimensionless velocity 'f  is decreased and opposite 

behaviors show on   and  profiles as the value of M 

increases.  Figures (5-7) represent the influence of K on 'f ,

and  profiles. It is noticed that an increase in the value of K, 

'f  increases and   and  profiles decrease. With increases 

in the value of A, 'f profile increases whereas  and   

profiles decrease, as shown in figures (8-10).  Figures (11-13) 

show the 'f ,  and  profiles against the similarity variable 

η for various values of  . We observe from these figures that 

the 'f ,  and  profiles increase as   increases. Figures 

(14-15). An increase in the value of Pr is observed to decrease 

the  and  profiles. Prandtl number signifies the ratio 

between velocity diffusivity to energy diffusivity. Fluids with 

small value of Pr will possess large energy conductivities so 

that temperature can diffuse from the surface faster than for 

large value of Pr fluids. Figures (16-18) explain the effect of 

w , R,   on   profile. It is observed that,   profile increases 

for increasing the values of w , R,  . This is due to the fact 

that an increase in radiation parameter provides more heat to 

fluid that causes an enhancement in the heat and thermal 

boundary layer thickness. Figure (19) shows the impact of Du 

on   profile. An increase in the value of Du is observed to 

increase the   profile. It has been experimentally verified that 

the diffusion of energy is caused by a composition gradient. 

This fact is known as the Dufour effect. Figures (20-21) show 

the impact of Kn and Su on profile. Rising the value of Kn 

and Su are observed to enhance  profile. Kn increases the rate 

of interfacial mass transfer. Kn reduces the local concentration, 

thus increases its concentration gradient and its flux. Figures 

(22-23) show the impact of Le and n on  profile. An increase 

in the value of Le and n are observed to suppress   profile. It 

is due to the fact that Le is the ratio of velocity to mass 

diffusivities which means that when Le increases, mass 

diffusivity decreases and there is a reduction in concentration. 

Figures (24-25) display the effect of A* & B* on profile.  It 

is observed that,   profile increases for increasing the values 

of A* & B*. Heat source parameters act like a heat producer, 

which gain the heat to the flow and enhances the temperature 

profiles. Table-1 Moreover, the present results for the skin 

friction coefficient ''(0)f  for different values of magnetic 

field parameter M in the absence of the parameters 

S=A=K= are compared with the available results of 

Anderson et al. [25], Prasad et al. [26], Mukhopadhyay et al. 

[27] and Palani et al [28]. . Table-2 Moreover, the present 

results for the Nusselt number '(0)  for different values Pr 

in the absence of the parameters S=A=K=  =R=Ec= 

Du 1w  . Under some special conditions, 

present results have an excellent. Table-3 for various values of 

the physical parameters, Namely A, Du, K, R,  , Pr,  , Le, 

Kn, w , M on

1

2Ref xC  , 

1

2RexNu



and 

1

2ReSh



. From these 

tables, we noticed that with the increases in M, K, and   

parameter the value of 

1

2Ref xC  decreases whereas increases 

in the value of K 

1

2RexNu



and 

1

2ReSh



increases.  
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Figure 2. Impact of M on 'f  

 

 
 

Figure 3.Impact of M on   

 

 
 

Figure 4. Impact of M on   

 

 
 

Figure 5. Impact of K on 'f  

 

 
 

Figure.6 Impact of K on   

 

 
 

Figure 7. Impact of K on   

 

 
 

Figure 8. Impact of A on 'f  

 

 
 

Figure 9. Impact of A on   
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Figure 10. Impact of A on   

 
 

Figure 11. Impact of   on 'f  

 

 
 

Figure 12. Impact of  on   

 

 
 

Figure 13. Impact of  on   

 
 

Figure 14. Impact of Pr on   

 

 
 

Figure 15. Impact of Pr on   

 

 
 

Figure 16. Impact of  on   

 

 
 

Figure 17. Impact of R on   
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Figure 17. Impact of 
w on   

