
 
 
 

 
 

1. INTRODUCTION 

The origin of wavelets goes back to the beginning of the 
twentieth century. Wavelets are a family of basis functions 
that can be used to approximate class of finite energy 
functions.  

Wavelet families and their applications can be found in [1, 
2]. Haar wavelets were introduced by Alfred Haar [3] in 
1910. The Haar wavelet method has some preferences, as 
mathematical simplicity, fast convergence, possibility to 
implement standard algorithms and high accuracy for a small 
number of grid points. We can integrate these wavelets 
arbitrary times. These characters provide a strong foundation 
for using Haar functions in numerical approximation of 
ordinary differential equations (ODE), partial differential 
equations (PDE) and integral equations (IE). One of the 
limitations is that Haar wavelets are not continuous; their 
derivatives do not exist at the point of discontinuity. At 
present there are two approaches to applying the Haar 
wavelet for integrating ODEs. In case of the first method for 
integrating DE concept of operational matrix is introduced by 
Chen and Hsiao [4, 5], solved problems of lumped and 
distributed parameter systems and optimizing dynamic 
systems. Another approach is called the direct method due to 
Lepik [6]. In this approach Haar functions integrated directly. 
The direct method is easily applicable for calculating 
integrals of arbitrary order but the operational matrix method 
has been used mainly for first order integrals. Importance of 
Haar wavelets in the solution of differential and integral 
equation is reviewed by Hariharan and Kannan [7]. Harpreet 
Kaur et al. [8] have solved nonlinear boundary value 
problems which are having unknown’s power is two, using 
Haar wavelets with quasilinearization technique. N. M. 

Bujurke et al. [9] have estimated solution for nonlinear 
oscillator equations using single-term Haar wavelet series. 
Siraj-ul-Islam et al. [10] have implemented collocation 
method with Haar wavelets to solve second order boundary 
value problems (BVPs). Fazal-I-Haq et al. [11-12] have 
found numerical solution for fourth and sixth order BVPs by 
Haar wavelet method. 

The application of seventh order BVPs available in       
engineering sciences. These problems arise in Mathematical 
modeling of induction motors with two rotor circuits [13]. 
Induction motor model contains fifth order differential 
equation model, which includes two stator state variables, two 
rotor state variables and shaft speed. For the effect of a 
starting cage, deep bars or rotor distributed parameters, 
additional rotor circuit is required. So that two more state 
variables and two equations may be added. Additional state 
variable create computational burden. To avoid this, models 
are often limited to the fifth order and rotor impendence is 
algebraically altered as function of rotor speed to account for 
torque discrepancies at startup. This is done by the 
assumption of frequency of rotor currents depends on rotor 
speed. Fifth order model running near full speed subjected to 
sudden voltage dip, would not reproduce the transient drag 
torque produced by stationary flux linkage trapped in the 
stator windings, although such behavior would show up in the 
seventh order model. Many researchers have solved seventh 
order BVPs using different methods. Siddiqi et al. [14-16] 
have solved using Variation of parameters method, 
Differential transformation method, Variational iteration 
technique. Reproducing kernel space method was used by 
Ghazala et al. [17].  

In this paper, our goal is applying Haar wavelet method for 

solving linear and nonlinear seventh order ODE over  ,a b  
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and comparing results with other methods available in 
literature. 

The following form of seventh order BVPs are considered 
 

(7) (1) (2) (3) (4) (5) (6)( ) ( , , , , , , , ), ( , ), y x f x y y y y y y y x a b  (1) 

 
subject to the following conditions: 

 
Type 1: 

(1) (1) (2)
1 2 3 4 5

(2) (3)
6 7

( ) , ( ) , ( ) , ( ) , ( ) ,

( ) , ( ) ,

    

 

    

 

y a y b y a y b y a

y b y a
 (2) 

Type 2: 
(1) (2)

1 2 3 4 5

(3) (4)
6 7

( ) , ( ) , ( ) , ( ) , ( ) ,

( ) , ( ) .

