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1. INTRODUCTION 

Airplane consists of large-scale integrated control systems 
with a great amount of mechanical, electrical and hydraulic 
components; among them there exist complicated physical 
interactions as well as themselves internal. The physical 
relations between the components are complex, coupling and 
full of uncertainties [1, 2]. Apparently, the probability analysis 
of such uncertainty should be theoretical basis and key 
means in such complex system fault system diagnosis.  

Bayesian network is a combination of probability theory 
and graph theory and it is a theory system that describes the 
relationships of random variables [3, 4, 5]. Based on 
Bayesian theory, BN is an effective way to get an accurate 
solution to uncertain probability reasoning [6, 7, 8]. In fault 
diagnosis, given the fault representation, a quantitative 
probability evaluation method is needed to predict the 
probability of the every failure mode of the each specific 
component. After that, by comparing the maximum 
probability of each component, maintenance strategy is given. 
That is just called MAP (maximum a posteriori hypothesis) 
in Bayer theory. 

MAP appears to be much more difficult in probabilistic 
inference than other two typical problems, posterior 
probability (Pr) and most probable explanation (MPE). The 
problems for the latter two are NP-complete while MAP 
problem is PPNP -hard [9~13]. Specifically, standard 
structure-based methods for finding exact solutions to MAP, 
such as variable elimination and jointree algorithm, have 
complexities that are exponential in the constrained treewidth 
of the network [14, 15]. Nevertheless, these methods can 
solve MPE and Pr in time which is exponential in treewidth 
[14, 15]. 

    A recent algorithm proposed by James D. Park [15] stands 
for a notable advance of the state of the art in solving MAP 
exactly. It performs a depth-first search in the space of all 
instantiations of the MAP variables. The search can be 
effectively pruned using upper bounds that can be calculated 
by jointree algorithm only exponential in the treewidth, not 
limited by the constrained treewidth. However, for a BN, 
there are different jointrees according to different 
constructing methods [16, 17, 18]. However, James D. Park 
[15] just provides a general idea how to compute upper 
bound using a jointree neither provides an algorithm for 
constructing a concrete jointree nor gives an algorithm for 
computing upper bound. 

The focus of this paper is on providing a complete scheme 
for solving MAP exactly, which consists of three main 
algorithm, one for constructing an efficient binary jointree, 
one used for computing upper bound and the last used for 
finding out the exact MAP solution by performing a binary 
depth-first search. Specifically, these three algorithms stem 
from fusion algorithm [18], CPT algorithm [5] and 
systematic algorithm [15], separately. For there exit gaps 
among these three algorithms raised by different authors, the 
paper not only modifies these three algorithms to become a 
systematic scheme for solving MAP but also provides the 
necessary pseudo-codes in detail. On the basis of the scheme, 
a complete flow block diagram for fault diagnosis is devised. 
Finally, two cases in the aircraft fault diagnose setting are 
analyzed. In this paper, all the variables in BN are binary in 
view of that any BN with multi-valued variables can be 
transformed in to a BN where all the variables are binary. 

The paper is structured as follows. Section 2 is dedicated 
to provide the systematic scheme for solving MAP exactly, 
including studying the complexity of MAP and presenting 
three modified algorithms and their corresponding pseudo-
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code. Section 3 provides a complete flow block diagram for 
fault diagnose based on all fixed algorithms above. Section 4 
discusses two airplane fault diagnose cases using the flow 
block diagram raised in Section 3. Section 5 closes with 
conclusions.  

 
 

2. THE SCHEME FOR SOLVING MAP EXACTLY 

2.1 Complexity of solving MAP 

This section starts with a formal notation of MAP. Given a 
Bayesian network with conditional probability tables (CPTs), 
all the variables can be partitioned into three sets: E, S, M. E 
stands for the set of variables whose values are known, S 
stands for the set which should be summed out, and M stands 
for the set of variables which should be maximized over. The 
MAP problem is that of finding and instantiation m of 
variables M which maximizes the probability of instantiation 
e [15]. 

