
 

 
 
 

 
 

 
1. INTRODUCTION 
 

Nanotechnology plays an important role for the 
development of 21st century modern micro- and nano-
devices. Recent advances in nanotechnology have allowed 
researchers to study the next generation heat transfer 
nanofluids, which consist of a base fluid containing a 
suspension of ultra-fine nanometer-sized (usually less than 
100 nm) solid particles. Nanoparticles can be metal particles 
such as Cu, Fe, Ag or Au or metallic oxides or nonmetallic 
oxide particles - CuO, Al2O3, TiO2, SiO2 etc. and the host 
fluid can be water, ethylene glycol, engine oils etc. 
Nanofluids is the term coined by Choi [1] to describe this 
new class of nanotechnology based heat transfer fluid that 
exhibits thermal properties superior to their host fluids or of 
conventional particle fluid suspensions. Significant features 
of nanofluids over base fluids include enhanced thermal 
conductivity, greater viscosity, and enhanced value of critical 
heat flux. Compared to the existing techniques for enhancing 
heat transfer, the nanofluids show a superior potential for 
increasing heat transfer rates in various cases. Choi [2] 
reported the possible use of nanofluids in a wide variety of 
industries ranging from transportation, energy production and 
supply to electronics, textiles and paper production. Recently, 
Uddin et al. [3] studied fundamental aspects of nanofluids 
with their evolution, applications and new theorem. 

Numerous researchers have studied and reported results on 
convective heat transfer in nanofluids considering various 
flow and thermal conditions in different geometries but less 
attention has been given on the prismatic shape enclosure, 
though this type of enclosure has many engineering 
applications such as solar energy collectors and conventional 
attic spaces of greenhouses and buildings with pitched roofs. 
Recently, Salma et al. [4] studied the free convective flow 
and heat transfer characteristics of alumina-water nanofluid 
inside a prismatic enclusure with sinosoidal temperature 
distribution on the bottom wall. Therefore, the objective of 
this work is to analyze the heat transfer characteristics of 
copper-water nanofluid inside a  prismatic enclosure with 
uniform and non-uniform heated bottom wall. 
 
 

2. PHYSICAL AND MATHEMATICAL MODELLING 
 
   Let us consider an unsteady two-dimensional viscous, 
incompressible laminar natural convection flow of copper-
water nanofluid inside a prismatic enclosure: See Figure 1 for 
schematic diagram and geometrical details. The horizontal 
bottom wall is heated isothermally as well as non-
isothermally while the inclined walls are maintained at a 
constant lower temperature ,cT  and the vertical walls are 

insulated. It is also assumed that thermal equilibrium exists 
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obtained numerical results indicate that the rate of heat transfer is  higher for uniformly heat bottom wall as 
compared to non-uniformly heat bottom wall. 
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between the base fluid and nanoparticles, and no slip occurs 
between the two media. The physical properties of the 
nanofluid are considered to be constant except the density 
variation in the body force term of the momentum equation, 
which is estimated by the Boussinesq approximation. The 
gravitational acceleration acts in the negative y  direction. 

All solid boundaries are assumed to be rigid no-slip walls. 
Then under these assumptions, the governing equations for 
unsteady natural convection flow can be written as: 
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Figure 1.  Schematic diagram of the physical model 

 
 

3. THERMAL AND PHYSICAL PROPERTIES OF 

NANOFLUID 
 

Thermal and physical properties of nanofluids are the 
properties which are important to enhance the thermal 
performance of nanofluids. These are viscosity, density, 
thermal diffusivity, heat capacitance, thermal conductivity 
and thermal expansion coefficient. Thermal performance of 
an engineering equipment mainly depends on how thermal 
properties behave in varied operating conditions. Operating 
parameters are variation in temperature, ambient conditions, 
type of base fluid, particle size, and shape of the 
nanoparticles and volume concentration. Considering all 
these parameters, selection of appropriate nanofluid is 
necessary for optimum performance. The following formulas 
have been used to compute the thermal and physical 
properties of the nanofluids under considerations: 

 

The effective viscosity of the nanofluid may be expressed 
in the following form 
 

2.5(1 )nf bf    

                                                                  

(5) 

 

where   is nanoparticles volume fraction.                                   

