

REVIEW OF COMPUTER ENGINEERING STUDIES

 Vol.2, No.1, 2015, pp.1-8
http://dx.doi.org/10.18280/rces.020101

1. INTRODUCTION

Airplane consists of large-scale integrated control systems
with a great amount of mechanical, electrical and hydraulic
components; among them there exist complicated physical
interactions as well as themselves internal. The physical
relations between the components are complex, coupling and
full of uncertainties [1, 2]. Apparently, the probability analysis
of such uncertainty should be theoretical basis and key
means in such complex system fault system diagnosis.

Bayesian network is a combination of probability theory
and graph theory and it is a theory system that describes the
relationships of random variables [3, 4, 5]. Based on
Bayesian theory, BN is an effective way to get an accurate
solution to uncertain probability reasoning [6, 7, 8]. In fault
diagnosis, given the fault representation, a quantitative
probability evaluation method is needed to predict the
probability of the every failure mode of the each specific
component. After that, by comparing the maximum
probability of each component, maintenance strategy is given.
That is just called MAP (maximum a posteriori hypothesis)
in Bayer theory.

MAP appears to be much more difficult in probabilistic
inference than other two typical problems, posterior
probability (Pr) and most probable explanation (MPE). The
problems for the latter two are NP-complete while MAP
problem is PPNP -hard [9~13]. Specifically, standard
structure-based methods for finding exact solutions to MAP,
such as variable elimination and jointree algorithm, have
complexities that are exponential in the constrained treewidth
of the network [14, 15]. Nevertheless, these methods can
solve MPE and Pr in time which is exponential in treewidth
[14, 15].

 A recent algorithm proposed by James D. Park [15] stands
for a notable advance of the state of the art in solving MAP
exactly. It performs a depth-first search in the space of all
instantiations of the MAP variables. The search can be
effectively pruned using upper bounds that can be calculated
by jointree algorithm only exponential in the treewidth, not
limited by the constrained treewidth. However, for a BN,
there are different jointrees according to different
constructing methods [16, 17, 18]. However, James D. Park
[15] just provides a general idea how to compute upper
bound using a jointree neither provides an algorithm for
constructing a concrete jointree nor gives an algorithm for
computing upper bound.

The focus of this paper is on providing a complete scheme
for solving MAP exactly, which consists of three main
algorithm, one for constructing an efficient binary jointree,
one used for computing upper bound and the last used for
finding out the exact MAP solution by performing a binary
depth-first search. Specifically, these three algorithms stem
from fusion algorithm [18], CPT algorithm [5] and
systematic algorithm [15], separately. For there exit gaps
among these three algorithms raised by different authors, the
paper not only modifies these three algorithms to become a
systematic scheme for solving MAP but also provides the
necessary pseudo-codes in detail. On the basis of the scheme,
a complete flow block diagram for fault diagnosis is devised.
Finally, two cases in the aircraft fault diagnose setting are
analyzed. In this paper, all the variables in BN are binary in
view of that any BN with multi-valued variables can be
transformed in to a BN where all the variables are binary.

The paper is structured as follows. Section 2 is dedicated
to provide the systematic scheme for solving MAP exactly,
including studying the complexity of MAP and presenting
three modified algorithms and their corresponding pseudo-

AIRCRAFT FAULT DIAGNOSIS BY SOLVING MAP EXACTLY

Wang Yao*and Sun Qin

School of Aeronautics, Northwestern Polytechnic University, P.R.China.

Email: wangyaorose@126.com

ABSTRACT

Bayesian networks (BNs) used for intelligence fault diagnosis have gotten lots of attention. This paper focuses on the
application of maximum a posteriori hypothesis (MAP) in aircraft fault diagnosis. Combining with the aircraft system its own
characteristics and technical background in the field of diagnosis, the paper both presents a systematic scheme used for
solving MAP exactly together with the needed pseudo-code and devises a complete flow block diagram to identify the most
possible cause of a fault by solving MAP exactly. Here MAP is solved by performing a binary depth-first search in a search
tree on the basis of upper bounds on exact MAP solution. With the new scheme and flow block diagram, one can solve MAP
problem systematically which helps people to decide the maintenance strategy.

Keywords: Bayes network, Fault diagnosis, MAP, Binary depth-first search, Upper bounds.

1

code. Section 3 provides a complete flow block diagram for
fault diagnose based on all fixed algorithms above. Section 4
discusses two airplane fault diagnose cases using the flow
block diagram raised in Section 3. Section 5 closes with
conclusions.

