

1. INTRODUCTION

The growth process of crops is very vulnerable to the
surrounding environment. Greenhouse technology could be
used to cultivate crops, and through the monitoring and
control of environmental factors, such as temperature,
humidity, light, and other environmental factors, crop quality
and yield could be improved. Greenhouse system is a
complex system with multivariable, nonlinear and high time-
delay, and the internal factors are strongly coupled. To
accurately control greenhouse environmental factors, the first
task is data acquisition; of temperature, humidity, light, and
other environmental factors. However, the vast majority of
existing greenhouse environment detection and control
system need to build sensor networks [1-9], as they are
expensive to implement in small greenhouses or laboratory
greenhouses. Greenhouse environmental temperature is a
parameter that is constantly and slowly changing and can be
monitored by a greenhouse environment inspection vehicle
loaded with ZigBee terminal nodes and various environment
inspection sensors. This vehicle can acquire greenhouse
environmental parameters in real time, and then the data it
sends to the console can be used to make adjustments to the
greenhouse environment as necessary. The system is low in
cost and can be arranged quickly and easily, making it

potentially very valuable and effective for farmers and others
tasked with managing greenhouse facilities..

2. SYSTEM STRUCTURE

The overall structure of the proposed system is shown in
Fig. 1.Sensors connected to the ZigBee terminal nodes
monitor the greenhouse environmental parameters while
sending action commands to the master controller of the
inspection vehicle; the master controller sends concrete
movement commands to the driver to make the vehicle move.
The operator can also refer to the MFC interface of the
console, and send control orders and environment inspection
orders through PC serial port to the ZigBee coordinator. After
receiving orders from the PC and through the router, the
coordinator sends them to the ZigBee terminal nodes to
execute concrete tasks [2]. Those nodes carry out
environmental inspection of the greenhouse and drive the
vehicle, thus realizing PC serial port remote control. There
also are buttons on the coordinator which the operators can
press remotely control the vehicle’s movement, and a gyro
sensor that ensures the vehicle stays balanced while moving.

MATHEMATICAL MODELLING OF

 ENGINEERING PROBLEMS

ISSN: 2369-0739 (Print), 2369-0747 (Online)
Vol. 3, No. 4, December 2016, pp. 184-190
DOI: https://doi.org/10.18280/mmep.030406
Licensed under CC BY-NC 4.0

A publication of IIETA

http: //www. iieta. org/Journals/MMEP

Greenhouse Environment Inspection Vehicle Control System Design Based

on ZigBee

Li Liu, Yinggang Shi*, Yan Long, Jizheng Zhao, Jun Chen and Yongjie Cui

College of Mechanical and Electronic Engineering, Northwest A&F University, NO. 3 Taicheng
Road, Yangling 712100, Shaanxi, China

Email: syg9696@nwsuaf.edu.cn

ABSTRACT

This paper describes an experimental greenhouse environment inspection vehicle which is loaded with
ZigBee terminal nodes and various environment inspection sensors and can measure greenhouse
environmental parameters in real time. The master controller of the greenhouse environment inspection
vehicle is designed with 51 single-chip microcomputers as the core. Through sensors loaded on the ZigBee
terminal nodes, the temperature, illumination intensity, and humidity of the greenhouse are measured and the
acquired data are sent to the console. The serial port control of the greenhouse inspection vehicle utilizes an
MFC interface and button control on the vehicle through the ZigBee coordinator.

Keywords: ZigBee, Z-Stack, Data acquisition, Button control, Serial port control.

184

CoordinatorConsole
operating

system
Router

Serial

ports
ZigBee terminal

Gyro

Smoke

sensor

Temperature

Sensor

humidity

sensor

Master

controller

Motor

Driver

Motor

Motor

Figure 1. System structure

3. SYSTEM CIRCUIT DESIGN

3.1 Control circuit design

The information transformation section was established
with CC2530 as the core. It altogether includes the CC2530
single-chip microcomputer as well as a crystal oscillator,
antenna interface, antenna mast, I/O extending interface
circuit, power circuit, and LED circuit [3-7]. The master
controller of the inspection vehicle contains AT89C52 as the
core, and the MENTORII contains L293D as the core [4].
The master controller circuit includes a matrix keyboard,
single-chip microcomputer minimum system, display socket,
and pin extending circuit [8].