The effective density of nanofluid is given as  
 

(1 )nf bf sp                                                                   (6)                                                                                      

 
The thermal diffusivity of the nanofluid is given by 
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The heat capacitance of the nanofluid is given by  
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The thermal conductivity of nanofluid is given by  
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The thermal expansion coefficient is given by 

 
( ) (1 )( ) ( )nf bf sp                                                   (10)                      

 
 

Cu -water nanofluid has been studied for the present work, 

and this type of nanofluid is highly used in industries due to 
its improved thermophysical properties availability, and 
economic considerations. The thermophysical properties of 

pure water ( 2H O ) and copper (Cu)  are presented in Table 1 

 

Table 1. Thermophysical properties of pure water and solid 
nanoparticles 

 
Physical properties water  2H O  Cu  

 pc J/kgK  4179 385 

3ρ kg/m    997.1 8933 

 k W/mK  0.613 400 

2μ Ns/m    0.001003 - 

 -5β? 0 1/K  21 1.67 

-7 2? 0 m /s     1.47 1163.1 

Pr  6.8377 - 

 
 

4. INITIAL AND BOUNDARY CONDITIONS 
 

The initial and boundary conditions for the above stated 
model are as follows: 
 

For 0;t   0,u v  0,T  0p                                           (11a) 
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at the top inclined walls: cT T                                        (11c) 

                                                                                                         

at the vertical walls: 0
T

x





                                            (11d)  

                                                                                                        

at all solid boundaries: 0u v                                         (11e) 

                                                                                          
where the variables and the related quantities are defined in 
the nomenclature.                                                                        

 
  (3.10)  

5. DIMENSIONAL ANALYSIS 

 
Dimensional analysis is one of the most important 

mathematical tools in  the study of  fluid mechanics. To 
describe several transport mechanisms in nanofluids, it is 
meaningful to make the conservation equations into non-
dimensional form. The advantages of non-dimensionalization 
are as follows: (i) non-dimensionalization gives freedom to 
analysis for any system irrespective of their material 
properties. (ii) one can easily understand the controlling flow 
parameters of the system, (iii) make a generalization of the 
size and shape of the geometry, and (iv) before doing 
experiment one can get insight of the physical problem. These 
aims can be achieved through the appropriate choice of 
scales.Therefore in order to obtain the dimensionless form of 
the governing equations (1)-(4) together with the boundary 
conditions (11) we introduce the following non-dimensional 
variables: 
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     Now employing the relation (12) into equation (1)-(4), we 
obtain the following nonlinear differential equations: 
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   The non-dimensional inital and boundary conditions can 
also be written as follows: 
 

For 0;  0,U V  0  , 0P                                      (17a) 

 

For 0;    

at the bottom wall :  1 1or X X                             (17b)  

                                                                                                       

at the top inclined walls: 0                                          (17c)  

                                                             

at the vertical walls: 0
X





                                            (17d)  

                                                                    

at all solid boundaries: 0U V                                        (17e)                                                                                       

 

 

6. AVERAGE NUSSELT NUMBER 

 
    The parameter of the engineering interest for the present 

problem is the average Nusselt number ( Nu ) along the 

bottom heated wall which is calculated from the following 
expression 
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7. COMPUTATIONAL PROCEDURE 

 
The governing dimensionless equations (13)-(16) along 

with the boundary conditions (17) have been solved 
numerically by employing Galerkin weighted residual based 
finite element method. The details of this method is well 
described by Zienkiewicz and Taylor [5], and Reddy and 
Gartling [6]. In this method, the solution domain is 
discretized into finite element meshes, which are composed 
of non-uniform triangular elements.  The six node triangular 
elements are used in this work for the development of the 
finite element equations. All six nodes are associated with 
velocities as well as  temperature; only the corner nodes are 
associated with pressure. This means that a lower order 
polynomial is chosen for pressure and which is satisfied 
through the continuity equation. Then the nonlinear 
governing partial differential equations (i. e. conservation of 
mass, momentum and energy equations) are transferred into a 
system of integral equations by applying Galerkin weighted 
residual method. The integration involved in each term of 
these equations is performed by using Gauss's quadrature 
method. The nonlinear algebraic equations so obtained are 
modified by imposition of boundary conditions. To solve the 
set of the global nonlinear algebraic equations in the form of 
matrix, the Newton-Raphson iteration technique has been 
adapted through partial differential equation solver with 
MATLAB interface. The convergence criterion of the 
numerical solution along with error estimation has been set to 

1 510m m     , where  is the general dependent 

variable ( , , )U V   and m is the number of iteration.  

 

 

8. CODE VALIDATION 

  
     The computational model is validated against the problem 
of laminar natural convection in an isosceles triangular 
enclosure for clear fluid studied by Holtzman et al. [7]. The 
cavity was heated isothermally from below and symmetrically 
cooled from above. The comparison of the average Nusselt 
number (at the hot bottom surface) between the result of the 
present code and the results found in the literature (Holtzman 
et al. [7]) for different aspect ratios, AR are documented in 
Table 2. The comparisons reveal an excellent agreement with 
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the reported studies. This validation boosts the confidence in 
the numerical outcome of the present study. 
 