2. THE SCHEME FOR SOLVING MAP EXACTLY

2.1 Complexity of solving MAP

This section starts with a formal notation of MAP. Given a
Bayesian network with conditional probability tables (CPTs),
all the variables can be partitioned into three sets: E, S, M. E
stands for the set of variables whose values are known, S
stands for the set which should be summed out, and M stands
for the set of variables which should be maximized over. The
MAP problem is that of finding and instantiation m of
variables M which maximizes the probability of instantiation
e [15].

Let  denotes the set of CPTs, and for each CPT   ,

let e denote its restriction under the evidence e. Pr(,)m e for
all m can computed by the following potential  over
variables M:

=



 


 e
S 

 (1)

Hence, MAP problem can be solved by the following

equation:

* = max


 


 e
M

S 
 (2)

Note that when M is empty, MAP problem becomes Pr

problem while when S is empty, it turns into MPE problem.
Both MPE and Pr are NP-complete while MAP is ppNP -
complete, which means that, in variable elimination, the
elimination order of MPE and Pr are unconstrained while the
elimination order of MAP is constrained. Constrained
elimination order expresses that one can only choose among
orders that put the MAP variables last to solve MAP problem.

The following theorem further illustrates the need for a
constrained order for solving MAP problem [14].

Theorem 1: Let  be a potential over disjoint variable X,

Y, Z. Then,

1 X Y Y X    

2 max max max maxX Y Y X 

3[max]() [max]()z zX XY Y   .

For all instantiations z of variables Z. Moreover, the

equality holds only when there is some value y of variable Y

such that max x xyY   for all values x of variable X. That

is, the optimal value of variable Y is independent of variable
X.

The first and second equations in Theorem 1 guarantee that
using any elimination order, correct solution to Pr problem

and MPE problem can be calculated. Nevertheless, the third
inequality conveys that only the elimination order chosen
from those that put MAP variables last can ensure the correct
MAP solution. Moreover, Theorem 2 explains that an
arbitrary elimination order can guarantee an upper bound
(here upper bound means no less than) on the correct MAP
solution, which is significant in finding out the exact MAP
solution using a depth-first search.

Theorem 2: In Eq. (2), for any two subsets M S that

satisfy M M and S S , the following formula can arrive
at a probability, which is an upper bound on the exact MAP
solution.

*

\
\

= max max


 


   
e

M M M
S S S 

 (3)

Theorem 2 can be derived from Theorem 1 easily and the

paper omits the formal proof. In the following, the paper uses
MAP (M, e) to represent the exact MAP solution and uses
BD (M, e) to represent the upper bound which can be
computed by Theorem 2.

2.2 Constructing a binary jointree

Section 2.1 discusses the complexity of MAP, which is
more difficult than Pr and MPE problem from the view of
elimination order. To perform efficient computation, an
undirected network called jointree is extracted from BN,
which contain clusters and each cluster consists of several
nodes from the original BN. The information of locally
connected clusters, provided through CPT, is propagated in
the jointree by message passing mechanism [19, 20].To
increase the computational efficiency, a special kind of
jointree named binary jointree is constructed, in which every
node is connected no more than three neighbors. Binary
jointree has many advantages compared with other kinds of
jointree [18]. This part provides Algorithm 1 for constructing
a binary jointree which is modified from fusion algorithm
originally proposed by P. P. Shenoy [18].

The data declaration of Algorithm 1:
 : A set that contains all the variables of the BN.
 : A set that is a union set of the following two kinds of

variables sets, which should be presented in the binary
jointree.

The first kind is the ones that can denote the CPTs of each
variable in BN. For example, for node X with its
fathers X（ ）, Pr(| ())X X is the CPT of node X and set

{X, X（ ）} is among this kind of sets.
The second kind is the ones whose probability distribution

needs to be calculated. In the aircraft diagnosis setting of the
paper, each variable in a MAP query forms such a set. For
instance, if the MAP query is set {X, Y}, set {X} and set {Y}
form the second kind of sets.

N : A set that contains the nodes of the binary jointree. It
is initially null.
 : A set that contains the edges of the binary jointree. It is

initially null.
 : An order of set  . It can be gotten through some

heuristic algorithm.
| |Y : The number of the elements in set Y .

2

2.3 Computing upper bounds using jointree algorithm

Jointree is a data structure that can calculate
marginalization probability using Shenoy-Shafer local
elimination algorithm with high efficiency [21, 22]. It works
by the means of message passing mechanism. This part will
explain two characters of jointree, how to initialize a jointree
and message passing mechanism first. Then, combining with
Section 2.1, it expounds upper bounds in detail. Finally, this
part modifies CPT algorithm [5] to make it able to calculate
upper bounds.