Let   denotes the set of CPTs, and for each CPT   , 

let e denote its restriction under the evidence e. Pr( , )m e  for 
all m can computed by the following potential   over 
variables M: 

 
=



 


 e
S 

                                                                      (1) 

 
Hence, MAP problem can be solved by the following 

equation: 
 

* = max


 


 e
M

S 
                                                             (2)   

 
Note that when M is empty, MAP problem becomes Pr 

problem while when S is empty, it turns into MPE problem. 
Both MPE and Pr are NP-complete while MAP is ppNP -
complete, which means that, in variable elimination, the 
elimination order of MPE and Pr are unconstrained while the 
elimination order of MAP is constrained. Constrained 
elimination order expresses that one can only choose among 
orders that put the MAP variables last to solve MAP problem.  

The following theorem further illustrates the need for a 
constrained order for solving MAP problem [14]. 

Theorem 1: Let   be a potential over disjoint variable X, 

Y, Z. Then, 
 
1 X Y Y X      
 

2 max max max maxX Y Y X    

 

3[ max ]( ) [max ]( )z zX XY Y   .  

 
For all instantiations z of variables Z. Moreover, the 

equality holds only when there is some value y of variable Y 

such that max x xyY   for all values x of variable X. That 

is, the optimal value of variable Y is independent of variable 
X. 

The first and second equations in Theorem 1 guarantee that 
using any elimination order, correct solution to Pr problem 

and MPE problem can be calculated. Nevertheless, the third 
inequality conveys that only the elimination order chosen 
from those that put MAP variables last can ensure the correct 
MAP solution. Moreover, Theorem 2 explains that an 
arbitrary elimination order can guarantee an upper bound 
(here upper bound means no less than) on the correct MAP 
solution, which is significant in finding out the exact MAP 
solution using a depth-first search.  

Theorem 2: In Eq. (2), for any two subsets M S that 

satisfy M M and S S , the following formula can arrive 
at a probability, which is an upper bound on the exact MAP 
solution. 

 
*

\
\

= max max


 


   
e

M M M
S S S 

                                                 (3) 

 
Theorem 2 can be derived from Theorem 1 easily and the 

paper omits the formal proof. In the following, the paper uses 
MAP (M, e) to represent the exact MAP solution and uses 
BD (M, e) to represent the upper bound which can be 
computed by Theorem 2. 

2.2 Constructing a binary jointree 

Section 2.1 discusses the complexity of MAP, which is 
more difficult than Pr and MPE problem from the view of 
elimination order. To perform efficient computation, an 
undirected network called jointree is extracted from BN, 
which contain clusters and each cluster consists of several 
nodes from the original BN. The information of locally 
connected clusters, provided through CPT, is propagated in 
the jointree by message passing mechanism [19, 20].To 
increase the computational efficiency, a special kind of 
jointree named binary jointree is constructed, in which every 
node is connected no more than three neighbors. Binary 
jointree has many advantages compared with other kinds of 
jointree [18]. This part provides Algorithm 1 for constructing 
a binary jointree which is modified from fusion algorithm 
originally proposed by P. P. Shenoy [18]. 

The data declaration of Algorithm 1: 
 : A set that contains all the variables of the BN. 
 : A set that is a union set of the following two kinds of 

variables sets, which should be presented in the binary 
jointree. 

The first kind is the ones that can denote the CPTs of each 
variable in BN. For example, for node X with its 
fathers X（ ）, Pr( | ( ))X X is the CPT of node X and set 

{X, X（ ）} is among this kind of sets. 
The second kind is the ones whose probability distribution 

needs to be calculated. In the aircraft diagnosis setting of the 
paper, each variable in a MAP query forms such a set.  For 
instance, if the MAP query is set {X, Y}, set {X} and set {Y} 
form the second kind of sets. 