3.2 Control circuit connection

The circuit connection of the PC series port in the remotely
controlled inspection vehicle is shown in Fig. 4.The ZigBee
coordinator module receives control information from the
upper computer through the series port. A 5V DC power
supply is connected to the power ports of the ZigBee terminal
module and the motor driver. The P1_7, P1_6, P1_5, and
P1_3 ports of the ZigBee terminal nodes are connected to the
P1_7, P1_6, P1_5, and P1_3 ports of the master control panel
of the vehicle, and the P2_0, P2_1, P2_2, and P2_3 ports of
the master control panel are connected to the IN1, IN2, IN3,
and IN4 ports of the motor drivers, respectively.The four I/O
output ports of the driver are connected to the “+” and “-” of
the two DC motors.

Terminal Master controller Motor Driver

P1_7

P1_6

P1_5

P1_3

P1_7

P1_6

P1_5

P1_3

P2_0

P2_1

P2_2

P2_3

IN1

IN2

IN3

IN4

OUT1

OUT2

OUT3

OUT4

+

-
DC Motor

+

-
DC Motor

Zigbee

coordinator

Operating

system

Control

Interface

Serial

ports

Figure 2. Serial port remote controlcircuit connection

The circuit connection of the signal acquisition center is
shown in Fig. 3. The DS18B20 used to measure temperature
is a single-bus device. The middle pin is connected to a 4.7k
pull-up resistor and the P1-1of the CC2530, and the P9 and
P1_5 ports of the CC2530 are connected to the gas sensor
and photosensitive sensor, respectively. The AOUT port of
the gas sensor is connected to the P0_7 port of the CC2530,
the serial port gyroscope is connected to the serial port of the

CC2530, the I/O at the RX end is connected to the P0_2 port
of the ZigBee module, and the I/O at the TX end is connected
to the P0_3 port of the ZigBee module. The VCC of
theDS18B20 is connected to aVC3.3V power supply, and
those of other sensors are connected to a VC5V power
supply.

Control

interface

Operating

system

Serial

ports

Zigbee

coordinator
ZigBee Terminal node

Gyro

Smoke

sensor

Temperature

Sensor

humidity

sensor

Figure 3. The circuit connection of signal acquisition

The circuit connection of the vehicle’s remote control
center is shown in Fig. 4. There are five buttons on the
CC2530 coordinator: UP, DN, LT, RT, and PUSH which can
be pressed to make the vehicle move forward, move
backward, turn left, turn right, and stop.

The power ports of the ZigBee coordinator, ZigBee
terminal nodes, and DC motor driver are connected to a 5V
DC power supply. The P1_7, P1_6, P1_5, and P1_3 of the

ZigBee terminal nodes are connected to the P1_7, P1_6,
P1_5, and P1_3 of the vehicle’s master controller, and the
P2_0, P2_1, P2_2, and P2_3 of the master controller are
connected to the IN1, IN2, IN3, and IN4 of the DC motor
driver, respectively. The OUT1, OUT2, OUT3, and OUT4 of
the driver are connected to the positive and negative
electrodes of the two DC motors.