Two characters of Jointree: As a jointree, it comprises
many clusters in geometry and each cluster is made up of a
set of variables of BN. A jointree has two characters [5, 14].

No.1 A jointree must satisfy connectedness. In other words,
if in a jointree, cluster A and cluster B both contain variable
V, all the clusters on the roads that connect to A and B must
contain V too.

No.2 A jointree must be able to cover the BN. Here,
“cover” has two means. Firstly, for any variable V in BN,
there exits at least one cluster that
satisfies X C and X C （ ） , in which X（ ）stands for the
set of father nodes of X, and such a cluster is called family
cluster. Secondly, in the jointree, the union set of all the
clusters is just the complete set of all the variables in BN.

Algorithm 1 construct (, , , ,)N  

1: while | | >1 do

2: Choose a variable Y ,Y 

3: ={ | }Yi iY    

4: while | | 1Y  do

5: choose i Y  j Y  ,and | | | |m ni j      for

all m , n Y 

6: k i j   

7: { } } }{ { ki j    N N

8: {{ , },{ , }}k ki j     

9: { , }kiY Y    

10: { }kY Y   

11: end while

12: if | | 1 then

13: choose i ,and i Y  

14: { }j i Y  

15: { } }{i j   N N

16: {{ , }}i j   

17: { }j  

18: end if

19: | }i jY     

20: { }Y  

21: end while

Initializing a jointree. After a jointree is extracted from BN,

it will have to be initialized next. Specifically, each CPT of
the original BN must be assigned to some cluster. That is, for
every variable X in a BN, one should find a family cluster of
variable X, then assigns (| ())P X X to the cluster. After
assigning all the CPTs of the BN, the left clusters which still
is not assigned a CPT to should be assigned “unit
function=1” to.

Message passing mechanism: Message passing mechanism
must follow two basic rules [14].

Rule 1: Before Cluster r deliver messages to its neighbor
Cluster named Cluster s, Cluster r must receive messages
from its own neighbor cluster(s) first.

Rule 2: When Cluster r will receive messages from
neighbor Cluster s (assume Cluster s has received messages
from its own neighbor(s)), the messages should be
marginalized first. Here, marginalization means
marginalizing off variables that are included in Cluster s and
not included in Cluster r.

According two rules above, the corresponding mathematic
expression is given as below.

Given a BN with three sets E=e, S and M, it has been
extracted into a Jointree using any constructing algorithm.
Function i is a CPT of the original BN that is assigned to
cluster i of the constructed Jointree now.

The process of message passing from cluster i to its
neighbor cluster j is expressed as following:

maxM Mij i kik j

  
X Y (4)

In which, ,M S X Y , all variables in X and Y only

appear in cluster i do not appear in cluster j and kiM
represents the messages that Cluster j has received from its
own neighbor cluster, cluster k [23].

Equation (2) has two special cases. When X is empty, the
message passing mechanism leads to Pr(e). When Y is empty,
the message passing mechanism can solve MPE. However,
neither X nor Y is empty, the message passing mechanism
leads to an incorrect MAP solution. Explanations are as
below.

Algorithm 2-1 inward BD1 (J, , , ,)E M e S

1: clear all the potential information stored in each edge of
the tree, and set E=e;
2: choose a cluster in the tree which contains some
variable in set M as the root;

3: for (every neighbor cluster niC of rC)

4: call collect1 (J, ,)r niC C and return a function i ;

5: end for

6: '
()r

m
h C Pii

  , m is the number of the neighbor

clusters of rC , and P is the CPT stored in rC ,

' \r rC C E ;

7: return ' '

'

\ \
(,) max ()

r r
rC C

BD h C S M
M e .

3

In essential, performing inference by the means of message
passing mechanism is a kind of variable elimination [5].
Such a conclusion also can be arrived at by comparing Eq.
(3) and Eq. (4). When one chooses a root cluster in a
Jointree, the elimination order is decided. When X is
empty, the first equation in Theorem 1 guarantees that
summation commuting with summation cannot change the
result. Accordingly, the message passing mechanism
corresponding to a special kind of variable elimination
process during which only there are variables that should
be summed out has no effect on the final result. This is
similar to the condition that when Y is empty. Obviously,
the third inequality guarantees the exact MAP solution can
only be calculated using the order that MAP variables
come last.