N : A set that contains the nodes of the binary jointree. It 
is initially null. 
 : A set that contains the edges of the binary jointree. It is 

initially null. 
 : An order of set  . It can be gotten through some 

heuristic algorithm. 
| |Y : The number of the elements in set Y . 
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2.3 Computing upper bounds using jointree algorithm 

Jointree is a data structure that can calculate 
marginalization probability using Shenoy-Shafer local 
elimination algorithm with high efficiency [21, 22]. It works 
by the means of message passing mechanism. This part will 
explain two characters of jointree, how to initialize a jointree 
and message passing mechanism first. Then, combining with 
Section 2.1, it expounds upper bounds in detail. Finally, this 
part modifies CPT algorithm [5] to make it able to calculate 
upper bounds.  

Two characters of Jointree: As a jointree, it comprises 
many clusters in geometry and each cluster is made up of a 
set of variables of BN. A jointree has two characters [5, 14]. 

No.1 A jointree must satisfy connectedness. In other words, 
if in a jointree, cluster A and cluster B both contain variable 
V, all the clusters on the roads that connect to A and B must 
contain V too.  

No.2 A jointree must be able to cover the BN. Here, 
“cover” has two means. Firstly, for any variable V in BN, 
there exits at least one cluster that 
satisfies X C and X C （ ） , in which X（ ）stands for the 
set of father nodes of X, and such a cluster is called family 
cluster. Secondly, in the jointree, the union set of all the 
clusters is just the complete set of all the variables in BN. 

 
Algorithm 1 construct ( , , , , )N    

1: while | | >1 do 

2: Choose a variable Y ,Y   

3: ={ | }Yi iY      

4: while | | 1Y   do 

5: choose i Y   j Y  ,and | | | |m ni j      for 

all m , n Y   

6: k i j     

7: { } } }{ { ki j    N N  

8: {{ , },{ , }}k ki j       

9: { , }kiY Y      

10: { }kY Y     

11: end while 

12: if | | 1 then 

13: choose i ,and i Y    

14: { }j i Y    

15: { } }{i j   N N  

16: {{ , }}i j     

17: { }j    

18: end if 

19: | }i jY       

20: { }Y    

21: end while 

 
Initializing a jointree. After a jointree is extracted from BN, 

it will have to be initialized next. Specifically, each CPT of 
the original BN must be assigned to some cluster. That is, for 
every variable X in a BN, one should find a family cluster of 
variable X, then assigns ( | ( ))P X X to the cluster. After 
assigning all the CPTs of the BN, the left clusters which still 
is not assigned a CPT to should be assigned “unit 
function=1” to. 

Message passing mechanism: Message passing mechanism 
must follow two basic rules [14]. 

Rule 1: Before Cluster r deliver messages to its neighbor 
Cluster named Cluster s, Cluster r must receive messages 
from its own neighbor cluster(s) first. 

Rule 2: When Cluster r will receive messages from 
neighbor Cluster s (assume Cluster s has received messages 
from its own neighbor(s)), the messages should be 
marginalized first. Here, marginalization means 
marginalizing off variables that are included in Cluster s and 
not included in Cluster r. 

According two rules above, the corresponding mathematic 
expression is given as below. 

Given a BN with three sets E=e, S and M, it has been 
extracted into a Jointree using any constructing algorithm. 
Function i  is a CPT of the original BN that is assigned to 
cluster i of the constructed Jointree now.  

The process of message passing from cluster i to its 
neighbor cluster j is expressed as following: 

 
maxM Mij i kik j

  
X Y                                                  (4)   

 
In which, ,M S X Y , all variables in X and Y only 

appear in cluster i do not appear in cluster j and kiM  
represents the messages that Cluster j has received from its 
own neighbor cluster, cluster k [23].  

Equation (2) has two special cases. When X is empty, the 
message passing mechanism leads to Pr(e). When Y is empty, 
the message passing mechanism can solve MPE. However, 
neither X nor Y is empty, the message passing mechanism 
leads to an incorrect MAP solution. Explanations are as 
below. 