185

P1_7

P1_6

P1_5

P1_3

PUSH

zigbee coordinator
zigbee terminal node

wireless

UP

RTLT

DN

PUSH

UP

RTLT

DN

master controller Motor Driver

P1_7

P1_6

P1_5

P1_3

P2_0

P2_1

P2_2

P2_3

IN1

IN2

IN3

IN4

OUT1

OUT2

OUT3

OUT4

+

-
DC Motor

+

-
DC Motor

Figure 4. Remote control circuit connection

4. SYSTEM SOFTWARE DESIGN

The system software includes the motor program of the
inspection vehicle, the ZigBee wireless communication node
program, and upper computer interface. The codes of the
vehicle motor program were edited in Keil μVision4
software. The ZigBee wireless communication node program
was developed based on the ZigBee2007/PRO protocol stack
ZStack-2.0.0-1.2.0. The IAR Embedded WorkbenchV7.30B
for 8051(IAR EW8051) was used to design the software, and
the interface was built in Visual Studio 2010.

4.1 Basic movement subprogram of the inspection vehicle

The inspection vehicle remote control subprogram includes
the basic movements of the vehicle and state management of
the ZigBee terminal. If the ZigBee coordinator receives
button information or a PC serial port control order, it

conducts state management on the specified ZigBee terminal
and sends the relevant signal to the ZigBee terminal nodes.
The nodes send processed information to the master
controller of the inspection vehicle, then drive the DC motor
to make the vehicle move [2, 3, 9, 10].

The inspection vehicle has four wheels which are
controlled by four DC motors. Its speed is regulated under the
PWM method [11]. Each motor needs three control signals:
EN1, IN1, and IN2. EN1 is an enable signal, and IN1 and
IN2 control the rotation direction of the motor. One PWM
signal connects to the EN1 pin; when the IN1 and IN2 are 1
and 0, respectively, the motor rotates positively (and vice
versa).Through different rotation direction and speed
adjustments, the four motors realize forward, backward, left-
turn, and right-turn motions of the inspection vehicle. The
concrete control program flow is shown in Fig. 5. P1_7,
P1_6, P1_5, and P1_3 are input signals of the single-chip
microcomputer IO.

System initialization

INTO Interrupt

Command parsing

Yes
No

Signal input

terminal node

P1_7=1;

P1_6=0;

P1_5=0;

P1_3=1;

Signal input

terminal node

P1_7=1;

P1_6=0;

P1_5=1;

P1_3=1;

Signal input

terminal node

P1_7=0;

P1_6=1;

P1_5=1;

P1_3=0;

Signal input

terminal node

P1_7=0;

P1_6=1;

P1_5=0;

P1_3=1;

Signal input

terminal node

P1_7=0;

P1_6=0;

P1_5=0;

P1_3=0;

Forward Turn right Back Turn left Stop

Start

Figure 5. Program flow of inspection vehicle’s basic movements

4.2 Subprogram for remote control ofthe inspection

vehicle

A flow chart of the coordinator subprogram remotely
controlled by the inspection vehicle is shown in Fig. 6[10-
13].

Head files declaration:
#include "OSAL.h"
#include "AF.h"
#include "ZDApp.h"
#include "ZDObject.h"
#include "ZDProfile.h"

#include <string.h>
#include "Coordinator.h"
#include "DebugTrace.h"
#if !defined(WIN32)
#include "OnBoard.h"
#endif
#include "hal_lcd.h"
#include "hal_led.h"
#include "hal_key.h"
#include "hal_uart.h"
Macro definition:
const cId_t GenericApp_ClusterList
[GENERICAPP_MAX_CLUSTERS]={ }

186

Device descriptor:
const SimpleDescriptionFormat_t

GenericApp_SimpleDesc={}
Variable definition:
endPointDesc_t GenericApp_epDesc;
byte GenericApp_TaskID;
byte GenericApp_TransID;
void GenericApp_HandleKeys
(byte shift,byte keys);
Task initialization:
void GenericApp_Init(byte task_id){ }
Task processing function:
UINT16 GenericApp_ProcessEvent
(byte task_id,UINT16 events){ }
Button processing subfunction:
static void GenericApp_HandleKeys(uint8 shift, uint8 keys