Algorithm 2-2 outwardBD1(J, E, M, e, S, X)

1: choose a cluster C r that only has a variable X;

2: for (every neighbor cluster niC of rC)

3: call collect1 (J, ,)niC Cr and return a function i ;

4: end for

5:
1()

m
h X Pii

 
, m is the number of the neighbor

clusters of rC , and P is the CPT stored in rC ;

6: return BD(M\X,e x)=h(X=x)

Algorithm 2-3 collect1(J, Cr, Cn)

1: =Retrieve (,)n rC C ;

2: if (null )

3: return  ;

4: set 1 1 1\ ()n rC C Z Z E and P1 is the CPT stored in

C n ;

5: if (nC is a leaf cluster in J)

6:
1 1

1 1

1
\

\

max P  
Z S

Z M
;

7: else

8: let
' ' '
1 2n n nkC C C

 be the neighbor clusters of nC ,

except rC ;

9: for i= 1to k

10: ig =collect1 '(J, ,)r niC C ;

11: end for

12:
1 1

1 1

1
\

\ 1

max
k

i
j

P g


  
Z S

Z M

;

13: Save (, ,)n rC C  ;

14: end if

15: return 

CPT Algorithm [5] is a Jointree algorithm used for solving
Pr(e) , summation and multiplication operations are involved.
After modifying CPT Algorithm, this part presents a new
algorithm named BD algorithm for computing upper bounds,
in which the message passing mechanism involves
summation, maximization and multiplication operations. BD
algorithm is shown as Algorithm 2, including three sub-
algorithms, Algorithm 2-1, Algorithm 2-2 and Algorithm 2-1,
which is of great importance in binary systematic search
algorithm for solving MAP exactly, which will be discussed
in Section 2.4.

2.4 Solving MAP using a binary depth-first search

As MAP is a discrete optimization problem, the upper
bound on the probability of MAP solution, which can be
calculated using Algorithm 2, is the basis of the depth-first
search algorithm for finding out the exact MAP solution
[15].This section is divided into three parts. The first part will
give a brief introduction of a search tree. The second part
will state the general idea of how to perform a search in a
search tree. The final part will modify the original search
algorithm, forming a new algorithm used in a BN where all
the variables are binary, named binary depth-first search.

A brief introduction of a search tree. To illustrate the
complete search procedure clearly, this section takes a search
tree for example, which is shown in Figure 1. The search tree
corresponds to a BN which has three MAP variables, X1, X2
and X3. In the search tree, the root node N corresponds to
empty instantiation. The children of a node which represents
instantiations x, where X M , are nodes which represents
instantiation xv for some variable V in \M X . Leaves of the
search tree correspond to different instantiations m of MAP

variables M. The subscript of the donation *
*N represents a

subset of MAP variables M and the superscript represents the
corresponding subset of instantiation m. Since each node in
the search tree corresponds to a variable instantiation,
different superscript identifies different node of the search
tree.

{X1=0,X2=0}

{X1,X2}
N {X1=0,X2=1}

{X1,X2}
N {X1=1,X2=0}

{X1,X2}
N {X1=1,X2=1}

{X1,X2}
N

{X1=0,X2=1,X3=0}

{X1,X2,X3}
N {X1=0,X2=1,X3=1}

{X1,X2,X3}
N {X1=1,X2=0,X3=0}

{X1,X2,X3}
N {X1=1,X2=0,X3=1}

{X1,X2,X3}
N{X1=0,X2=0,X3=1}

{X1,X2,X3}
N {X1=1,X2=1,X3=0}

{X1,X2,X3}
N{X1=0,X2=0,X3=0}

{X1,X2,X3}
N {X1=1,X2=1,X3=1}

{X1,X2,X3}
N

{}

{}
N

{X1=0}

{X1}
N {X1=1}

{X1}
N

Figure 1. A search tree corresponding to a BN, in which the
MAP variables are X1, X2 and X3.

4

The discussion above is about the structure of a search tree.
This part will assign a value to each node next. Specifically,
each leaf node is associated with probability Pr(m, e). An
internal node x is associated with upper bound BD(M/X, ex).
For the internal node x, the best leaf node below node x is
just the exact MAP (M/X,ex) solution.

The basic idea of systematic search algorithm. The basic
idea of systematic search algorithm is to perform a depth-first
search on the tree, while computing an upper bound BD(M/X,
ex) at each internal node x [5]. If the upper bound is no more
than the value of the best leaf node encountered so far,
according to Theorem 2, the children of node x should not be
explored because the nodes below node x cannot lead to a
leaf node with higher value than the best leaf node
encountered.