 
Algorithm 2-1 inward BD1 (J, , , , )E M e S  

1: clear all the potential information stored in each edge of 
the tree, and set E=e; 
2: choose a cluster in the tree which contains some 
variable in set M as the root; 

3: for (every neighbor cluster niC of rC ) 

4: call collect1 (J, , )r niC C and return a function i ; 

5: end for 

6: '
( )r

m
h C Pii

  , m is the number of the neighbor 

clusters of rC , and P is the CPT stored in rC , 

' \r rC C E ; 

7: return ' '

'

\ \
( , ) max ( )

r r
rC C

BD h C S M
M e . 
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In essential, performing inference by the means of message 
passing mechanism is a kind of variable elimination [5]. 
Such a conclusion also can be arrived at by comparing Eq. 
(3) and Eq. (4). When one chooses a root cluster in a 
Jointree, the elimination order is decided. When X is 
empty, the first equation in Theorem 1 guarantees that 
summation commuting with summation cannot change the 
result. Accordingly, the message passing mechanism 
corresponding to a special kind of variable elimination 
process during which only there are variables that should 
be summed out has no effect on the final result. This is 
similar to the condition that when Y is empty. Obviously, 
the third inequality guarantees the exact MAP solution can 
only be calculated using the order that MAP variables 
come last.  
 

Algorithm 2-2 outwardBD1(J, E, M, e, S, X) 

1: choose a cluster C r that only has a variable X; 

2: for (every neighbor cluster niC of rC ) 

3: call collect1 (J, , )niC Cr  and return a function i ; 

4: end for 

5:
1( )

m
h X Pii

 
, m is the number of the neighbor 

clusters of rC , and P is the CPT stored in rC ; 

6: return BD(M\X,e x)=h(X=x) 

 
Algorithm 2-3 collect1(J, Cr, Cn) 

1: =Retrieve ( , )n rC C ; 

2: if ( null  ) 

3: return  ; 

4: set 1 1 1\ ( )n rC C Z Z E  and P1 is the CPT stored in 

C n ; 

5: if ( nC is a leaf cluster in J) 

6: 
1 1

1 1

1
\

\

max P  
Z S

Z M
; 

7: else 

8: let 
' ' '
1 2n n nkC C C

 be the neighbor clusters of nC , 

except rC ; 

9: for i= 1to k 

10: ig =collect1 '(J, , )r niC C ; 

11: end for 

12: 
1 1

1 1

1
\

\ 1

max
k

i
j

P g


  
Z S

Z M

; 

13: Save ( , , )n rC C  ;                  

14: end if   

15: return   

CPT Algorithm [5] is a Jointree algorithm used for solving 
Pr(e) , summation and multiplication operations are involved. 
After modifying CPT Algorithm, this part presents a new 
algorithm named BD algorithm for computing upper bounds, 
in which the message passing mechanism involves 
summation, maximization and multiplication operations. BD 
algorithm is shown as Algorithm 2, including three sub-
algorithms, Algorithm 2-1, Algorithm 2-2 and Algorithm 2-1, 
which is of great importance in binary systematic search 
algorithm for solving MAP exactly, which will be discussed 
in Section 2.4. 

2.4 Solving MAP using a binary depth-first search 

As MAP is a discrete optimization problem, the upper 
bound on the probability of MAP solution, which can be 
calculated using Algorithm 2, is the basis of the depth-first 
search algorithm for finding out the exact MAP solution 
[15].This section is divided into three parts. The first part will 
give a brief introduction of a search tree. The second part 
will state the general idea of how to perform a search in a 
search tree. The final part will modify the original search 
algorithm, forming a new algorithm used in a BN where all 
the variables are binary, named binary depth-first search.    

A brief introduction of a search tree. To illustrate the 
complete search procedure clearly, this section takes a search 
tree for example, which is shown in Figure 1. The search tree 
corresponds to a BN which has three MAP variables, X1, X2 
and X3. In the search tree, the root node N corresponds to 
empty instantiation. The children of a node which represents 
instantiations x, where X M , are nodes which represents 
instantiation xv for some variable V in \M X . Leaves of the 
search tree correspond to different instantiations m of MAP 

variables M. The subscript of the donation *
*N represents a 

subset of MAP variables M and the superscript represents the 
corresponding subset of instantiation m. Since each node in 
the search tree corresponds to a variable instantiation, 
different superscript identifies different node of the search 
tree.  