){ }
h file of ZigBee coordinator:
#ifndef COORDINATOR_H
#define COORDINATOR_H
#include"ZComDef.h"
#define GENERICAPP_ENDPOINT 10
#define GENERICAPP_PROFID 0x0F04
#define GENERICAPP_DEVICEID 0X0001
#define GENERICAPP_DEVICE_VERSION 0
#define GENERICAPP_FLAGS 0
#define GENERICAPP_MAX_CLUSTERS 1
#define GENERICAPP_CLUSTERID 1
extern void GenericApp_Init(byte task_id);
extern UINT16 GenericApp_ProcessEvent(byte

task_id,UINT16 events);
#endif

Control mode

button generation？

Initialization

Event scanning

GenericApp_HandleKeys() trigger？

Button is UP？

Button is RT？

Button is DN？

Send signal 1

Send signal 2

Send signal 3

Send signal 4

NO

YES

YES

NO

Send signal 5

YES

YES

YES

NO

NO

Button is LT？

Button is PUSH？

NO

Dormancy start up wake up shut down

YES
NO

YES

Figure 6. Coordinator program flow of remotely controlled
inspection vehicle

A control flow chart of the terminal node software

remotely controlled by the inspection vehicle buttons is
shown in Fig. 7.The head files declaration, macro definition,
device descriptor, and task initialization subfunctions are the
same as relevant subfunctions in the coordinator software
design remotely controlled by the buttons, so they are not
repeated here.

Variable definition subfunction:
endPointDesc_t GenericApp_epDesc;
byte GenericApp_TaskID;
byte GenericApp_TransID;
void GenericApp_MessageMSGCB
(afIncomingMSGPacket_t*pckt);
afAddrType_t my_DstAddr;
Task processing subfunction:
UINT16 GenericApp_ProcessEvent
(byte task_id,UINT16 events){ }
void GenericApp_MessageMSGCB
(afIncomingMSGPacket_t *pkt){ }

start up

Initialization

Event scanning

GenericApp_MessageMSGCB() trigger？

GENERICAPP_ck_CLUSTERID trigger？

Signal is 1？

Signal is 2？

Signal is 3？

Signal is 4？

P1_7=1;P1_6=0;

P1_5=0;P1_3=1;

P1_7=1;P1_6=0;

P1_5=1;P1_3=1;

P1_7=0; P1_6=1;

P1_5=1;P1_3=0;

P1_7=0;P1_6=1;

P1_5=0;P1_3=1;

Signal is 5？
P1_7=0;P1_6=0;

 P1_5=0;P1_3=0;

NO

NO

NO

NO

NO

NO

NO

YES

YES
YES

YES

YES

YES

YES

Figure 7. Terminal nodesoftware program flowof remotely
controlled inspection vehicle

The program flow of the remotely controlled master

controller is shown in Fig. 8.This part of the system is mainly
responsible for the basic movement functions of the
inspection vehicle.

start up

Initialization

While(1)cycle

P1_7=1;P1_6=0;

P1_5=0;P1_3=1;

P1_7=1;P1_6=0;

P1_5=0;P1_3=1;

P1_7=0; P1_6=1;

P1_5=1;P1_3=0;

P1_7=0;P1_6=1;

P1_5=0; P1_3=1;

P20=P17;P21=P16;

P22=P15;P23=P13;
Forward signal

P20=P17;P21=P16;

P22=P15;P23=P13;

Right turn signal

P20=P17;P21=P16;

P22=P15;P23=P13;

Back signal

P20=P17;P21=P16;

P22=P15;P23=P13;

left turn signal

YES

NO

NO

P1_7=0;P1_6=0;

P1_5=0;P1_3=0;

P20=P17;P21=P16;

P22=P15;P23=P13;

Stop signal

YES

YES

YES

YES

NO

NO

NO

Figure 8. Master controller software program flow of
remotely controlled inspection vehicle

187

4.3 Environmental parameter acquisition program

The sensor measures the temperature, light intensity, and
humidity of the environment as well as movement data of the
vehicle itself, then sends the information to the ZigBee
terminal nodes. After processing, the information is sent to
the ZigBee coordinator wirelessly [9], then to the computer
through the serial port, where it is displayed.

