

REVIEW OF COMPUTER ENGINEERING STUDIES

 Vol.2, No.1, 2015, pp.25-30

http://dx.doi.org/10.18280/rces.020104

1. INTRODUCTION

The traditional hardware implementation of image

processing uses Digital Signal Processors (DSP) or

Application Specific Integrated Circuits (ASIC). However,

the growing need for faster and cost-effective systems

triggers a shift to Field Programmable Gate Arrays (FPGA),

where the inherent parallelism results in better performance.

When an application requires real-time processing, like video

or television signal processing or real-time trajectory

generation of a robotic manipulator, the specifications are

very strict and are better met when implemented in hardware.

Computationally demanding functions like convolution

filters, motion estimators, two-dimensional Discrete Cosine

Transforms (2D DCT) and Fast Fourier Transforms (FFT) are

better optimized when targeted on FPGA [1-4]. Features like

embedded hardware multipliers, increased number of

memory blocks and system-on-a-chip integration enable

video applications in FPGA that can outperform conventional

DSP designs.

On the other hand, solutions to a number of imaging

problems are more flexible when implemented in software

rather than in hardware, especially when they are not

computationally demanding or when they need to be executed

sporadically in the overall process. Moreover, some hardware

components are hard to be re-designed and transferred on a

FPGA board from scratch when they are already a functional

part of a computer-based system. Such components are frame

grabbers and multiple-camera systems already installed as

part of an imaging application or other robotic control

equipment.

Following the above considerations we conclude that it is

often needed to integrate components from an already

installed computer-based imaging application dedicated to

some automation system, with FPGA-based accelerators that

exploit the low-level parallelism inherent in hardware

structures. Thus a critical need arises for an embedded

software/hardware interface that can allow for high-

bandwidth communication between the host application and

the hardware accelerators.

In this paper we apply and evaluate the performance of an

example mixed hardware design that includes on the one side

a host computer running imaging application, equipped with a

camera and a frame-grabber, and on the other side a XILINX

FPGA board [5] running an image filter hardware accelerator

and other system components. The communication channel

transferring image data from the host computer to the

hardware board is a high-speed USB3.0 port. The various

hardware parts and external circuit on the FPGA board are

controlled. As a result of this evaluation one can explore the

range of applications suitable for a host/co-processor

architecture including an embedded processor and utilizing a

USB3.0 communication channel.

In the following, we first give a short account of the tools

we used for system design. We also present an overview of

the particular image filtering application we embedded in the

FPGA chip for the evaluation of the host/co-processor system

architecture. We describe the modular interconnection of

different system parts and assess the performance of the

system. We examine the speed and frame-size limits of such a

design when it is dedicated to image processing finally.

A DESIGN OF FPGA-BASED SYSTEM FOR IMAGE PROCESSING

Cheng Wang* and Suming Zhu

 Jiangsu University, 212013 Zhenjiang, China.

 Email: 1066176439@qq.com

ABSTRACT

We evaluated the performance of a hardware architecture designed to perform a wide range of fast image processing tasks.

The system architecture is based on hardware featuring a Field Programmable Gate Array (FPGA) co-processor and a host

computer. A host application controlling a frame grabber and an industrial camera is used to capture and exchange video data

with the hardware co-processor via a high speed USB3.0 channel, implemented with a standard macrocell, The FPGA

accelerator is based on a XILINX kintex-7 chip and is designed as a system-on-a-programmable-chip with the help of an

embedded software processor. The SOPC system integrates the CPU, external and on chip memory, the communication

channel and typical image filters appropriate for the evaluation of the system performance. Measured transfer rates over the

communication channel and processing times for the implemented hardware logic are presented for various frame sizes. A

comparison with other solutions is given and a range of application is also discussed.

Keywords: Field Programmable Gate Array, Image filters, Universal Serial Bus, System-on-a-programmable-chip.

25

2. IMAGE PROCESSING ALGORITHMS

Low-level Vision 3x3 Gaussian pyramid Algorithm: two
dimensional low-pass filters, such as the Gaussian low-pass
filter, work with a filter kernel, calculate an average value for
a destination pixel using a number of neighboring source
pixels. The two dimensional Gaussian filter is shown in
following figure1.

