
 

 
 
 

 
 

 
1. INTRODUCTION 

Micropolar fluids are referred to those fluids that contain 
micro-constituents that can undergo rotation which affect the 
hydrodynamics of the flow. The dynamics of micropolar 
fluids, originated from the theory of Eringen [1, 2] has been a 
popular area of research due to their applications in a number 
of processes that occurs in industry. The development of 
research in this area is stimulated by the presence of a variety 
of its real world applications in industrial and engineering 
processes. Exotic lubricants, colloidal suspensions, 
solidification of liquid crystals, extrusion of polymer fluids, 
cooling of metallic plate in bath, animal bloods, body fluids, 
glass fiber, glass blowing, paper production and rubber sheets 
are examples of these applications. Also, the study of heat 
generation/absorption in moving fluids is important in 
problems with chemical reactions and those concerned with 
dissociating fluids. Possible heat generation effects may alter 
the temperature distribution; consequently, the particle 
deposition rate in nuclear reactors, electronic chips and semi 
conductor wafers. The number of investigations in the 
convective flow and heat transfer over a stretching/shrinking 
wedge has grown dramatically in recent years. Crane [3] was 
the first to report the analytical solution for the boundary 
layer flow of an incompressible viscous fluid over a 

stretching plate. On the other hand, it seems that Miklavčič 
and Wang [4] were the first who investigated the flow over a 
shrinking sheet. After the pioneering contributions by both 
Crane [3] and Miklavčič and Wang [4], the study of fluid 
flow over a stretching/shrinking sheet has been explored by a 
large number of researchers under different physical 
conditions. An excellent review of micropolar fluids and their 
applications was given by Ariman et al. [5, 6]. Soundealgekar 
and Takhar [7] studied the flow and heat transfer past a 
continuously moving plate in a micropolar fluid. El-
Arabaway [8] analyzed the problem of the effect of 
suction/injection on the flow of a micropolar fluid part a 
continuously moving plate in the presence of radiation. Alam 
et al. [9] introduced a local similarity solution of an unsteady 
two dimensional MHD convective flow of a micropolar fluid 
past a continuously moving porous plate under the influence 
of magnetic field. Rahman et al. [10] studied thermo-
micropolar fluid flow along a vertical permeable plate with 
uniform surface heat flux in the presence of heat generation. 

Recently, Rahman and Sattar [11] analyzed 
magnetohydrodynamic  convective flow of a micropolar fluid 
past a vertical porous plate in the presence of heat 
generation/absorption.  

Therefore, the purpose of the present paper is to develop a 
mathematical model for an unsteady two dimensional 
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In this paper, we have developed a mathematical model for the problem of unsteady hydromagnetic two 
dimensional flow and heat transfer of a viscous incompressible micropolar fluid over a heated permeable 
linearly stretching/shrinking wedge with heat generation/absorption. A set of similarity parameters is employed 
to convert the governing nonlinear partial differential equations into ordinary differential equations which are 
solved numerically using Nachtsheim-Swigert shooting iteration technique along with sixth order Runge-Kutta 
integration scheme. Comparisons with previously published work are performed and the results are found to be 
in excellent agreement. Numerical results are presented through graphs and tables and discussed them from the 
physical point of view. It is observed that the local skin friction coefficient (rate of shear stress) increases with 
the increase of the magnetic field parameter and the rate of heat transfer increases with the increase of the heat 
generation parameter. 
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hydromagnetic forced convective heat transfer of a 
micropolar fluid over a linear stretching/ shrinking wedge in 
the presence of suction/injection and heat 
generation/absorption effects with convective surface 
boundary condition. The effects of the governing parameters 
on the flow field and heat transfer characteristics are 
presented through graphs and tables and discussed them from 
the physical point of  view. 