    

 

    

 

y a y c y b y a y a

y a y a
  (3) 

 

where,  ,c a b . Here ' , ' , , i is s a c and b are real 

constants for 1,2,...7i . 

This article is organized as, in section 2, notations of Haar 
wavelets and their integrals are introduced. In section 3, 
numerical algorithm based on wavelet is introduced. In 
section 4 convergence analysis is presented. Few test 
problems are solved and results are compared in section 5. In 
the final section conclusion of our work has been inserted. 

 
 

2. HAAR WAVELETS 
 

We considered the interval [ , ]t a b . Where a and b are 

given constants. The interval [ , ]a b  is divided into, 12 J  

subintervals of equal length. Length of each subinterval 

is
1

( )
.

2 


 

J

b a
t  Here J  indicates maximal level of resolution. 

Another two parameters are dilation: 0,1,2,...,j J  and 

translation: 0,1,2,...,2 1 jk [2]. By these parameters thi  

Haar wavelet is defined as  
 

1 2

2 3

1 [ ( ), ( ))

( ) 1 [ ( ), ( ))

0 ,

 

 




  



i

for t i i

h t for t i i

otherwise

                                           (4) 

 
here,  
 

1 2

3

1, ( ) 2 , ( ) (2 1) ,

( ) 2( 1) , 2 .J j

i m k i a k t i a k t

and i a k t where

   

   

         

    
 

 

(4) is valid for 2i  . For 1i  , we have 
 

1

1 [ , )
( )

0 .


 


for t a b
h t

otherwise
                                                  (5) 

 

1h is called a father wavelet. For 2i , we have 

 

2

1 ,
2

( ) 1 ,
2

0 .

   
 


   

   






a b
for t a

a b
h t for t b

otherwise

                                             (6) 

2h  is called a mother wavelet. Any function which is 

having finite energy on  ,a b , i.e 2[ , ]f L a b can be 

decomposed as infinite sum of Haar wavelets [18]: 
 

1

( ) ( ). (7)i i

i

f x a h x





 

Here, 'ia s are Haar coefficients. If f is either piecewise 

constant or wish to approximate by piecewise constant on 
each subinterval, then the above infinite series will be 
terminated at a finite number of terms. Integrating the Haar 
functions for  times. We get 

 

, ( ) . ..... ( ) 
    

t t t

i i

a a a

p t h x dx                                                (8) 

 

and , , ( ) .  
b

i i

a

E p t dt                                                          (9) 

 

1,2,...,7  and
11,2,...,2 . Ji  For 1i  , we have 

 

,1

1
( ) ( ) ,

!





 p t t a                                                         (10) 

 

for 2,i   we have 
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 

1
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!
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

   

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


 
   




     


i

if t a i

t i if t i i

p t
t i t i if t i i

t i t i t i if t i b

 (11) 

 
 

3.   METHOD OF SOLUTION 

 

3.1  Haar wavelet method: Presented the method in terms 
of following steps due to Lepik [2, 6]. 

 Express highest order derivative in the form of   
piecewise constant on each subinterval 

 
12

(7)

1

( ) ( ).






J

i i

i

y x a h x                                                          (12) 

 
(6) (5) (4) (3) (2) (1)( ), ( ), ( ), ( ), ( ), ( )y x y x y x y x y x y x

and

( )y x will have to decompose in terms of integrated Haar 

functions and replace these in to the given linear differential 
equation. 

 Discretize the equation obtained from above at 
collocation points: 

 

11 , 1,2,...,2 ,
2

Jl l
l

x x
x l  
                                               
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where lx is the grid point given by   

1, 0,1,..., 2 .J
lx a l t l     Resulting into 1 12 2J J   

linear algebraic system. 

 Calculate the wavelet coefficients 'ia s  and obtain the 

Haar solution for unknown function .y  

The Particular boundary conditions 
1

0, , 1,
2

  a c b are 

taken and further simplified as 

 

3.2 Boundary conditions of type 1 

 
(1) (1)

1 2 3 4

(2) (2) (3)

5 6 7

(0) , (1) , (0) , (1) ,

(0) , (1) , (0) .