{X1=0,X2=0}

{X1,X2}
N {X1=0,X2=1}

{X1,X2}
N {X1=1,X2=0}

{X1,X2}
N {X1=1,X2=1}

{X1,X2}
N

{X1=0,X2=1,X3=0}

{X1,X2,X3}
N {X1=0,X2=1,X3=1}

{X1,X2,X3}
N {X1=1,X2=0,X3=0}

{X1,X2,X3}
N {X1=1,X2=0,X3=1}

{X1,X2,X3}
N{X1=0,X2=0,X3=1}

{X1,X2,X3}
N {X1=1,X2=1,X3=0}

{X1,X2,X3}
N{X1=0,X2=0,X3=0}

{X1,X2,X3}
N {X1=1,X2=1,X3=1}

{X1,X2,X3}
N

{}

{}
N

{X1=0}

{X1}
N {X1=1}

{X1}
N

  

Figure 1. A search tree corresponding to a BN, in which the 
MAP variables are X1, X2 and X3. 
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The discussion above is about the structure of a search tree. 
This part will assign a value to each node next. Specifically, 
each leaf node is associated with probability Pr(m, e). An 
internal node x is associated with upper bound BD(M/X, ex). 
For the internal node x, the best leaf node below node x is 
just the exact MAP (M/X,ex) solution. 

The basic idea of systematic search algorithm. The basic 
idea of systematic search algorithm is to perform a depth-first 
search on the tree, while computing an upper bound BD(M/X, 
ex) at each internal node x [5]. If the upper bound is no more 
than the value of the best leaf node encountered so far, 
according to Theorem 2, the children of node x should not be 
explored because the nodes below node x cannot lead to a 
leaf node with higher value than the best leaf node 
encountered. 

A new modified algorithm. The systematic search 
algorithm proposed by Park can be applied to a BN where the 
variables can have many states. Focusing on the characters of 
binary variables, the part will modify the algorithm more 
feasible for binary variables.  

Assume the process of searching has been at node x in the 
search tree, and variable V has been chosen to instantiate next, 
where \V XM . Suppose further that when v=0,    

( \ ( { }), { 0})0B BD V ex v bScorev    M X is established, 

where bScore is the best leaf node encountered so far. 
According to the basic idea of systematic search algorithm, 
instantiation xv=0 should pruned and only instantiation xv=1 
can lead to the exact MAP(M, e) with the deepening of the 
search. It is similar to the case when v=1.On the basis of the 
analysis above, this part factors this pruning information into 
the original systematic algorithm, forming a new binary Join 
tree algorithm provided as Algorithm 3. 

 
Algorithm 3: Search(X, z, bSol, bScore, J, S, Z ) 

1: BBD(X,z)    

2: if B≤bScore  then return 

3: if X==null, then bScoreB, bSol z, return 

4: for each V, V  X ,do 

5: compute B0=BD(X\V,zv=0) and B1= BD(X\V,zv=1)    

6: if B0≤bScore and B1≥bScore,,then  z=z  v=1, 

Z=Z V, X=X\V; 

7: if B1≤bScore and B0≥bScore ,then  z=z  v=0, 

Z=Z V, X=X\V; 

8: if B1≤bScore and B0≤bScore,, then  return ;  

9: else 

10: compute vM and vT  

11: end for 

12: chose a variable V as the leaf node, where V  X  and 

= max ( / )V v vV M TX  

13: call Search(X\V, zv=0, bSol, bSore, J,S,Z) 

14: call Search(X\V, zv=1, bSol, bSore, J,S,Z)  

3. A COMPLETE FLOW BLOCK DIAGRAM FOR 
FAULT DIAGNOSE 

In earlier sections, the article has discussed MAP problem 
theoretically and provides the pseudo-code in detail. This 
section will analyzed the application of MAP in the setting of 
fault diagnose and design a complete flow block diagram 
used in software systematically.  