Table 2. Comparison of average Nusselt number Nu  with 

those of Holtzman et al. [7] for 510Ra  , Pr 0.70  and 

0  in the present model. 

 
AR Holtzman et al. [7] Present results 

1.0 1.80 1.82 

0.5 2.19 2.20 

0.2 2.48 2.50 

 

 

9. MESH GENERATION 

 
In the finite element method, the mesh generation is the 

technique to subdivide a domain into a set of sub-domains, 
called finite element, control volume, etc. The discrete 
locations are defined by the numerical grid, at which the 
variables are to be calculated. It is basically a discrete 
representation of the geometric domain on which the problem 
is to be solved. Meshing the complicated geometry make the 
finite element method a powerful technique to solve the 
boundary value problems occurring in a range of engineering 
applications . Fig. 2 displays mesh configuration of the 
present physical domain with triangular finite elements. 
 

 
 

Figure 2. Mesh generation of the prismatic shape cavity 
 

 

10. RESULTS AND DISCUSSION 

 
     The numerical computation has been carried out through 
the finite element method in order to analyze the unsteady 
natural convective heat transfer and fluid flow of copper-
water nanofluid inside a prismatic enclosure with different 
thermal boundary conditions on the bottom heated wall. Thus 
in this section, the obtained numerical results have been 
displayed graphically in the form of streamlines and 

isotherms for various values of the Rayleigh number  Ra and 

solid volume fraction of the nanoparticles   . In addition, 

the rate of  heat transfer in terms of the average Nusselt 
number at the bottom heated wall is also calculated and 
displayed in graphically for the above mentioned parameters 
with two differnt cases. 

 

10.1 Effects of Rayleigh number  Ra  on streamlines 

 

The effects of Rayleigh number  Ra on the streamlines for 

two different cases have been shown in Fig. 3.  It is seen from 

this figure that the trend of streamlines are similar for all 
cases. There are two symmetric circulation cells formed 
inside the enclosure. With the increasing value of Rayleigh 

number  Ra ,  the streamlines are less dense near the central 

vertical line. It is noteworthy to mention that the central cores 
of the circulatory cells increase in size for higher values of Ra 
indicate the greater strength of the flow. Higher flow intensity 
is seen for the base fluid in comparison to the nanofluid. 
 

10.2  Effects of Rayleigh number  Ra  on isotherms 

     
The influence of Rayleigh number (Ra) on isotherms for 

the present configuration has been demonstrated in Fig. 4 for 
both cases. The pattern of isotherms is smooth for low Ra and 
is symmetric to the central vertical line for all the considered 
values of Ra. At higher Rayleigh number, a thermal plume 
rises from the middle of the bottom wall because of the 
thermal boundary conditions. The isothermal lines for pure 
water are more distorted than that of nanofluid. 
 

10.3 Effects of nanoparticles volume fraction    on 

streamlines 

 
Streamlines corresponding to different solid volume 

fraction   of the nanoparticles are shown in Fig. 5 for both 

cases. It is seen from the figure that the trend of streamlines 
are similar for all cases. There are two symmetric circulation 
cells formed inside the enclosure. With the increasing value 

of    the streamlines are less dense near the central vertical 

line. It is noteworthy to mention that the central core of the 
circulatory cell is reduced in size for higher nanoparticle 
concentration. Higher flow intensity is seen for the base fluid. 
 

10.4 Effects of nanoparticles volume fraction    on 

isotherms 
      

The influence of nanoparticle volume fraction on isotherms 
for the present configuration has been demonstrated in Fig. 6 
for both cases. The pattern of isotherms are smooth and are 
symmetric to the central vertical line for all the considered 

values of   . A thermal plume rises from the middle of the 

bottom wall because of sinusoidal boundary temperature. At 

0,  , that is in the case of base fluid, the higher temperature 

lines remain near the hot bottom wall. These lines move 
toward the cold top inclined walls due to the increasing 

values of   . This happens due to the presence of 

nanoparticle in the fluid and buoyancy effect which causes 
higher temperature gradient and thus the isothermal lines 
move from hot walls to the cold wall. 