   

  

   

  

y y y y

y y y
           (13) 

 

( )y x  can be derived as 

 

1

2 3 4 5
(4) (5)

1 3 5 7

6 2
(6)

7,

1

( ) (0) (0)
2 6 24 120

(0) ( )
720

   





      


J

i i

i

x x x x
y x x y y

x
y a P x

(14) 

 
using given boundary conditions (13), where unknowns 

(4) (5)(0), (0)y y and
(6) (0)y can be found as 

  

 
1

(4)

1 2 3 4 5

2

6 7 7, 6, 5,

1

(0) 360 360 240 120 72

12 12 360 120 12 ,

    

 





      
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J

i i i i

i

y

a E E E
     (15) 

 

 
1

(5)

1 2 3 4 5

2

6 7 7, 6, 5,

1

(0) 2880 2880 1800 1080 480
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    

 





     

   
J

i i i i

i

y

a E E E
 (16) 

 

 
1

(6)

1 2 3 4 5

2

6 7 7, 6, 5,

1

(0) 7200 7200 4320 2880 1080

360 120 7200 2880 360 ,
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 





      

    
J

i i i i

i

y

a E E E
 (17) 

 
where, 
 

1 1

5, 5, 6, 6,

0 0

( ) , ( )  i i i iE P x dx E P x dx and

1

7, 7,

0

( ) . (18) i iE P x dx  

 

3.3 Boundary conditions of type 2 

 

(1)

1 2 3 4

(2) (3) (4)

5 6 7

1
(0) , ( ) , (1) , (0) ,

2

(0) , (0) , (0) .

   

  

   

  

y y y y

y y y

(19) 

 

( )y x can be derived as 

1

2 3 4 5
(5)

1 4 5 6 7

26
(6)

7,

1

( ) (0)
2 6 24 120

(0) ( ).
720

    





      


J

i i

i

x x x x
y x x y

x
y a P x

(20) 

 
Using given boundary conditions (19) unknowns 

(5) (6)(0)and (0)y y can be found  

  

 
1

(5)
1 2 3 4 5

2

6 7 7, 7,

1

(0) 7560 7680 120 3720 900

140 15 7680 120 ,
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 





      

   
J

i i i

i

y

a D E
(21) 
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1

(6)

1 2 3 4 5

2

6 7 7, 7,

1

(0) 44640 46080 1440 21600 5040

720 60 46080 1440 ,

    

 





     

  
J

i i i

i

y

a D E
 (22) 

where, 

1
12

7, 7, 7, 7,

0 0

( ) , ( ) .  i i i iD P x dx E P x dx                 (23) 

 
 

4.  CONVERGENCE ANALYSIS OF HAAR WAVELET 

DISCRETIZATION METHOD (HWDM) 
 

A question accuracy issues of HWDM open from 1997 is 
clarified by J. Majak et al. [18]. Order of convergence for 
fourth order ODE which arises in the transverse vibration 
analysis of FGM beam model problem is derived by J. Majak 
et al. [19]. Here, we derived the order of convergence for 
seventh order ODE. 

Seventh order ODE is considered in the following form 
 

 (1) (2) (3) (4) (5) (6) (7), , , , , , , , 0.f x y y y y y y y y                 (24) 

 
Expand seventh order derivative into Haar wavelets as  
 

7

7
1

( )
( )





 i i

i

d y x
a h x

dx
                                                      (25) 

2 1

1 1 2 1 2 1
0 0

( ).
 

   
 

 
j

j jk k
j k

a h a h x                                 (26) 

 

Here 0,1,...2 1.jk    By integrating equation (26) seven 

times we obtained the solution of DE (24) as 
 

2 1
1

2 1 7,2 1
0 0

( ) ( ) ( ),
7!