A new modified algorithm. The systematic search
algorithm proposed by Park can be applied to a BN where the
variables can have many states. Focusing on the characters of
binary variables, the part will modify the algorithm more
feasible for binary variables.

Assume the process of searching has been at node x in the
search tree, and variable V has been chosen to instantiate next,
where \V XM . Suppose further that when v=0,

(\ ({ }), { 0})0B BD V ex v bScorev    M X is established,

where bScore is the best leaf node encountered so far.
According to the basic idea of systematic search algorithm,
instantiation xv=0 should pruned and only instantiation xv=1
can lead to the exact MAP(M, e) with the deepening of the
search. It is similar to the case when v=1.On the basis of the
analysis above, this part factors this pruning information into
the original systematic algorithm, forming a new binary Join
tree algorithm provided as Algorithm 3.

Algorithm 3: Search(X, z, bSol, bScore, J, S, Z)

1: BBD(X,z)

2: if B≤bScore then return

3: if X==null, then bScoreB, bSol z, return

4: for each V, V  X ,do

5: compute B0=BD(X\V,zv=0) and B1= BD(X\V,zv=1)

6: if B0≤bScore and B1≥bScore,,then z=z  v=1,

Z=Z V, X=X\V;

7: if B1≤bScore and B0≥bScore ,then z=z  v=0,

Z=Z V, X=X\V;

8: if B1≤bScore and B0≤bScore,, then return ;

9: else

10: compute vM and vT

11: end for

12: chose a variable V as the leaf node, where V  X and

= max (/)V v vV M TX

13: call Search(X\V, zv=0, bSol, bSore, J,S,Z)

14: call Search(X\V, zv=1, bSol, bSore, J,S,Z)

3. A COMPLETE FLOW BLOCK DIAGRAM FOR
FAULT DIAGNOSE

In earlier sections, the article has discussed MAP problem
theoretically and provides the pseudo-code in detail. This
section will analyzed the application of MAP in the setting of
fault diagnose and design a complete flow block diagram
used in software systematically.

3.1 Application of MAP in fault diagnose

This part starts with an example (see Figure 2) to elaborate
the application of MAP in the setting of diagnosis. Figure 2
shows a BN which can be viewed as a causal influence
diagram of an engineering physical system with some failure
mode. In the figure, nodes labeled with the same letter of an
alphabet compose a whole component. For instance, four
nodes A1, A2, A3 and A4 compose the whole component A.
For a step further, nodes labeled with the same letter of an
alphabet but with different numbers represent different
physical effect factors of the same component. Still taking
component A as an example, in component A, four physical
factors have an effect on I1 of the system. Every node has
two states, or call instantiations, 0 and 1, representing the
physical factor behaves normal or abnormal respectively.
Clearly, component A has 16 different instantiations and each
instantiation corresponds to a probability.

From the illustration above, each physical factor, instead of
a whole component of a real system, corresponds to a node in
a BN. The interplay of each physical factor forms the
dependence relationship of the BN. Probability theory
describes this dependence relationship in quantity and thus
forms Conditional Probability Table (CPT), such as the CPT
P(D1|A1, A2) assigned to node D1 describes the relationship
between node D1 and its father nodes A1 and A2.

Form an initialized Bianry Jointree named J

All the variables that compose component i
comprise set M, () E MS \

bSol an initial instantiation m for a search tree

bSore P(m,e), which can be calculated after calling

inwardBD1(J, E M ,  , e m , S)

Search(M,e,bSol,J,S,E)

P(m,e) bScore, bSol bSol

If (i= =1) Pmax bSore, bmax bSol

else compare Pmax and P(m,e), choose the larger as Pmax and the corresponding instantiation as bmax

Pr(e)=inwardBD1(J, E,  , e, S M)

The most possible faulty component  variables corresponding to instantiation bmax

The possibility of the most possible faulty component  Pmax/Pr(e)

Provide maintenance decision for fault diagnosis

End

Initialize the Binary Jointree according to Section 2.3

CPTs, that’s each

node’s

P(X |π(X))

The graphic

structure of BN,

the nodes set Λ

and each node’s

parents π(X)

For component i=1 to n, where n is the number

of components of BN

Start

Determine fault case and set evidence E=e

Form a BN with restriction E=e

A Binary Jointree(N,ε) call construct(Λ,Γ1,N,ε,π)

Figure 2. A bayesian network used for fault diagnosis

Given the fault evidence and failure information of a
system, one may always be interested both in identifying
which component caused such a failure in a maximum
probability and wandering to know the corresponding fault
mode—the instantiation of that failure component. That’s to
say, each component composes a MAP query. After
answering all the MAP queries, one needs to compare each
component’s MAP result in order to decide the most possible
failure component and its corresponding failure mode of the
system.