2. MATHEMATICAL MODEL 

2.1 Flow analysis 

 
Consider an unsteady two dimensional hydromagnetic flow 

of a viscous incompressible micropolar fluid past a linear 
permeable stretching/shrinking wedge. A uniform magnetic 
field  acting perpendicular to the wedge. The angle of the 
wedge is given by   . Keeping the origin fixed, along 

the x-axis two equal and opposite forces are introduced to 
stretch the wedge. The stretching/shrinking velocity is  

u U , where   is stretching/shrinking rate. The x-axis is 

the direction of the flow along the wedge and the y-axis 
normal to it. It is assumed that the lower surface of the wedge 
is heated by convection from a hot fluid of temperature 

fT which provides a heat transfer coefficient fh . Fluid 

suction/injection hole size is considered as  constant. The 
flow configurations and coordinate system are shown in 
Figure 1. 

 

 

       Figure 1.  Flow configurations and coordinate system 
 

Under the above assumptions and usual boundary layer 
approximation, the governing equations for this problem can 
be written as: 
 

Continuity Equation: 
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Angular Momentum Equation: 
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Energy Equation: 
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where u , u are the velocity components along x , y  co-

ordinates respectively, t is the time, 



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S
  is the 

apparent kinematic viscosity,  


 
  
 

s

S
j   is the 

microrotation viscosity (or spin-gradient viscosity),    is the 

coefficient of dynamic viscosity, S  is the microrotation 

coupling coefficient (or vortex viscosity),  is the density of 

the fluid,  N is the microrotation component normal to the 

xy -plane, j is the micro-inertia density, T  is the temperature 

of the fluid within the boundary layer, T   is the free stream 

temperature, pc  is the specific heat of the fluid at constant 

pressure,  is the thermal conductivity and  is the heat 
generation/absorption constant. 
 
 
2.2 Boundary conditions 

 
 
The boundary conditions for the above problem are 

 (i) On the surface of the wedge (y = 0): 
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  (ii) Matching with the free stream (y  ∞): 
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where (x, t)wv  represents the suction/injection velocity at the 

porous wedge where its sign indicates suction (x 0)  or 

injection (x 0) and U(x, t)  is the potential velocity 

generated by the pressure gradient. The constant 0   

corresponds to a stretching wedge and 0  for a shrinking 

wedge while 0  for a static wedge. The value of 

microrotation parameter 0n results 0N which represents 

no-spin condition i.e. the microelement in concentrated 
particle flow-close to the wall are not able to rotate as stated 

by Jena and Mathur [12]. The case 0.5n  physically 

represents the vanishing of the anti-symmetric part of the 
stress tensor and represents weak concentrations of the micro-
elements of the micropolar fluid at the solid surface. For this 
case Ahmadi [13] suggested that in a fine particle suspension 
the particle spin is equal to the fluid velocity at the wall. 
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2.3 Non-dimensionalization 

To obtain similarity solutions of the governing equations (1)-
(4) under the boundary conditions (5a) and (5b) we introduce 
the following non-dimensional variables: 
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where   is the similarity variable and  is the stream 

function  that satisfies the continuity equation (1) such that 
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Now substituting (6) into equations (2)-(4) we obtain: 
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micro-inertia density parameter and Pr
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number. 
The corresponding boundary conditions (5a) and (5b) 

becomes 
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coefficient which is positive ( 0)wf for suction and negative 

( 0)wf for injection 
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Bi is Biot number or, the 

surface convection parameter. 
 

2.4 Important physical parameters 
 
The parameters of engineering interest for the present 
problem are the local skin friction coefficient (rate of shear 
stress), local plate couple stress and local Nusselt number 
(rate of heat transfer) which are given in the following 
expressions: 
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3. METHOD OF SOLUTION 

The  nonlinear ordinary differential equations (7)-(9) along 
with the corresponding boundary conditions (10a) and (10b) 
have been solved numerically by applying sixth order Runge-
Kutta integration scheme together with Nachtsheim-Swigert 
[14] shooting iteration technique with 

, , , , ,wQ M f m , , , , , PrK n b B and Bi as prescribed 

parameter. A step size of 0.001    was selected to be 

satisfactory for a convergence criterion of 610  in all cases. 