 

10.5 Average Nusselt number 
 
Average Nusselt number for different values of Rayleigh 

number  Ra and nanoparticles volume fraction   for both 

uniform and non-uniform heating bottom wall have shown in 
Fig. 7(a), and Fig. (b) respectively. General observation is 
that the average Nusselt number increases with the increasing 
values of Rayleigh number as well as  nanoparticles volume 
fraction and it is utilized to represent the overall heat transfer 
rate within the domain. But thehighest heat transfer rate is 
observed for uniformly bottom heated wall case.  
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    Figure 3.  Streamlines for different values of Rayleigh number  Ra  with two different thermal boundary conditions 
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        Figure 4. Isotherms for different values of Rayleigh number  Ra  with two different thermal boundary conditions 
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Figure 5. Streamlines for different values of nanoparticles volume fraction    with two different thermal boundary 

conditions 
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Figure 6. Isotherms for different values of nanoparticles volume fraction    with two different thermal boundary conditions 
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(a) 

 
(b) 

 

Figure 7. Average Nusselt number for different values of 

(a) Rayleigh number  Ra and (b) nanoparticles volume 

fraction   for both uniform and non-uniform heating 

bottom wall 

 
 

10. CONCLUSIONS 

 
The present investigation performed a physical as well as 

computational insight due to unsteady natural convective heat 
transfer and fluid flow of copper-water nanofluid with two 
different thermal boundary condition on the bottom wall. 
From the numerical computations, the following major 
conclusions may be drawn: 

 Heat transfer rate increases with the increasing 

values of the nanoparticles volume fraction   for both 

cases. 

 An increase in the Rayleigh number ( Ra ) is 

sufficient to increase the convective heat transfer effectively. 

 For lower values of Ra ,  conduction is the primary 

mode of heat transfer for all values of the other parameters. 

 For higher value of Rayleigh number ( )Ra , better 

heat transfer is observed  through convection and conduction. 

 The highest heat transfer rate is obtained for 
uniformly bottom heated wall case. 

 
 

ACKNOELEDGEMENT 

 
The author is grateful to The Research Council (TRC) of 

Oman  for a Postdoctoral Fellowship under the Open 
Research Grant Program: ORG/SQU/CBS/14/007.  

REFERENCES  
 

[1] Choi S., “Enhancing thermal conductivity of fluids 
with nanoparticles.” In: Signier DA, Wang HP (eds.) 
Development and applications of non-Newtonian 
flows, ASME FED, vol.231/MD, pp. 99–105, 1995. 

[2] Choi S., “Nanofluid technology: current status and 
future research,” Energy Technology Division, 
Argonne National Laboratory, Argonne, 1999. 

[3] Uddin M. J., Al Kalbani K. S., Rahman M. M., Alam 
M. S., Al-Salti N. and Eltayeb I. A., “Fundamentals of 
nanofluids: evolution, applications and new theory,” J. 
Biomath. Sys. Biolgy., vol. 1, no. 2, pp. 1-32, 2015. 

[4] Parvin S.,  Chowdhury, R. , Khan, M. A. H. and Alim, 
M. A., “Performance of nanofluid in free convective 
heat transfer inside a cavity with non-isothermal 
boundary conditions,” Proceedings of the 
International Conference on Mechanical 
Energineering and renewable Energy, pp. 1-6, 26-29 
November, 2015, Chittagong, Bangladesh. 

[5] Zienkiewicz O. C. and Taylor R. L., “The finite 
element method,” 4th Edition, McGraw-Hill, 1991. 

[6] Reddy, J. N. and Gartling, “The finite element method 
in heat transfer and fluid dynamics,” CRC Press, Boca 
Raton, Florida, 1994. 

[7] Holtzman G. A., Hill R. W. and Ball K. S.,  “Laminar 
natural convection in isosceles triangular enclosures 
heated from below and symmetrically cooled from 
above,” ASME J. Heat Transfer, vol. 122, pp. 485- 
491, 2000. 

 
 

NOMENCLATURE 

 
g   acceleration due to gravity 

L   length of the base wall of the cavity 

Nu   Average Nusselt number 
p   dimensional fluid pressure 

P   dimensionless fluid pressure 

Pr   Prandtl number 

Ra   Rayleigh number 

t dimensional time 

T   dimensional temperature 
,u v   dimensional velocity components 
,U V   dimensionless velocity components 

W   height of the vertical walls of the cavity 
,x y   dimensional coordinates 
,X Y   dimensionless coordinates 

   thermal diffusivity 
   coefficient of thermal expansion 

   kinematic viscosity 
   density 

   dimensionless temperature 
  Dimensionless time 

 

Subscripts 

nf nanofluid 
bf base fluid 
sp solid particle 
h hot temperature 
c cold temperature 
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