5

Form an initialized Bianry Jointree named J

All the variables that compose component i
comprise set M, () E MS \

bSol an initial instantiation m for a search tree

bSore P(m,e), which can be calculated after calling

inwardBD1(J, E M ,  , e m , S)

Search(M,e,bSol,J,S,E)

P(m,e) bScore, bSol bSol

If (i= =1) Pmax bSore, bmax bSol

else compare Pmax and P(m,e), choose the larger as Pmax and the corresponding instantiation as bmax

Pr(e)=inwardBD1(J, E,  , e, S M)

The most possible faulty component  variables corresponding to instantiation bmax

The possibility of the most possible faulty component  Pmax/Pr(e)

Provide maintenance decision for fault diagnosis

End

Initialize the Binary Jointree according to Section 2.3

CPTs, that’s each

node’s

P(X |π(X))

The graphic

structure of BN,

the nodes set Λ

and each node’s

parents π(X)

For component i=1 to n, where n is the number

of components of BN

Start

Determine fault case and set evidence E=e

Form a BN with restriction E=e

A Binary Jointree(N,ε) call construct(Λ,Γ1,N,ε,π)

Figure 3. Complete flow block diagram used in the software to identify the most fault reason

According to the above elaboration, apparently, in Figure 2,
seven components may lead to the system’s failure with the
fault evidence I1=1. To find out the most possible failure
component and its failure mode, first one should do the cycle
i=1 to 7, computing MAP(,)iM e to identify component i’s

failure mode in the greatest possibilities. Here, iM is the set
representing MAP variables of component i. After that,
compare the seven MAP results and the component with the
maximum probability and its corresponding fault mode is the
final result in fault diagnose.

3.2 A complete block diagram

Combining with engineering practice, this section provides
a block diagram used for fault diagnose, seeing Figure 3, all
sub-functions of which has been introduced before. The block
diagram is used to develop a software, one software intend to
solve MAP problems in fault diagnosis setting and such a
software is applied to the cases illustrated in section 4. The
paper centers on MAP problems and the details of the
software are omitted.

4. CASE STUDIES

This section gives two fault cases of a certain type of
aircraft hydraulic power supply system and adopts the
software raised in Section 3 to solve MAP to find out the
most possible reasons responsible for the two fault modes,

separately. Next is the detailed illustration about the two
cases.

4.1 The first fault case

Physically speaking, this first fault case is that the fire cut-
off valve of 1# hydraulic system fails (abbreviation: HYD1
SOV FAIL, encode data 291-111-41). The corresponding BN
structure of this fault mode is shown in Figure 4 and the
below describes the physical meaning of each node in the BN,
which also is assigned a encode data to. The format of encode
data of a node xx-xx-xx-xx.x consists of nine letters, the
former six representing the component and the latter three
representing the concrete physical factor of a component. For
example, 29-K3-07 stands for circuit; 29-K3-07-00.1 stands
for circuit break; 29-K3-07-00.1 stands for short circuit.

Figure 4. The BN structure of the first fault case

The number of nodes expect for the top evidence node: 13

6

The number of components: 8
The description of each physical factor and their

corresponding encode data are as follows:
29-K3-07-00.1: circuit break
29-K3-07-00.2: short circuit
29-11-20-00.1: firewall shutoff valve unable to shut off
29-11-20-00.2: firewall shutoff valve shut off too slowly
29-11-20-00.3: firewall shutoff valve shut off with no

instructions
29-11-20-00.5: firewall shutoff valve has an external

leakage and hydraulic oil loss
29-K3-08-00.1: electric equipment failure
29-33-02-00.2: temperature switch failure, internal short-

circuit, breaking point drifting, low
29-11-27-00.3: too much oil bypasses the heater exchanger
and the system temperature increases
29-K3-03-00.1: hydraulic control logic circuit (HCLE) has

a logic calculation error
29-K3-06-00.1: full authority digital engine control

(FADEC) has a data error
29-11-29-00.4: check valve obstruction leads to shell

scavenge pipe plugging and the system overheats
29-11-20-00.D: firewall shutoff valve doesn’t work or

works abnormally
By using the software raised in Section 3, the calculation

result is given in Table 1. The table only lists the components
whose fault probability is more than 0.1 and their
corresponding fault modes. The table is listed from high to
low. Value 1 and 0 denote abnormal and normal respectively.

