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 The classification of high-resolution and remote sensed terrain images with high accuracy 

is one of the greatest challenges in machine learning. In the present study, a novel CNN 

feature reduction using Wavelet Entropy Optimized with Genetic Algorithm (GA-WEE-

CNN) method was used for remote sensing images classification. The optimal wavelet 

family and optimal value of the parameters of the Wavelet Sure Entropy (WSE), Wavelet 

Norm Entropy (WNE), and Wavelet Threshold Entropy (WTE) were calculated, and given 

to classifiers such as K-Nearest Neighbors (KNN) and Support Vector Machine (SVM). The 

efficiency of the proposed hybrid method was tested using the UC-Merced dataset. 80% of 

the data were used as training data, and a performance rate of 98.8% was achieved with 

SVM classifier, which has been the highest ratio compared to all studies using same dataset 

so far with only 18 features. These results proved the advantage of the proposed method.  
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1. INTRODUCTION 

 

Thanks to rapid technological developments in the last 30 

years, innovations in computer technology have led to the 

emergence of new fields for many disciplines as well as 

changes in various application fields. Geographic Information 

Systems (GIS) is one of the technologies that have emerged as 

a result of this development, and it has been used by many 

disciplines. Remote sensing data has recently come to the 

forefront as an important data source for GIS. In particular, the 

commercialization of high-resolution satellite data with 

remote sensing data for geographical information systems has 

gradually become cost-efficient and up-to-date data source [1, 

2]. The integration of remote sensing and geographic 

information systems technologies into solving location-based 

real-world problems and timely decision-making offers 

significant advantages both in for the analysis of satellite 

images and in large-scale applications that require the analysis 

of geographic and spatial data. 

Artificial neural networks form the basis of deep learning 

and offer architectures that enable better modeling. Since 

hardware constraints did not allow intensive matrix operations 

during the 1980s, deep learning could not be turned into 

practice. However, in the late 1980s, Hinton and Lecun 

proposed the backpropagation algorithm [3]. In the existing 

literature, many studies were carried out using deep learning 

techniques, which yielded successful results [4-7]. 

Convolutional Neural Network (CNN), a specialized 

architecture of deep learning, is particularly successful in 

image processing.  

Discrete Wavelet Transform (DWT) displays successful 

performances in different fields such as classification, feature 

extraction, feature reduction, and multi-resolution analysis of 

signs and images [8]. It was observed in the literature review 

that DWT had been used in various fields such as image 

steganography [9], brain MR (Magnetic Resonance) image 

classification [10], digital modulation recognition [11], expert 

target recognition system [12], texture classification [13], 

noise removal and feature extraction [14]. 

Genetic Algorithm (GA) is a bio-inspired optimization 

technique inspired by Darwin’s theory of natural evolution 

[15]. It pioneered the design of innovative optimization 

techniques following successful results obtained using bio-

inspired optimization techniques. It was observed in the 

literature review that GA had been employed in various fields 

such as classification [16-19], expert target recognition system 

[12], feature extraction [20], feature selection [21, 22], face 

recognition [23], and segmentation [24]. 

The most important step of classification studies is the 

feature extraction stage because extracted features in an image 

represent the image itself. In the present study, Alexnet CNN 

architecture, one of the most popular academic study fields in 

today’s world, was used as a feature extractor. The proposed 

method was used to develop a system capable of automatic 

classification by reducing the number of features.  

In the present study, 4096 features belonging to 2100 

remotely sensed aerial images in 21 classes were derived from 

Alexnet architecture. 4096 features were reduced to 18 

features by calculating Wavelet Sure Entropy (WSE), Wavelet 

Norm Entropy (WNE), Wavelet Threshold Entropy (WTE), 

Shannon Entropy, Log Energy Entropy and Energy values for 

each of 1 approximation and 4 detail coefficients of 4 level 

DWT. Later, machine learning algorithms, i.e. SVM and K-

Nearest Neighbors (KNN), were used. Thus, the accuracy of the 

recognition performance of classification was increased, while 

the training time of classification was decreased. The Genetic 

Algorithm (GA) optimization method was used to find the 

optimum parameter values for these 18 features. The feature 

reduction was performed using the obtained optimal wavelet 

family, optimal Ep, p, t parameter values of WSE, WNE, WTE 
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using GA and Shannon, Log energy entropy values, and 

energy values.  

Materials and methods are presented in Section 2. The 

applications of the proposed GA-WEE-CNN Method is given 

in Section 3. Experimental results and other state-of-the-art 

studies are described in detail in Section 4. The study is 

concluded with a summary of our method in Section 5. 

 

 

2. MATERIALS AND METHODS 
 

An overview of the UC Merced dataset is given in Section 

2.1. The proposed method consists of three sections as transfer 

learning with pre-trained AlexNet CNN architecture, DWT 

and GA, and are described below. 

 

2.1. Data sets 

 

UC Merced Land Use [25] is a high-resolution data set 

containing 100 different images (256×256 pixels) divided 

equally in each unique class. This data set contains aerial 

images and is widely used in various remote sensing 

applications. Some examples of this dataset are shown in 

Figure 1. 

 

2.2. Transfer learning with pre-trained AlexNet 

 

Since the ImageNet competition in 2012, AlexNet CNN 

architecture has been used frequently in image processing 

applications. It was used in image classification, image 

recognition, and object tracking problems, and displayed high 

performance rates [26, 27]. Normally, CNN has a layered 

structure that consists of input layer, pooling layer, dropout, 

relu, fully connected layers. The final layer is the classification 

layer [28, 29]. 