When dealing with digital images integer weighting factors
are used. A typical 3x3 Gaussian filter matrix and the
decimation of the pixels are shown in Figure 1. The anchor
point of the Gaussian filter kernel is marked with an “X”.

Figure 1. Gaussian pyramid filter 3x3 kernel

Obviously for every calculated pixel one neighboring
pixels in both dimensions are required. Therefore, this
function uses a Region of Interest (ROI). With every
Gaussian pyramid level the number of pixels in x- and y-
coordinates is reduced by a factor of 1.

According to Gaussian calculation method for using the
neighbor pixels window 3x3 or 5x5 to get the new pixel data,
taking into consideration that their differences in their
kernel’s size. Taking into consideration that; expressing the
kernel operation in each frame process can be decomposed
into block processing mode, and this block has the same
processing function and the number and size determine
degree of algorithm parallelism.

The degree of parallelism for one (256x256) image frame
is 256x3 or 256x5 delay element blocks respectively with.
Computing time is determined by number of machine cycle to
get the first frame pixel plus number of a whole frame pixels
calculated in the pipe line, total number of machine cycles =
9 + 256*256 = 65,545 machine cycle. Working with
frequency 100MHz (10nSec) we found that time = 10nSec *
65,545 = 0.6554 mSec almost 0.66 mSec for single frame. So
from that; we defined a new general structure design of fast
image processing as we will explain later. This process and
technique for Gaussian 3x3 and Gaussian 5x5 will have the
same speed of calculations versus using a little more of
FPGA utilization resources.

Edge detection is the name for a set of mathematical
methods which aim at identifying points in a digital imageat
which the image brightness changes sharply or, more
formally, has discontinuities. The points at which image
brightness changes sharply are typically organized into a set
of curved line segments termed edges. The same problem of
finding discontinuities in 1D signal is known as step
detection and the problem of finding signal discontinuities
over time is known as change detection. Edge detection is a

fundamental tool in processing, machine and computer vision,
particularly in the areas of feature detection and feature
extraction.

The purpose of detecting sharp changes in image
brightness is to capture important events and changes in
properties of the world. It can be shown that under rather
general assumptions for an image formation model,
discontinuities in image brightness are likely to correspond to:
discontinuities in depth; discontinuities in surface orientation;
changes in material properties and variations in scene
illumination.

3. DESIGN TOOLS OVERVIEW

The design of a DSP system with FPGA often utilizes both
high-level algorithm development tools and hardware
description language (HDL) tools. It can also make use of
third-party intellectual property (IP) cores implementing
typical DSP functions or high speed communication protocols.

In our application we use model-based design tools like
The Math works Simulink (based on Math work’s MATLAB)
with the libraries of XILINX’s IP core. The core uses model
design to produce and synthesize HDL code, which can then
be integrated with other hardware design files within a
synthesis tool, like the ISE 14.4 development environment. In
the present work, we designed image filter components using
IP libraries and the resulting blocks were integrated with the
rest of the system in XILINX’s Embedded Development Kit
(EDK) Builder.

EDK-Builder design software resides as a tool in the
XILINX environment [6]. Its purpose is to integrate an
embedded software processor like Platform Studio (XPS)
with hardware logic and custom or standard peripherals
within an overall system, often called Embedded
Development Kit (EDK). EDK-Builder provides an interface
fabric in order to interconnect the Platform Studio processing
path with embedded and external memory, the filter co-
processors, other peripherals and the channels of
communication with the host computer.

On the host side one may develop a control application by
means of any suitable language like C. We use software by
National Instruments Corporation [10], which provides a very
flexible platform for image acquisition, image processing and
industrial control.

4. SYSTEM DESIGN AND IMPLEMENTATION OF
THE FILTER DESIGN

The proposed methodology and its corresponding
architecture for the image processing are illustrated in Fig. 2.
It describes the architecture in the camera in which data
acquisition; signal processing and communication capabilities
are embedded.

The main target of this work is to evaluate the performance
of a host/co-processor architecture including an embedded
processor and utilizing a communication channel between
host and hardware board, like a USB3.0 channel. The task-
logic performed by the embedded accelerator can be any
image function within the limitations of existing FPGA
devices.