It can be seen from the table that the physical factor 29-K3-
07-00.2 of component 29-K3-07 most probably leads to the
fault case. Referring to the encode data of each node and the
corresponding physical meaning, it can be concluded that
circuit short leads to the fire cut-off valve of the 1# hydraulic
system fails. In practice, circuit short indeed always is the
reason responsible for the system failure.

Table 1. Results of the first fault mode

 29-K3-07

 Pmax=0.9918

 29-11-20

Pmax=0.9916

29-K3-08

Pmax=0.4961

factors states factors states factors states

29-K3-07-00.1 0

29-K3-07-00.2 1

29-11-20-00.1 0

29-11-20-00.2 0

29-11-20-00.3 1

29-11-20-00.5 0

29-K3-08-00.1 1

4.2 The second fault case

The second fault case is that the AC motor-driven pump of
1# hydraulic system fails (abbreviation: HYD1ACMP FAIL,
encode data: 291-121-41). The failure case is modeled in BN
shown in Figure 5. The format of encode data of a node xx-
xx-xx-xx.x is similar to case 1 and there are four auxiliary
nodes in the BN, which don’t stand for any real physical
factors.

The number of nodes expect for the top evidence node: 23
The number of components: 14
The description of each physical factor and their

corresponding encode data are as follows:
29-K3-05-00.1: circuit breaker open

29-K3-05-00.2: circuit breaker short-cut
29-K3-07-00.1: circuit break
29-K3-07-00.2: short circuit
29-K3-08-00.1: electric equipment failure
29-11-02-00.4: alternating current (AC) electric pump has

a serious external leakage and loses the hydraulic oil
29-11-02-00.5: AC electric pump has a slight external

leakage and the hydraulic oil is exhausted
29-11-02-00.2: AC electric pump outputs with high

pressure, resulting in high temperature
29-11-02-00.3: AC electric pump has a serious internal

leakage and the system overheats
29-11-02-00.1: AC electric pump output failure
29-11-02-00.6: AC electric pump outputs with low-flow
29-33-02-00.2: temperature switch failure, internal short-

cut, breaking point drifting, low
29-31-03-00.2: EDP pressure switch fails and always

shows pressure high
29-31-03-00.1: EDP pressure switch fails and always

shows pressure low
29-11-03-00.1: the cushion of EDP unable to isolate the

vibration
29-K3-03-00.1: HCLE has a logic calculation error
29-K3-03-00.D: HCLE sends wrong instruction
29-K3-06-00.1: (FADEC) unit has a miscalculation
29-11-10-00.5: oil sample of oil filter is polluted and by-

pass valve has an open failure
29-11-06-1.1: output of EDP blocked
29-11-02-00.D: AC electric pump cannot work
29-K3-05-00.D: circuit breaker doesn't work
29-K3-07-00.D: circuit failure

Figure 5. The BN structure of the second fault case

By using the software raised in Section 3, the calculation
result is shown in Table 2. The rules of the result given in this
table are the same with Table 1.

Table 2. Results of the second fault case

29-K3-05

Pmax=0.9885

29-K3-07

Pmax=0.6593

29-K3-08

Pmax=0.3298

factors states factors states factors states

29-K3-05-00.1 0

29-K3-05-00.2 1

29-K3-07-00.1 0

29-K3-07-00.2 1

29-K3-08-00.1 1

It can be seen from the table that the physical factor 29-K3-
05-00.2 of component 29-K3-05 most probably leads to the
fault case. Referring to the encode data of each node and the
corresponding physical meaning, it can be concluded that
circuit short leads to the AC motor-driven pump of 1#

7

hydraulic system fails, which corresponds to the engineering
practice.

5. CONCLUSIONS

MAP solution is a useful measure in the fault diagnosis of
large and complicated system, such as systems and sub-
systems in aircraft. This paper carries on a thorough research
on MAP problem. In particular, a systematic scheme for
solving MAP problems is raised. Moreover, a complete flow
block diagram to identify the most possible cause of a fault
by solving MAP exactly is presented. The work in this paper
mainly is reflected in three aspects.

1. The paper modifies the fusion algorithm, CPT algorithm
and systematic algorithm to form a systematic scheme used
for solving MAP problems and all the key corresponding
pseudo-code is presented. The systematic scheme is a
methodology that can solve MAP without being restrained by
restrained treewidth.

2. Based on the systematic scheme used for solving MAP
problems, the paper also devises a complete flow block
diagram for fault diagnose, forming a technical method
systematically in engineering application. Such a diagram
ensures that all these algorithms in the paper can be used in
diagnostic practice.