The program flow of the ZigBee coordinator for
environmental parameter acquisition is shown in Fig. 9.The
codes, head files declaration, macro definition, device
descriptor and task initialization code subfunction [10-12] of
the inspection vehicle are the same as the program controlled
by buttons.

The following variable definition was added:
static void rxCB(uint8 port,uint8 event);
static uint8 SerialApp_Buf[SERIAL_APP_TX_MAX];

NO

YES

start up

Initialization

Coordinator event scanning

SYS_EVENT_MSG trigger？

AF_INCOMING_MSG_CMD trigger？

Read l ight

intensity value

Read smoke

value

Read the

temperature

Write Serial

information

Read gyroscope

data

GENERICAPP_gq_CLUSTERID receive？

GENERICAPP_yw_CLUSTERID receive？

GENERICAPP_wd_CLUSTERID receive？

GENERICAPP_jjsd_CLUSTERID receive？

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

Figure 6. Coordinator software program flow for
environmental parameter acquisition

Structure function:
typedef union w{ } TEMPERATURE;
typedef union y{ }SHIDU;
typedef union g{ }GUANGQIANG;

The task processing function has added:
void GenericApp_MessageMSGCB
(afIncomingMSGPacket_t *pkt){ }
Serial port function:
static void rxCB(uint8 port,uint8 event){ }
The ZigBee terminal node program flow of environmental

parameter acquisition is shown in Fig. 10.The head files
declaration, macro definition, and device descriptor
subfunction are consistent with corresponding subfunctions in
the ZigBee terminal node program controlled by there mote
buttons [10-13].

On the basis of the remotely controlled terminal node
program, the following variable definition was added:

void GenericApp_Send_wd_Message(void);
void GenericApp_Send_gq_Message(void);
void GenericApp_Send_sd_Message(void);
void rxCB(uint8 port,uint8 event);
static uint8 SerialApp_Buf[SERIAL_APP_TX_MAX];
static uint8 SerialApp_Len;
uint16 myApp_ReadLightLevel(void);
uint16 myApp_ReadGasLevel(void);
int8 readTemp(void);
uint16 LightLevel;
afAddrType_t my_DstAddr;
Structure function:
typedef union w{ } TEMPERATURE;
typedef union s{ }YANWU;
typedef union g{ }GUANGQIANG;
On the basis of button control, task initialization

includesthe serial port initialization function and wireless
information transmission modes of the terminal nodes.

The task processing function would judge the scanned
event, and call for scanned executable event function:

UINT16 GenericApp_ProcessEvent(byte task_id,UINT16
events){ }

After acquiring information from the sensor, the
corresponding values are calculated and sent to the program
of the coordinator:

void GenericApp_Send_wd_Message(void){ }
void GenericApp_Send_sd_Message(void){ }
void GenericApp_Send_gq_Message(void){ }
Serial communication subfunction:
static void rxCB(uint8 port,uint8 event)

NO

start up

Initialization

Terminal Event Scan

SEND_DATA_EVENT trigger？

NO

YES

Serial port interrupt rxcB()？

Temperature information

processing funct ion

Light intens ity information

processing function
Humidity information

processing function

Temperature value transmission Light intensi ty transmission Humidity value transmiss ion

Serial port information

processing function

Gyro data transmission

YES

Figure 10. Terminal node program flow of environmental parameter acquisition

188

Based on the codes of coordinator h.file of the button-
controlled inspection vehicle, the ZigBee coordinator h.file
acquired via environmental parameters was added [13]:

#define GENERICAPP_wd_CLUSTERID2
#define GENERICAPP_sd_CLUSTERID 3
#define GENERICAPP_gq_CLUSTERID4
#define GENERICAPP_aj_CLUSTERID5
#define GENERICAPP_ck_CLUSTERID 6
#define GENERICAPP_jjsd_CLUSTERID 7
#define GENERICAPP_jsd_CLUSTERID 8
#define GENERICAPP_jd_CLUSTERID 9
#define SEND_DATA_EVENT 0x0001
#if !defined(SERIAL_APP_TX_MAX)
#define SERIAL_APP_TX_MAX 11
#endif