 

   
 

  
j

j jk k
j k

a
y x a P x B x                 (27) 

 

where 
7,2 1

( )j k
P x

 
represents the seventh order integrals of 

the Haar functions and ( )B x is a boundary term. 

Let us assume that 
7

2

7

( )
( )

d y x
L R

dx
is a continuous function 

and its first derivative is bounded on 
8

8

( )
[0,1], : .  

d y x

dx
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Let 1

2 1
1

2 2 1 7,2 1
0 0

( ) ( ) ( )
7!





   
 

  
j

J j j

J

k k
j k

a
y x a P x B x be the 

approximation to the unknown y  by Haar wavelets. The 

absolute error at the thJ resolution is denoted 12
| |JE  and 

given by 
 

1 1

2 1

2 2 2 1 7,2 1
1 0

| | | ( ) ( ) | | ( ) | . 

 

   
  

    
j

J J j jk k
j J k

E y x y x a P x       (28) 

 

Norm of the error in Hilbert space 2 ( )[19]L R is given by 

 

 1

21 2 1
2
22 2 1 7,2 1

1 00

|| || ( )

 

   
  

  
j

J j jk k
j J k

E a P x dx

2 1 2 1

2 1 2 1
1 0 1 0

1

7,2 1 7,2 1

0

( ) ( ) , (29)

j r

j r

j r

k s
j J k r J s

k s

a a

P x P x dx

   

   
     

   





   


 

where, 7, ( )iP x are the integrals of Haar functions. J. Majak et 

al. [18] have shown that
12

i J
a




 , for 2 1ji k   and 

7, ( )iP x are monotonically increasing on [0,1).  

Therefore, 
 

1

2 2 1 2 1
2

22
1 0 1 0

2 4 6

1 1 1

2 4 6

1 1 1

1 1
|| || .

4 2 2

1 1 1 1 1 1

120 72 3602 2 2

1 1 1 1 1 1
.

120 72 3602 2 2




   

     

  

  

 

      
        

       

      
       

       

   
j r

J j r
j J k r J s

j j j

r r r

E

      (30) 

 
Above equation can be simplified as 

 
2 2

1 2 1
1

1 1 1
,

2 2 1 2

1,2,3.

m

r m J
r J

factorizationand

m



 
 

 
                  

   

  

 

1

2 4 6

22 1 1 1

1 1 1 1 1
|| || .

720 3 632 2 2


   

      
        

       

J J J J
E     (31) 

 
Therefore, 

 

1

2

2 12

1
|| || .

2
 

  
   

   
J J

E O    (32) 

 
From the above equation, one can easily notice that the 

error bound is inversely proportional to the square of level of 
resolution. This assures the convergence of Haar 
approximation when J  is sufficiently large and convergence 

is of order two. 

5.  NUMERICAL STUDIES 
 
We considered four test problems whose exact solution is 

known. Effectiveness of Haar wavelet collocation method 
(HWCM) was tested in each example by compared with other 
methods available in literature and represented the same in 
the form of graph and Table . 

 

Example 1: Consider the linear BVP of type 1: 
 

(7) 2( ) ( ) ( 2 6), (0,1)    xy x xy x e x x x   (33) 

 
with boundary conditions: 
 

(1) (1) (2)

(2) 3

(0) 1, (1) 0, (0) 0, (1) , (0) 1,

(1) 2 , (0) 2.

      

   

y y y y e y

y e y
(34) 

 

Analytic solution is given by ( ) (1 ) .xy x x e   In Figure 1, 

exact and approximate solution for 3J is represented. The 

comparison values of absolute errors of the HWCM with 
Adomian decomposition method (ADM [20]) and 
Differential transformation method (DTM [15]) is shown in 
Table 1. 