For our purpose we built a typical image-processing
application in order to target the FPGA co-processor. It

26

consists of a noise filter followed by an edge-detector. Noise
reduction and edge detection are two elementary processes
required for most machine vision applications, like object
recognition, medical imaging, lane detection in next-

generation automotive technology, people tracking, control
systems, etc.

Figure 2. System architecture

We model noise and edge filtering using the XILINX’s
DSP Libraries in Simulink. An example of this procedure can
be found in. Noise reduction is applied with a Gaussian 3x3
kernel while edge detection is designed using typical Prewitt
or Sobel filters. These functions can be applied combined in
series to achieve edge detection after noise reduction. Apart
from noise and edge filter blocks, there is also a block
representing the intermediate logic between the MicroBlaze
data and control paths and our filter task logic. Such
intermediate hardware fabric follows a specific protocol
referred to as Avalon interface. This interface cannot be
modeled in the Simulink environment and is rather inserted in
the system as a verilog file. Design examples implementing
the Avalon protocol can be found in XILINX reference
designs and technical reports. In brief, our Avalon
implementation consists of a 16-bit data-input and output
path, the appropriate Read and Write control signals and a
control interface that allows for selection between the
intermediate output from the Gauss filter and the output from
the edge detector. Data input and output to and from the task
logic blocks is implemented with the help of Read and Write
instances of a 4800 bytes FIFO register.

Each image frame when received by the hardware board is
loaded into an external SDRAM memory buffer and is
converted into an appropriate 16-bit data stream by means of
MicroBlaze instruction code. Data transfer between external
memory buffers and the MicroBlaze data bus is achieved
through Direct Memory Access (DMA) operations controlled
by appropriate instruction code for the MicroBlaze soft
processor.

Incoming pixels are processed by means of a simple 2D
digital Finite Impulse Response (FIR) filter convolution
kernel, working on the gray scale intensities of each pixel’s
neighbors in a 3x3 region. Image lines are buffered through
delay-lines producing primitive 3x3 cells where the filter
kernel applies. A delay block produces a neighboring pixel in
the same scan line, while a 640 delay block produces the
neighboring pixel in the previous image scan line. We assume

image size of 640x480 pixels. The line-buffer circuit is
implemented in the same manner for both noise and edge
filters. Frame resolution is incorporated in the line-buffer
diagram as a hardware built-in parameter. If a change in
frame size is required we need to re-design and re-compile.
The number of delay blocks depends on the size of the
convolution kernel, while delay line depth depends on the
number of pixels in each line. Each incoming pixel is at the
center of the mask and the line buffers produce the
neighboring pixels in adjacent rows and columns. Delay lines
with considerable depth are implemented as dedicated RAM
blocks in the FPGA chip and do not consume logical
elements.

After line buffering, pipeline adders and embedded
multipliers calculate the convolution result for each central
pixel. The model-design for implementation of the 3x3 Gauss
kernel calculations. Logic-consuming calculations, like
multiplications are implemented using dedicated multipliers
available in medium-scale XILINX FPGA.

5. EDK SYSTEM DESIGN

The co-processor parts described above were implemented
as components of an embedded system controlled by a
MicroBlaze processor, and are shown in Fig.3. The
MicroBlaze software which is used here for data streaming
control is often the basis for industrial as well as academic
projects. It can be used in its evaluation version along with
the tools for assembling and downloading instruction code.
Once installed within the synthesis software, the MicroBlaze
processor becomes integrated as a library component in
XILINX’s EDK-builder tool.

EDK-Builder converts the model-based design into HDL
code appropriate for integration with other hardware
components. The filter is readily recognized by the synthesis
software as a System-on-a-Programmable-Chip (SOPC)
module and can be integrated within a MicroBlaze system

27

with suitable hardware fabric [7]. Other modules that are
necessary for a complete system are the MicroBlaze soft
processor, external memory controllers, DMA channels, and
a custom IP peripheral for high speed USB communication
with the host. A VGA controller can be added in order to
monitor the result on an external screen. Many of such
peripheral functions can be found as open source custom
HDL Intellectual Property (IP) or as evaluation cores
provided by XILINX or third party companies.