 

 
 

Figure 19. Impact of Du on   

 

 
 

Figure 20. Impact of Su on   

 

 
 

Figure 21. Impact of Kn on 

 
 

Figure 22. Impact of Le on   

 

 
 

Figure 23. Impact of n on   

 

 
 

Figure 24. Impact of A* on   

 

 
 

Figure 25. Impact of B*  on   
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Table-3 

 

 M K  Le Pr R w A Du Kn 
-

1
2RexCf  

1
2RexNu



 
1

2RexSh


 

0           1.502219 0.760348 4.060689 

1           1.502219 0.630711 4.079398 

2           1.502219 0.544944 4.090668 

 0          1.305153 0.782987 4.099390 

 1          1.671311 0.714417 4.032911 

 2          1.958593 0.669742 3.983482 

  0.00         1.444668 0.729452 4.048704 

  0.25         1.584964 0.764166 4.081678 

  0.50         1.714564 0.791543 4.106555 

   0.0        1.462141 0.754909 4.048982 

   0.2        1.541780 0.737558 4.078769 

   0.3        1.580782 0.734518 4.096150 

    1       1.502228 0.946534 1.220979 

    2       1.502228 0.890381 2.035235 

    3       1.502220 0.839389 2.752226 

     1.0      1.502219 0.510620 4.095830 

     1.5      1.502219 0.744390 4.063113 

     2.0      1.502219 0.941818 4.033682 

      0.0     1.502219 1.064623 3.859308 

      0.5     1.502219 0.744390 4.063113 

      1.0     1.502219 0.698245 4.097192 

       0.5    1.502219 1.735235 3.857031 

       1.0    1.502219 1.256816 3.962370 

       1.5    1.502219 0.744390 4.063113 

        0.8   0.413809 1.026136 4.294352 

        1.0   0.000000 1.087361 4.359780 

        1.2   0.451286 1.144335 4.424770 

         0.0  1.502219 1.016664 3.997736 

         0.2  1.502219 0.461815 4.131562 

         0.4  1.502218 0.137283 4.278673 

          0.0 1.502219 0.736785 4.168052 

          0.2 1.502219 0.75252 3.950635 

          0.4 1.502219 0.771101 3.692596 

 

 

4. CONCLUSION 
 

The present article includes the analysis of magneto-hydro-

dynamic (MHD) Powell–Eyring fluid flow in the presence of 

non-linear radiation, space dependent internal heat source and 

variable thermal conductivity over a permeable cylinder with 

suction/injection effects. We have considered Soret, Dufour 

and non-linear chemical reaction effect on heat and 

concentration equations. The effects of different physical key 

parameters such as magnetic parameter, suction parameter, 

thermal radiation parameter, and Prandtl number etc are 

plotted and discussed. 

The conclusions of the present investigation are made as 

follows: 

a) The results show that as the M increases the 'f to the 

fluid suppresses the whereas opposite behavior is found for   

and   profiles. 

b) Increasing the value of K and A reduce the heat 

transfer coefficient between the cylinder surface and the fluid 

however, increasing following parameters, R,  , A*, B*, Ec, 

M increases it.  

c) Increasing the value of K, A, Le, n suppress   profile 

whereas increases the value of M, Kn, Su, Pr,   enhances the 

  profile.  

d) Increasing the value of M, K, and   parameters, 

decreases the value of 

1

2Ref xC   
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NOMENCLATURE 

 

K  

R  
S  

Du  

Su  

k  

Pr  

A  

M  

material fluid parameters 

radiation parameter 

suction /injection parameter 

Dufour number 

Soret number 

thermal conductivity 

Prandtl number 

ratio parameter 

magnetic field parameter 

Lewis number 

Le  

Kn  

chemical reaction  

 

Greek symbols 

 

 

  Dimensionless temperature  

  Dimensionless concentration.  

  fluid parameter 
  curvature parameter 
  

w  

small scale parameter 

relative temperature ratio parameter 
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