 
3.1 Application of MAP in fault diagnose 

This part starts with an example (see Figure 2) to elaborate 
the application of MAP in the setting of diagnosis. Figure 2 
shows a BN which can be viewed as a causal influence 
diagram of an engineering physical system with some failure 
mode. In the figure, nodes labeled with the same letter of an 
alphabet compose a whole component. For instance, four 
nodes A1, A2, A3 and A4 compose the whole component A. 
For a step further, nodes labeled with the same letter of an 
alphabet but with different numbers represent different 
physical effect factors of the same component. Still taking 
component A as an example, in component A, four physical 
factors have an effect on I1 of the system. Every node has 
two states, or call instantiations, 0 and 1, representing the 
physical factor behaves normal or abnormal respectively. 
Clearly, component A has 16 different instantiations and each 
instantiation corresponds to a probability.  

From the illustration above, each physical factor, instead of 
a whole component of a real system, corresponds to a node in 
a BN. The interplay of each physical factor forms the 
dependence relationship of the BN. Probability theory 
describes this dependence relationship in quantity and thus 
forms Conditional Probability Table (CPT), such as the CPT 
P(D1|A1, A2) assigned to node D1 describes the relationship 
between node D1 and its father nodes A1 and A2. 

 

Form an initialized Bianry Jointree named J 

All the variables that compose component i 
comprise set M, ( ) E MS \  

bSol  an initial instantiation m for a search tree 

bSore P(m,e), which can be calculated after calling 

inwardBD1(J, E M ,  , e m , S) 

Search(M,e,bSol,J,S,E) 

P(m,e) bScore, bSol bSol 

If (i= =1)  Pmax bSore, bmax bSol 

else compare Pmax and P(m,e), choose the larger as Pmax and the corresponding instantiation as bmax

Pr(e)=inwardBD1(J, E,  , e, S M ) 

The most possible faulty component  variables corresponding to instantiation bmax 

The possibility of the most possible faulty component  Pmax/Pr(e) 

Provide maintenance decision for fault diagnosis 

End  

Initialize the Binary Jointree according to Section 2.3 

CPTs, that’s each 

node’s 

P(X |π(X))  

The graphic 

structure of BN, 

the nodes set Λ 

and each node’s 

parents π(X) 

For component i=1 to n, where n is the number 

of components of BN 

Start 

Determine fault case and set evidence E=e 

Form a BN with restriction E=e 

A Binary Jointree(N,ε) call construct(Λ,Γ1,N,ε,π) 

 
 

Figure 2.  A bayesian network used for fault diagnosis 

Given the fault evidence and failure information of a 
system, one may always be interested both in identifying 
which component caused such a failure in a maximum 
probability and wandering to know the corresponding fault 
mode—the instantiation of that failure component. That’s to 
say, each component composes a MAP query. After 
answering all the MAP queries, one needs to compare each 
component’s MAP result in order to decide the most possible 
failure component and its corresponding failure mode of the 
system. 
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The possibility of the most possible faulty component  Pmax/Pr(e) 

Provide maintenance decision for fault diagnosis 

End 

Initialize the Binary Jointree according to Section 2.3

CPTs, that’s each 

node’s 

P(X |π(X))  

The graphic 

structure of BN, 

the nodes set Λ 

and each node’s 

parents π(X) 

For component i=1 to n, where n is the number 

of components of BN

Start

Determine fault case and set evidence E=e

Form a BN with restriction E=e

A Binary Jointree(N,ε) call construct(Λ,Γ1,N,ε,π) 

 
Figure 3. Complete flow block diagram used in the software to identify the most fault reason 

According to the above elaboration, apparently, in Figure 2, 
seven components may lead to the system’s failure with the 
fault evidence I1=1. To find out the most possible failure 
component and its failure mode, first one should do the cycle 
i=1 to 7, computing MAP( , )iM e to identify component i’s 

failure mode in the greatest possibilities. Here, iM  is the set 
representing MAP variables of component i. After that, 
compare the seven MAP results and the component with the 
maximum probability and its corresponding fault mode is the 
final result in fault diagnose. 