 

 
 

Figure 1. Comparison of approximate and exact solution of 
Ex. 1 

 

Table 1. Comparison of numerical results of Ex. 1 
 

X     Exact     Approxi   Absolute     Absolute       Absolute 
       solution   mate        error by      error by          error by 
                     solution    HWCM      ADM[20]     DTM[15] 

0.1   0.9947   0.9947      7.1E-15       4.4E-10        4.6E-13 

0.2   0.9771   0.9771      8.2E-14       4.9E-10        5.7E-12 
0.3   0.9449   0.9449      2.8E-13       7.4E-10        2.1E-11 
0.4   0.8951   0.8951      5.7E-13       6.6E-10        4.7E-11 
0.5   0.8244   0.8244      8.2E-13       3.0E-1          7.4E-11 
0.6   0.7288   0.7288      8.8E-13       4.3E-10        8.9E-11 
0.7   0.6041   0.6041      6.9E-13       3.7E-10        7.9E-11 
0.8   0.4451   0.4451      3.6E-13       7.3E-10        4.7E-11 
0.9   0.2460   0.2460      7.2E-14       7.0E-10        1.1E-11 

 

Example 2: Consider the linear BVP of type 1: 
 
(7) 2( ) ( ) (35 12 2 ), (0,1)     xy x y x e x x x       (35) 

 
with boundary conditions: 
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(1) (1) (2)

(2) 3

(0) 0, (1) 0, (0) 1, (1) , (0) 0,

(1) 4 , (0) 3.

     

   

y y y y e y

y e y
   (36) 

 

Analytic solution is given by ( ) (1 ) .xy x x x e   In Figure 

2, the comparison of exact and Haar solution for 4J   is 

represented. In Table 2, errors obtained by HWCM are 
compared against the Variation of parameters method (VPM 
[14]) and Petrov-Galerkin method (PGM [21]). 
 

 
 

Figure 2. Comparison of approximate and exact solution of 
Ex. 2 

 

Table 2. Comparison of numerical results of Ex. 2 
 

X     Exact     Approxi   Absolute     Absolute       Absolute 
       solution   mate        error by      error by          error by 
                     solution    HWCM      VPM[14]      PGM[21] 

0.1   0.0995   0.0995      6.0E-14       8.5E-13       1.4E-07  
0.2   0.1954   0.1954      6.9E-13       9.9E-12       6.4E-07 
0.3   0.2835   0.2835      2.4E-12       3.5E-11       2.9E-06 
0.4   0.3580   0.3580      4.8E-12       7.3E-10       4.4E-06  
0.5   0.4122   0.4122      6.9E-12       1.1E-10       6.7E-06 
0.6   0.4373   0.4373     7.4E-12        1.3E-10       6.4E-06 
0.7   0.4229   0.4229      5.9E-12       1.5E-10       3.7E-06 
0.8   0.3561   0.3561      3.0E-12       2.7E-10       3.3E-07 
0.9   0.2214   0.2214      6.1E-13       2.2E-09       1.4E-06 

 

Example 3: Consider the nonlinear BVP of type 1: 
 

(7) 2( ) ( ), (0,1),  xy x e y x x (37) 

 
subject to the boundary conditions: 
 

1 (1) (1) 1

(2) (2) 1 3

(0) 1, (1) , (0) 1, (1) ,

(0) 1, (1) , (0) 1.

 



     

   

y y e y y e

y y e y
     (38) 

 

The exact solution is
xe . Using Quasilinearization 

technique, nonlinear BVP (35) is converted into a sequence 
of linear BVPs [22], as 
 

(7) 2
11( ) 2 ( ) ( ) [ ( )] , (39)x x

n n nny x e y x y x e y x  

 
with boundary conditions : 
 

1 (1) (1) 1

1 1 1 1

(2) (2) 1 (3)

1 1 1

(0) 1, (1) , (0) 1, (1) ,

(0) 1, (1) , (0) 1.

 

   



  

     

   

n n n n

n n n

y y e y y e

y y e y
 (40) 

Here 0( )y x is chosen from the physical or mathematical 

perspectives of given problem. We assume that 0( )y x  has 

Maclaurian series expansion. We computed only one iteration 

i.e. 1( ) ( ).y x y x  In Figure 3 comparison of exact and 

approximate solution for J=5 is represented. Errors obtained 
by HWCM are compared with ADM [20] and DTM [15] are 
tabulated in Table 3.  
 