The value of  was found to each iteration loop by the 

statement      . The maximum value of   to each 

group of parameters , , , , , , , , , ,Pr wQ M f m K n b B and 

Bi determined when the value of the unknown boundary 

conditions at 0   does not change to successful loop with 

an error less than 610 .  

3.1 Code verification 

To assess the accuracy of the present code, we calculated 

the values of ( )f , ( )f  and ( )f  for the Falkner-Skan 

boundary layer equation when 0   m K M for 

different values of  . From Table 1, we observe that the data 

produced by the present code and that of White [15] are in 
excellent agreement. This gives us confidence to use the 
present numerical method. 
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Table 1. Comparison of the present numerical results with 
White [15] for Falkner-Skan boundary layer flow when  

0   m K M  
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( )f  ( )f  ( )f  ( )f  ( )f  ( )f  

 
Present 
work 

White 
[15] 

Present 
work 

White 
[15] 

Present 
work 

White 
[15] 

0 0.0000 0.0000 0.0000 0.0000 0.4696 0.4696 

1 0.2330 0.2330 0.4606 0.4606 0.4344 0.4344 

2 0.8869 0.8870 0.8173 0.8167 0.2557 0.2557 

3 1.7957 1.7956 0.9691 0.9691 0.0677 0.0677 

4 2.7840 2.7839 0.9978 0.9978 0.0069 0.0067 

5 3.7834 3.7832 0.9999 0.9999 0.0003 0.0002 

 
 

4. NUMERICAL RESULTS AND DISCUSSION 

 
Numerical calculations have been carried out for different 

values of the physical parameters such as stretching/shrinking 

parameter  , heat generation/absorption parameter Q , 

magnetic field parameter M , suction/injection parameter wf , 

pressure gradient parameter m , unsteadiness parameter K , 

microrotation parameter n , vortex viscosity parameter  , 

spin-gradient viscosity parameter b , micro-inertia density 

parameter B  and Biot number Bi  keeping Prandtl number 

Pr  as fixed. Here we have considered human blood as the 
micropolar fluid. At 310 KT (human body temperature); 

the value of 
3 31.05 10 /   kg m , 14.65 /pc J kgK , 

32.2 10 /   J msK  and
33.2 10 /   kg ms . Thus, the 

value of the Prandtl number becomes Pr 21.0



 

pc
  (see 

also Chato [16] and Valvano et al. [17]). The default values 

of other parameters are chosen as 2.0  , 0.5K , 

0.2m  , 0.5B , 2.0b , 0.5n , 0.5M , 0.5wf , 

0.2  , 0.5Q   and 0.5Bi . 

The effects of the stretching parameter 0( )   on the 

dimensionless velocity, microrotation and temperature 
profiles within the boundary layer are shown in Figures 2(a)-
(c) respectively.  It can be illustrated from these figures that 
both the fluid velocity and microrotation profiles increase 

with the increase of 0( )   whereas the temperature within 

the boundary layer decrease with the increase of 0( )  . 

Figure 2(b) also shows that the dimensionless microrotation 
profiles remain negative. The behaviors of shrinking 

parameter 0( )   are just opposite to stretching parameter 

0( )   which are shown in figures 3(a)-(c) respectively. 
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Figure 2. Variation of dimensionless (a) velocity, (b) 
microrotation and (c) temperature profiles for different values 

of 0   

 
Figures 4(a)-(c) depict the dimensionless velocity, 

microrotation and temperature profiles for different values of 

the vortex viscosity parameter  . From Figure 4(a) it can be 
seen that velocity profile decreases rapidly with the increases 

of   whereas the microrotation profiles increase with the 

increase of   shown in figure 4(b). The vortex visosity 
paraameter has narrow effect on temperature profiles .  