3. According to the complete flow block diagram for fault
diagnosis and all the algorithms raised in the paper, software
intend to solve MAP problems in fault diagnosis setting is
developed and such a software is preliminarily applied to a
hydraulic power supply system fault diagnosis of a certain
type of aircraft. The result shows the software works well and
corresponds to the engineering practice.

ACKNOWLEDGMENT

The research was supported by quality and reliability
fundamental project of China’s Ministry of Industry and
Information Technology’s Twelfth Five-year Plan.

REFERENCES

1. O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira, S.
Poll, S. Uckun, Diagnosing Faults in Electrical Power
Systems of Spacecraft and Aircraft, Proc. The 20th
Innovative Applications of Artificial Intelligence
Conference, pp.1699-1705, 2008.

2. O. J. Mengshoel, M. Chavira, K. Cascio, et al,
Probabilistic Model-Based Diagnosis: An Electrical
Power System Case Study, IEEE SMC part A, vol. 40,
pp. 874-885, 2010.

3. A. Darwiche, Bayesian Networks, Communications of
the ACM, vol. 53, pp. 80-90, 2010.

4. F. V. Jensen, An Introduction to Bayesian Networks,
Spring Verlag, New York, 1996.

5. N. L. Zhang, H. P. Guo, An Introduction to Bayesian
Networks, Science press, Beijing, 2006(in Chinese).

6. B. D’Ambrosio, Inference in Bayesian Networks,
Artificial Intelligence, vol. 20, pp. 21-36, 1999.

7. C. Huang, A. Darwiche, Inference in Belief Networks: A
Procedure Guide, International Journal of Approximate
Reasoning, vol. 15, pp. 225-263, 1996.

8. N. L. Zhang, D. Poole, A Simple Approach to Bayesian
Network Computations. Proc. The 10th Canadian
Conference on Artificial Intelligence, pp.171-178, 1994.

9. A. M. Abdelbar, S. M. Hedetniemi, Approximating
Maps for Belief Network is NP-Hard and Other
Theorems, Artificial Intelligence, vol. 102, pp. 21-38,
1998.

10. E. Charniak, S. E. Shimony, Cost-Based Abduction and
MAP Explanation, Artificial Intelligence, vol.66, pp.345-
474, 1994.

11. E. Shimony, Finding MAPs for Belief Networks is NP-
hard, Artificial Intelligence, vol.68, pp.399-410, 1994.

12. G. F. Cooper, The Computational Complexity of
Probabilistic Inference Using Bayesian Belief Networks.
Artificial Intelligence, vol. 42, pp. 393-405, 1990.

13. J. D. Park, MAP Complexity Results and Approximation
Methods, Proc. The 18th Conference on Uncertainty in
Artificial Intelligence, pp.388-396, 2002.

14. A. Darwiche, Modeling and Reasoning with Bayesian
Networks, Cambridge University Press, New York,
2012.

15. J. D. Park, A. Darwiche, Solving MAP Exactly Using
Systematic Search, Proc. Proceedings of the 19th
Conference on Uncertainty in Artificial Intelligence, pp.
459-468, 2003.

16. A. Darwiche, A Differential Approach to Inference in
Bayesian Networks, Journal of ACM, vol.50, pp. 280-
305, 2003.

17. J. Pearl, Fusion, Propagation and Structuring in Belief
Networks, Artificial Intelligence, vol.29, pp.241-288,
1986.

18. P. P. Shenoy, Binary Join Trees for Computing
Marginals in the Shenoy-Shafer Architecture,
International Journal of Approximate Reasoning, vol.
17, pp. 239-263, 1997.

19. G. R. Shafer, P. P. Shenoy, Probability Propagation,
Annals of Mathematics and Artificial Intelligence, vol. 2,
pp.327-351, 1990.

20. P. P. Shenoy, G. Shafer, Propagating Belief Functions
with Local Computations, IEEE Expert, vol.1, pp.43-52,
1986.

21. T. Schmidt, P. P. Shenoy, Some Improvements to the
Shenoy-Shafer and Hugin Architectures for Computing
Marginal, Artificial Intelligence , vol. 102, pp. 323-333,
1998.

22. N. L. Zhang, Computational Properties of Two Exact
Algorithms for Bayesian Networks, Applied Intelligence,
vol. 9, pp. 173-183, 1998.

23. K. Lingasubramanian, S. M. Alam, S. Bhanja, Maximum
Error Modeling for Fault-Tolerant Computation Using
Maximum a Posteriori (MAP) Hypothesis,
Microelectronics Reliability, vol.51, pp.485-501, 2011.

8