4.4 Program design ofserial port remotely controlled

inspection vehicle

At the PC operation interface, the user presses the button to
send serial port information to the ZigBee coordinator which
then analyzes the serial port information and wirelessly sends
corresponding information to the ZigBee terminal nodes.
After being processed by the terminal nodes, the data is sent
to the master controller of the inspection vehicle, then the
vehicle moves accordingly.

The program flow of the ZigBee coordinator of the
inspection vehicle is shown in Fig. 11.The head file
declaration, macro definition, device descriptor, task
initialization, and task processing subfunctions [10-12] are
consistent with the subprograms of the ZigBee coordinator
program of the remotely controlled inspection vehicle.

Start up

Initialization

Event Scan

Serial port function void rxCB() trigger？
NO

YES

Read PC control information at the serial port

Transmission of control information of the coordinator

Figure 11. Coordinator software program flow of inspection
vehicle remotely controlled via serial port

Variable definition:
static void rxCB(uint8 port,uint8 event);
Serial port function:
static void rxCB(uint8 port,uint8 event){ }
The program flow of the ZigBee terminal nodes of

theremotely controlled inspection vehicle is shown in Fig.
12.The head file declaration, macro definition, device
descriptor, variable definition, and task initialization
subfunctions are consistent with corresponding subfunctions
in the ZigBee terminal nodes of the button-controlled vehicle.
Based on the subfunctions in the ZigBee terminal nodes, the
task processing subfunction was given a code function
controlled via serial port [10-13].

On the basis of the .h file of the vehicle’s coordinator, the
ZigBee coordinator .h file of the vehicle was added as
follows:

#define GENERICAPP_ck_CLUSTERID 6

Start up

Initialization

Event Scan

GENERICAPP_ck_CLUSTERID trigger？

Serial port information=110？

Serial port information=100？

Serial port information = 000？

Serial port information = 010？

P1_7=1;P1_6=0;

P1_5=0;P1_3=1;

P1_7=1;P1_6=0;

P1_5=0;P1_3=1;

P1_7=0; P1_6=1;

P1_5=1;P1_3=0;

P1_7=0;P1_6=1;

P1_5=0;P1_3=1;

NO

YES

GenericApp_MessageMSGCB() trigger？
NO

Serial port information = 001？
P1_7=0;P1_6=0;

 P1_5=0;P1_3=0;

NO

YES

YES

YES

YES

YES

NO

NO

NO

NO

YES

Figure 12. Terminal node program flow ofinspection vehicle
remotely controlled via serial port

4.5 Upper computer software for remotely controlled

inspection vehicle

The serial-port-controlled inspection vehicle interface, as
built in Visual Studio 2010, is used to inspect button
information and send it to the ZigBee coordinator through the
serial port, then to the ZigBee terminal nodes. After receiving
task data, the terminal nodes send it to the master controller
to control the vehicle’s movement. The program flow of the
vehicle remotely controlled via serial port is shown in Fig.
13.

The environmental parameters acquired by the ZigBee
terminal nodes, after being wirelessly sent to the coordinator,
are written into the serial port. The data is processed in the
upper computer software and displayed on the console in
terms of certain norms and frequency [2, 3, 10, 12]. The
program flow of the data acquisition center of the upper
computer display interface is shown in Fig. 14.

Start up

Initialization

Serial open？

Is the button forward?

Is the button backward?

Is the button left-turn?

Is the button right-turn?