The effects of the unsteadiness parameter K  on the 
dimensionless velocity, microrotation and temperature 
profiles are shown in Figure 5(a)-(c) respectively.   
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Figure 3. Variation of dimensionless (a) velocity, (b) 
microrotation and (c) temperature profiles for different 

values of 0   

 
From Figure 5(a), we observe that the velocity profiles 

decrease with the increasing values of K  for   critical . But 

for   critical , a reverse trend is observed. This figure also  

shows that a back flow phenomena occurs for 0   criticalK K  

(not precisely determined). From Figure 5(b) we observe that 
microrotation of the blood corpuscles increases with the 

increase of K  in the vicinity of the surface of the wedge. But 
far away from the surface of the wedge where kinematic 
viscosity dominates the flow microrotation profiles overlap 

and decrease with the increase of K . Figure 5(c) shows that 
the non-dimensional temperature profiles within the boundary 

layer decrease with the increase of K . Therefore the 

unsteadiness parameter K  controls the flow, rotation of the 
micro-constituents and heat transfer characteristics. 
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Figure 4. Variation of dimensionless (a) velocity, (b) 
microrotation and (c) temperature profiles for different values 

of   

 
Figures 6(a)-(c), respectively, depict the velocity, 

microrotation and temperature profiles for different values of 

the suction parameter 0wf . From Figure 6(a) we observe 

that the fluid velocity inside the boundary layer increases with 

the increase of wf . From Figure 6(b) it can be seen that, 

microrotation (angular velocity) of the microelements 
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remains negative and decrease vary close to the surface of the 

wedge within the domain   critical   for increasing values of  

0wf . But for   critical this tendency is reversed in the 

upper portion of the boundary layer. Opposite phenomena 
occurs for both velocity and microrotation profiles for  
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Figure 5. Variation of dimensionless (a) velocity, (b) 
microrotation and (c) temperature profiles for different 

values of K  
 

0wf which are shown in figures 7(a)-(b). The 

dimensionless temperature profiles decreases with the 

increase of both 0wf  and 0wf  which are shown in 

figures 6(c) and 7(c) respectively. Thus, decelerated fluid 
particles close to the heated wall absorb more heat from the 

surface of the wedge. When these decelerated fluid particles 
are sucked through the porous wedge leads to decrease of the 
fluid temperature. Thus, applying suction/injection, the 
growth of the hydrodynamic boundary layer thickness hence 
the speed of the flow and the temperature function can be 
controlled  that is important for many engineering 
applications like nuclear reactors, generators etc. 
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Figure 6. Variation of dimensionless (a) velocity, (b) 
microrotation and (c) temperature profiles for different values 

of  0wf  

 
Figures 8(a)-(b), respectively, show the non-dimensional 

velocity and microrotation profiles across the boundary layer 
for different values of n . The above-mentioned calculations 
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have been done for a weakly concentrated micropolar fluid 

i.e. for the microrotation parameter 0.5n . Figure 8(a) 

reveals that as increases the concentration of the fluid 
decreases hence fluid velocity increases whereas 
microrotation profiles decrease with the increase of n shown 

in figure 8(b). The case 0n  corresponds to the boundary 

condition (0) 0g indicating the no-spin condition. From this 

figure we see that for 0n , the solution remains positive  
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Figure 7. Variation of dimensionless (a) velocity, (b) 
microrotation and (c) temperature profiles for different 

values of  0wf  

 

and increases from zero to zero as   increases from zero to 

infinity. The case 0.5n  correspond to zero anti-symmetric 

part of the stress tensor. The effect of the Biot number 

(surface convection parameter)  on the temperature profiles 

against  are displayed in Figure 8(c). This figure illustrate 

the temperature profiles within the boundary layer increase 

with the increase of . From this figure it is also confirmed 

that for large values of  i.e. , the temperature profile 

attains its maximum value 1: thus the convective boundary 
condition become the prescribed surface temperature case.   
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Figure 8. Variation of dimensionless (a) velocity and (b) 
microrotation profiles for different values of n and (c) 

temperature profiles for different values of Bi 
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The effect of the heat generation/absorption  on the 
temperature profiles against   are displayed in Figure 9. 