3.2 A complete block diagram 

Combining with engineering practice, this section provides 
a block diagram used for fault diagnose, seeing Figure 3, all 
sub-functions of which has been introduced before. The block 
diagram is used to develop a software, one software intend to 
solve MAP problems in fault diagnosis setting and such a 
software is applied to the cases illustrated in section 4. The 
paper centers on MAP problems and the details of the 
software are omitted. 

 

4. CASE STUDIES 

This section gives two fault cases of a certain type of 
aircraft hydraulic power supply system and adopts the 
software raised in Section 3 to solve MAP to find out the 
most possible reasons responsible for the two fault modes, 

separately. Next is the detailed illustration about the two 
cases.  

 
4.1 The first fault case 

Physically speaking, this first fault case is that the fire cut-
off valve of 1# hydraulic system fails (abbreviation: HYD1 
SOV FAIL, encode data 291-111-41). The corresponding BN 
structure of this fault mode is shown in Figure 4 and the 
below describes the physical meaning of each node in the BN, 
which also is assigned a encode data to. The format of encode 
data of a node xx-xx-xx-xx.x consists of nine letters, the 
former six representing the component and the latter three 
representing the concrete physical factor of a component. For 
example, 29-K3-07 stands for circuit; 29-K3-07-00.1 stands 
for circuit break; 29-K3-07-00.1 stands for short circuit.  

 
 

Figure 4. The BN structure of the first fault case 

The number of nodes expect for the top evidence node: 13 
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The number of components: 8 
The description of each physical factor and their 

corresponding encode data are as follows: 
29-K3-07-00.1: circuit break 
29-K3-07-00.2: short circuit  
29-11-20-00.1: firewall shutoff valve unable to shut off 
29-11-20-00.2: firewall shutoff valve shut off too slowly 
29-11-20-00.3: firewall shutoff valve shut off with no 

instructions 
29-11-20-00.5: firewall shutoff valve has an external 

leakage and hydraulic oil loss 
29-K3-08-00.1: electric equipment failure  
29-33-02-00.2: temperature switch failure, internal short-

circuit, breaking point drifting, low 
29-11-27-00.3: too much oil bypasses the heater exchanger 
and the system temperature increases 
29-K3-03-00.1: hydraulic control logic circuit (HCLE) has 

a logic calculation error 
29-K3-06-00.1: full authority digital engine control 

(FADEC) has a data error 
29-11-29-00.4: check valve obstruction leads to shell 

scavenge pipe plugging and the system overheats 
29-11-20-00.D: firewall shutoff valve doesn’t work or 

works abnormally 
By using the software raised in Section 3, the calculation 

result is given in Table 1. The table only lists the components 
whose fault probability is more than 0.1 and their 
corresponding fault modes. The table is listed from high to 
low. Value 1 and 0 denote abnormal and normal respectively. 

It can be seen from the table that the physical factor 29-K3-
07-00.2 of component 29-K3-07 most probably leads to the 
fault case. Referring to the encode data of each node and the 
corresponding physical meaning, it can be concluded that 
circuit short leads to the fire cut-off valve of the 1# hydraulic 
system fails. In practice, circuit short indeed always is the 
reason responsible for the system failure. 

 
Table 1. Results of the first fault mode 

 
   29-K3-07 

 Pmax=0.9918 

     29-11-20 

Pmax=0.9916 

29-K3-08 

Pmax=0.4961 

factors states factors states factors states 

29-K3-07-00.1  0 

29-K3-07-00.2  1 

 

29-11-20-00.1   0 

29-11-20-00.2   0 

29-11-20-00.3   1 

29-11-20-00.5   0 

29-K3-08-00.1  1 

4.2 The second fault case 

The second fault case is that the AC motor-driven pump of 
1# hydraulic system fails (abbreviation: HYD1ACMP FAIL, 
encode data: 291-121-41). The failure case is modeled in BN 
shown in Figure 5. The format of encode data of a node xx-
xx-xx-xx.x is similar to case 1 and there are four auxiliary 
nodes in the BN, which don’t stand for any real physical 
factors.  