 USB 3.0 high speed connectivity is added to the FPGA
board by means of a daughter-card by System Level
Solutions (SLS) Corporation. It can be added to any XILINX
board featuring a Santa-Cruz peripheral connector. This
daughter-card provides an extension based on CY7C68000
PHY USB3.0 transceiver. A USB3.0 IP core compliant with
Transceiver Macrocell Interface (UTMI) protocol allows
integration of the USB function with the MicroBlaze system.

We tested evaluation versions of the IP core and present
practical transmit and receive rates. The FPGA chip along
with the embedded MicroBlaze processor is always a slave
device in the communication via the USB channel, while the
host computer is always the master device.

The embedded system is assembled by means of the
SOPC-Builder tool of the synthesis software, by selecting
library components and defining their interconnection. After
being generated by SOPC Builder, the system can be inserted
as a block in a schematic file for synthesis and fitting
processing. The only additional components that are
necessary are PLLs for Nios and memory clocking. After we
synthesize and simulate the design by means of the tools
described in Section 2, we target a FPGA chip incorporated
on a development board manufactured by Altera Corporation.
The board also features external memory and several typical
peripheral circuits.

Figure 3. EDK architecture

6. SYSTEM PERFORMANCE EVALUATION

Integrated Software Environment (ISE14.4) software for
FPGA and Matlab Math-works (R2011a) software both were
used for design, validate and simulate our general structure
fast image design, the FPGA embedded system used was
from Xilinx Company product Kintex-7.

FPGA resources consummated due to our proposed design
in Xilinx Kintex-7 number XC7K160T, that DSP48 slices is

2% in Gaussian kernel size 3x3 and 5% in Gaussian kernel
size 5x5. Also umber of number of Digital Clock Manager
(DCM) and other resources almost the same. Finally The
main target is to see the both low level different kernel
algorithm deals with real image with the size of 256x256 in
figure 4-a and the output image result from applying
Gaussian filter 3x3 shown in figure 4-b and edge filter result
image in 4-c.

28

(a) Original image (b) Gaussian Filter 3x3

(c) Edge filter

Figure 4. Result of successive processing

7. CONCLUSIONS

The great advantage in our design implementation on
FPGA is that whatever the kernel size and more usage of
DSP48 slice the time difference is slightly change not the
same as if we were using C language Programming technique,
designing fast image algorithm main concerns is accuracy
and reducing the time as minimum as possible which we
applied the high accuracy by using DSP slice 18bit by 18 bit
in multiplication and 48 bit in addition, in the other hand by
using the implementation target is an FPGA instead of DSP
we reduce the total image frame processing time.

ACKNOWLEDGMENT

The authors wish to thank National High Technology
Research and Development Program. This work was
supported in part by a grant from it.

REFERENCES

1. W. J. MacLean, An Evaluation of The Suitability of
Fpgas for Embedded Vision Systems, Proceedings of
The 2005 IEEE Computer Society Conference On
Computer Vision And Pattern Recognition (CVPR’05),
vol.3, p. 131, California, USA, June 2005.

2. R. J. Petersen, B. L. Hutchings, An Assessment of the
Suitability of FPGA-Based Systems for Use in Digital
Signal Processing, 5th International Workshop on Field-
Programmable Logic and Applications, pp. 293-302,
Oxford, England, August 1995.

3. M. A. Vega-Rodriguez, J. M. Sanchez-Perez, J. A.
Gomez-Pulido, Real Time Image Processing with Re-
Configurable Hardware, 8th IEEE International
Conference On Electronics, Circuits and Systems
(ICECS2001), vol. 1, pp. 213-216, Malta, September
2001.

29

4. I. S. Uzun, A. Amira, A. Bouridane, FPGA
Implementations of Fast Fourier Transforms for Real
Time Signal and Image Processing, IEE Proceedings—
Vision, Image and Signal Processing, 152(3), pp.283-
296, 2005.

5. Edge Detection Using SOPC Builder and DSP Builder
Tool Flow, Altera Technical Paper, AN-377-1.0, May
2005.

6. I. Y. Soon, C. K. Yeo, H. C. Ng, An Analogue Video
Interface for General-Purpose DSP, Microprocessors
and Microsystems 25, pp.33-39, 2001.

30