This figure illustrate the temperature profiles within the 
boundary layer increase with the increase of Q . It is also 

apparent that the thickness of the thermal boundary layer 
increase with the increase of heat generation. 
 

 

Figure 9. Variation of dimensionless temperature profiles for 
different values of Q  

 
Table-2 shows the local skin-friction coefficient, local 

plate couple stress and the local Nusselt number for different 

values of   , Q  and  keeping all other parameters fixed. 

From this table we observe that the local skin-friction 
coefficients (rate of share stress), the local plate couple stress 
and the local Nusselt number (rate of heat transfer) decrease 

with the increase of the magnitude of ( 0)   . Reverse 

phenomena is noticed for the case of 0  which is not 

shown here. The both local skin-friction coefficients and the 

local plate couple stress with the increase of  M  whereas the 

local Nusselt number decrease with the increase of .M  

Again, the local Nusselt number increase with the increase of 

Q(Q 0) . The heat generation mechanism increases the 

fluid temperature near the surface of the wedge as a 
consequences rate of heat transfer from the hot surface of the 
wedge to the cold fluid increase. Therefore, it may be 
beneficial in flow and temperature controls of polymer 
processing. 

 

Table 2. Numerical values of the local skin-friction 
coefficient, plate couple stress and the local Nusselt number 

for different values of  ,  and  

 

      

0.2 

0.2 0.5 

0.8168921 0.2581758 0.0603921 

0.5 0.5348498 0.1754071 0.0575329 

0.8 0.2331363 0.0757795 0.0552402 

1.0 0.0000006 0.0000002 0.0526031 

0.2 0.2 

0.5 0.8168921 0.2581758 0.0603921 

1.0 0.9655778 0.3402117 0.0602641 
2.0 1.1995842 0.4759693 0.0600709 
3.0 1.3874870 0.5897992 0.0599271 

0.2 

0.2 

0.5 

0.8168921 0.2581759 0.0572852 

0.5 0.8168921 0.2581758 0.0603921 
0.8 0.8168921 0.2581758 0.0642567 
1.0 0.8168921 0.2581758 0.0792374 

5. CONCLUSIONS 
 

Unsteady hydromagnetic boundary layer heat transfer flow 
of a micropolar fluid over a forced convectively heated 
permeable linearly shrinking/stretching wedge with heat 
generation/absorption is investigated numerically. From the 
numerical c Q omputations the following major findings can 

be concluded:  

 Local skin friction coefficient, plate couple stress and 
rate of heat transfer decreases with the increase of 
stretching parameter whereas opposite phenomena 
occurs for shrinking parameter. 

 Dimensionless velocity at the surface of the wedge 
increase/decreases with the increase of both 
stretching/shrinking and suction/injection parameter. 

 Dimensionless temperature increases with the increase 
of shrinking parameter whereas it decreases with the 
increase of stretching parameter, unsteadiness parameter 
and suction/injection parameter.  

 Near the wedge surface, angular velocity increase as 
unsteadiness parameter increases but opposite trend is 
observed far away from the wedge surface. 

 Magnetic field increase skin friction coefficient and 
plate couples stress whereas it decreases heat transfer 
rate. 

 Both the heat generation parameter and surface 
convection parameter increase temperature. 
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NOMENCLATURE 

 

B   local micro-inertia density parameter 

b   spin gradient viscosity parameter 

f   dimensionless stream function 

wf   dimensionless suction/injection 

K   unsteadiness parameter 

M   magnetic field pararmeter 

xNu   Local Nusselt number 

Pr   Prandtl number 

Q   heat genaration/ absorption parameter 

T   temperature [K]   

Greek symbols 

 

   similarity variable 

   vortex viscosity parameter 

   dimensionless temperature 

   stretching/shrinking parameter 

   thermal conductivity[ / K]w m   

Subscripts 

 

w   condition at wall 

   condition at infinity 
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