 
 

Figure 3. Comparison of approximate and exact solution of 
Ex. 3 

 

Table 3. Comparison of numerical results of Ex. 3 
 

X     Exact     Approxi   Absolute     Absolute       Absolute 
       solution   mate        error by      error by          error by 
                     solution    HWCM      ADM[20]      DTM[15] 

0.1   0.9048   0.9048      5.5E-16       1.6E-09         3.0E-14 
0.2   0.8187   0.8187      4.5E-15       1.6E-09         3.7E-13 
0.3   0.7408   0.7408      1.5E-14       4.9E-09         1.4E-12 
0.4   0.6703   0.6703      2.8E-14       1.5E-09         3.0E-12 
0.5   0.6065   0.6065      3.9E-14       1.5E-09         4.8E-12 
0.6   0.5488   0.5488      4.2E-14       2.5E-09         5.7E-12 
0.7   0.4966   0.4966      3.2E-14      1.4E-08          5.1E-12 
0.8   0.4493   0.4493      1.6E-14       2.5E-09         2.9E-12 
0.9   0.4066   0.4066      3.7E-15       5.4E-09         6.9E-13 

 

Example 4: Consider the nonlinear BVP of type 2: 
 

(7) - 2( ) ( ), (0,1), xy x e y x x  (41) 

 
subject to the boundary conditions: 
 

1
(1) (2)2

(3) (4)

1
(0) 1, ( ) , (1) , (0) 1, (0) 1,

2

(0) 1, (0) 1. (42)

y y e y e y y

y y

    

 

 

 

The exact solution is .xe  By Quasilinearization technique 

[22], we have 
 

(7) 2
11( ) 2 ( ) ( ) [ ( )] , 
  x x

n n nny x e y x y x e y x (43) 

 
with boundary conditions:  
 

1
(1)2

1 1 1 1

(2) (3) (4)

1 1 1

1
(0) 1, ( ) , (0) 1, (1) ,

2

(0) 1, (0) 1, (0) 1.

   

  

   

  

n n n n

n n n

y y e y y e

y y y

 (44) 
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In Figure 4 comparison of exact and approximate solution 
for J=4 is represented. The errors obtained by HWCM are 
compared with Homotopy perturbation method (HPM[23]) 
are in Table 4. 
 

 
 

Figure 4. Comparison of approximate and exact solution of 
Ex. 4 

 

Table 4. Comparison of numerical results of Ex. 4 
 

X         Exact         Approxi mate   Absolute         Absolute        
           solution       solution           error by           error by           
                                                       HWCM         HPM[23]     

0.1      1.1052         1.1052             6.7E-16            1.0E-06 
0.2      1.2214         1.2214             6.7E-15            4.8E-07   
0.3      1.3499         1.3499             3.4E-14            4.9E-06    
0.4      1.4918         1.4918             7.3E-14            5.4E-07  
0.5      1.6487         1.6487             4.4E-16            6.9E-07          
 0.6     1.8221         1.8221            5.5E-13             5.6E-07  
0.7      2.0138         2.0138             2.3E-12            3.9E-07    
0.8      2.2255         2.2255             5.9E-12            4.9E-07  
0.9      2.4596         2.4596             9.8E-12            1.5E-06                                                             

 

 

6. CONCLUSION 
 

In this paper, we solved seventh order BVPs arise in 
Mathematical modeling of induction motors with two rotor 
circuits to test the efficiency of the Haar wavelet method. We 
have taken few test problems of linear and nonlinear type. 
Nonlinear problems were solved with the aid of 
quasilinearization technique. According to convergence 
analysis as the level of resolution increases, absolute error 
decreases. Comparison of the numerical results with other 
methods ensured that the proposed method is more accurate 
and quite reasonable.  
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