Send the serial signal=110

Send the serial signal=000

Send the serial signal=010

Send the serial signal=100

NO

YES

YES

YES

YES

YES
NO

NO

NO

Is the button stop? Send the serial signal=001

NO

YES

NO

Figure 13. Program flow of upper computer software of
remotely controlled inspection vehicle

189

Start up

Initialization

Data length to meet the requirements？

Header data to meet the requirements？

Data processing

While (1) cycle

Data Display

Read Serial data

YES

NO

YES

NO

Figure 14. PC software program flow for data acquisition
and display

5. CONCLUSIONS

In this study, we designed a greenhouse environment
inspection control system based on ZigBee. The proposed
system could be utilized in small greenhouses and laboratory
greenhouses to allow remote inspection of the environmental
information without necessitating that wireless sensor
networks be established. The system is altogether quite
economic and practical.

ACKNOWLEDGMENT

This research is supported by Water Science and
Technology Project of Shaanxi Province in China (No.
2015slkj-11); Teaching reform project of Northwest A&F
University (No. JY1302053); Students’ Innovative Research
Plan of Northwest A&F University (1201510712120)

REFERENCES

[1] J. Ma, L. Lin and X. Liu, “A fuzzy comprehensive
evaluation of the applicability of intelligent greenhouse
control systems,” Sensor Letters, vol. 11, no. 6, pp.
1396-1402, 2013.

[2] D.H. Park, B.J. Kang and K.R. Cho, “A Study on
greenhouse automatic control system based on wireless
sensor network,” Wireless Personal Communications,
vol. 56, no. 1, pp. 117-130, 2011.

[3] J. Lin, Li Kong and F. Wang, “Wireless sensor
network-based viticulture environmental monitoring
system,” Journal of Drainage and Irrigation
Machinery Engineering, vol. 32, no. 7, pp. 637-644,
2014. (in Chinese with English abstract)

[4] S. Park, M. Choi and B. Kang, “Design and
implementation of smart energy management system
for reducing power consumption using ZigBee
wireless communication module,” Procedia Computer
Science, vol. 19, pp. 662-668, 2013.

[5] Q. Zhang, X. Yang and Y. Zhou, “A wireless solution
for greenhouse monitoring and control system based
on ZigBee technology,” Journal of Zhejiang
University: Science A, vol. 8, no. 10, pp. 1584-1587,
2007.

[6] W. Yang, K. Lv and M. Li, “The wireless intelligent
controller of greenhouse based on zigbee,” Sensor
Letters, vol. 11, no. 6, pp. 1321-1325, 2013.

[7] L. Gao, M. Cheng and J. Tang, “A wireless greenhouse
monitoring system based on solar energy,” Telkomnika
- Indonesian Journal of Electrical Engineering, vol.
11, no. 9, pp. 5448-5454, 2013.

[8] F. Shariff, N.A. Rahim and W.P. Hew, “Zigbee-based
data acquisition system for online monitoring of grid-
connected photovoltaic system,” Expert Systems with
Applications, vol. 42, no. 3, pp. 1730–1742, 2015.

[9] X. Yan, “The design and research of greenhouse
environmental monitoring system based on wireless
network,” International Journal of Applied
Environmental Sciences, vol. 8, no. 13, pp. 1737-
1746, 2013.

[10] H. Luo, P. Yang and Y. Li, “An intelligent controlling
system for greenhouse environment based on the
architecture of the internet of things,” Sensor Letters,
vol. 10, no. 1, pp. 514-522, 2012.

[11] T. Li, M. Zhang and Y. Ji, “Management of CO2 in a
tomato greenhouse using WSN and BPNN
techniques,” International Journal of Agricultural and
Biological Engineering, vol. 8, no. 4, pp. 43-51, 2015.

[12] X. Li, X. Cheng and K. Yan, “A monitoring system for
vegetable greenhouses based on a wireless sensor
network,” Sensors (Switzerland), vol. 10, no. 10, pp.
8963-8980, 2010.

[13] D.H. Park, B.J. Kang and K.R. Cho, “A study on
greenhouse automatic control system based on wireless
sensor network,” Wireless Personal Communications,
vol. 56, no. 1, pp. 117-130, 2011.

190