The number of nodes expect for the top evidence node: 23 
The number of components: 14 
The description of each physical factor and their 

corresponding encode data are as follows: 
29-K3-05-00.1:  circuit breaker open 

29-K3-05-00.2:  circuit breaker short-cut 
29-K3-07-00.1:  circuit break 
29-K3-07-00.2:  short circuit 
29-K3-08-00.1:  electric equipment failure  
29-11-02-00.4:  alternating current (AC) electric pump has 

a serious external leakage and loses the hydraulic oil 
29-11-02-00.5: AC electric pump has a slight external 

leakage and the hydraulic oil is exhausted 
29-11-02-00.2: AC electric pump outputs with high 

pressure, resulting in high temperature 
29-11-02-00.3: AC electric pump has a serious internal 

leakage and the system overheats 
29-11-02-00.1: AC electric pump output failure 
29-11-02-00.6: AC electric pump outputs with low-flow  
29-33-02-00.2: temperature switch failure, internal short-

cut, breaking point drifting, low 
29-31-03-00.2: EDP pressure switch fails and always 

shows pressure high  
29-31-03-00.1: EDP pressure switch fails and always 

shows pressure low 
29-11-03-00.1: the cushion of EDP unable to isolate the 

vibration 
29-K3-03-00.1: HCLE has a logic calculation error 
29-K3-03-00.D: HCLE sends wrong instruction  
29-K3-06-00.1: (FADEC) unit has a miscalculation 
29-11-10-00.5: oil sample of oil filter is polluted and by-

pass valve has an open failure 
29-11-06-1.1: output of EDP blocked  
29-11-02-00.D: AC electric pump cannot work 
29-K3-05-00.D: circuit breaker doesn't work  
29-K3-07-00.D: circuit failure 

 
 

Figure 5. The BN structure of the second fault case 

By using the software raised in Section 3, the calculation 
result is shown in Table 2. The rules of the result given in this 
table are the same with Table 1. 

 
Table 2. Results of the second fault case 

 
29-K3-05 

Pmax=0.9885 

29-K3-07  

Pmax=0.6593 

29-K3-08 

Pmax=0.3298 

factors states factors states factors states 

29-K3-05-00.1 0 

29-K3-05-00.2 1 

29-K3-07-00.1  0 

29-K3-07-00.2  1 

29-K3-08-00.1  1 

It can be seen from the table that the physical factor 29-K3-
05-00.2 of component 29-K3-05 most probably leads to the 
fault case. Referring to the encode data of each node and the 
corresponding physical meaning, it can be concluded that 
circuit short leads to the AC motor-driven pump of 1# 

7



  
 

hydraulic system fails, which corresponds to the engineering 
practice. 

5. CONCLUSIONS 

MAP solution is a useful measure in the fault diagnosis of 
large and complicated system, such as systems and sub-
systems in aircraft. This paper carries on a thorough research 
on MAP problem. In particular, a systematic scheme for 
solving MAP problems is raised. Moreover, a complete flow 
block diagram to identify the most possible cause of a fault 
by solving MAP exactly is presented. The work in this paper 
mainly is reflected in three aspects.  

1. The paper modifies the fusion algorithm, CPT algorithm 
and systematic algorithm to form a systematic scheme used 
for solving MAP problems and all the key corresponding 
pseudo-code is presented. The systematic scheme is a 
methodology that can solve MAP without being restrained by 
restrained treewidth.  

2. Based on the systematic scheme used for solving MAP 
problems, the paper also devises a complete flow block 
diagram for fault diagnose, forming a technical method 
systematically in engineering application. Such a diagram 
ensures that all these algorithms in the paper can be used in 
diagnostic practice. 

3. According to the complete flow block diagram for fault 
diagnosis and all the algorithms raised in the paper, software 
intend to solve MAP problems in fault diagnosis setting is 
developed and such a software is preliminarily applied to a 
hydraulic power supply system fault diagnosis of a certain 
type of aircraft. The result shows the software works well and 
corresponds to the engineering practice.  
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