Transfer learning is a research problem in machine learning 

which focuses on storing information obtained from the 

solution of a problem and applying it to a different problem 

[30]. Given the huge resources needed to train big and 

challenging datasets with deep learning models or deep 

learning models, transfer learning is one of the most trending 

topics in deep learning. It only operates in deep learning if the 

features learned from the initial task are general. In transfer 

learning, we first prepare a basic network of basic data sets and 

tasks, and redesign the learned features or transfer them to a 

second destination network for training on a destination 

dataset and task. Some examples of Transfer learning with 

Alexnet architecture are shown in Figure 2. 

 

2.3 Discrete wavelet transform 

 

DWT is a powerful technique to analyze non-stationary 

signals such as Phonocardiogram (PCG) signals [31]. The 

main advantage of wavelet transformation is the variable 

window size which can be adjusted as wide for narrow and low 

frequencies for high frequencies. DWT allows all nodes in the 

tree structure to be separated more at each dissociation level. 

The approximate and detail coefficients sample of a DWT 

signal is given in Figure 3. Here, a4 represents 4 level DWT 

approximation coefficients, and d1, d2, d3, and d4 represent 4 

level details coefficients of DWT respectively.  

4096 features for each remote sensed land images were 

obtained from Alexnet CNN architecture. Four levels Wavelet 

Sure Entropy (WSE), Wavelet Norm Entropy (WNE), 

Wavelet Threshold Entropy (WTE), Shannon Entropy, Log 

Energy Entropy, and Energy were obtained. In total, 18 

features for 1 approximation and 4 detail coefficients were 

given as follows:  

1. Shannon Entropy, 

2. Log Energy Entropy, 

3. Energy, 

4. Wavelet Threshold Entropy of 1 approximation and 4 

details coefficients for 4 level DWT. 

5. Wavelet Norm Entropy of 1 approximation and 4 details 

coefficients for 4 level DWT. 

6. Wavelet Sure Entropy of 1 approximation and 4 details 

coefficients for 4 level DWT. 

Here, Ep parameter value of WSE varies between 1 and 8, 

increasing by 0.5. p parameter value of WNE varies between 

1.0 and 1.9, increasing by 0.06. Finally, t parameter value of 

WTE varies between 0.1 and 0.9, increasing by 0.05. 

Therefore, 2100x4096 feature data from the fc7 fully 

connected layer of CNN architecture were reduced to 2100x18 

using 4 level DWT. 

 

2.4 Genetic algorithm 

 

Introduced by John Holland [32], genetic algorithms (GA) 

are evolution algorithms that optimize functions by modeling 

the biological process. GA parameters represent the genes in 

biology, while the aggregate set of parameters constitutes the 

chromosome. Each individual of GAs consists of populations 

represented as chromosomes (individuals). The suitability of 

the population is maximized or minimized within certain rules. 

Every new generation which survives in arrays created by 

random information exchange is obtained through combining.  

These are population, reproduction, discard, modification, and 

evaluation [19, 33, 34]. The building of the Genetic Algorithm 

contains some genetic operations as shown in Figure 4. 

In Genetic Algorithm, realized process stages can be listed 

as follows [19, 33, 34]: 

Stage 1: In this stage, a random population of n people, 

which is the appropriate solution for the problem, is created.  

Stage 2: In this stage, the fitness function f(x) is calculated 

for each of chromosome in population, which is selected as 

randomly. 

Stage 3: In this stage, crossover operators are realized. To 

this aim, the chromosome with the highest fitness value 

between two parents is selected from the population. Later, 

cross-operators are applied to these parental chromosomes in 

order to form new chromosomes. If the crossover operator is 

not implemented, the chromosomes will be a complete copy 

of the parents.    

Stage 4: In this stage, the mutation operations are realized 

by displacing some sequences on the chromosome based on 

the specific mutation rate. 

Stage 5: In this stage, the new population is obtained by 

performing the crossover and mutation operations, 

respectively.  

Stage 6: In this stage, the new population is obtained by 

performing the crossover and mutation operations, 

respectively.  

Stage 7: In this stage, GA is ceased if the final conditions 

are suitable. Thus, the current population yields the optimum 

result. 

Stage 8: In this stage, the new population is generated and 

returned to Stage 2. 

The proposed GA-WEE-CNN method is shown in Figure 5. 
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Figure 1. Sample images of UCM data set in 21 land-cover classes 

 

 
 

Figure 2. Transfer learning with Alexnet architecture 

 

 
 

Figure 3. 4 level DWT tree with corresponding high-pass 

and low-pass filters 

 

 
 

Figure 4. Components of a Genetic Algorithm 

 

 
 

Figure 5. The block diagram of proposed GA-WEE-CNN method 
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3. APPLICATIONS OF PROPOSED GA-WEE-CNN 

METHOD 

 

The application of the proposed GA-WEE-CNN involves 

four steps as follows:   

• Step-1: In this step, the UC-Merced database used in these 

applications were obtained. 

• Step-2: In this step, 4096 features of remote sensed land 

images were obtained from Alexnet CNN architecture. 

• Step-3: In this step, the feature reduction was performed 

using the obtained optimal wavelet family, optimal Ep, p, t 

parameter values of WSE, WNE, WTE using GA and Shannon, 

Log energy entropy values and energy values. Thus, each of 

features by calculating WSE, WNE, WTE, Shannon Entropy, 

and Log Energy Entropy and Energy values for each of the 

obtained 1 approximation and 4 detail coefficients of 4 level 

DWT. t parameter value of WTE varies between 0.1 and 0.9, 

increasing by 0.05. In the present study, UC-Merced database 

used in these applications were obtained. Here, 4096 features 

for each of remote sensed land images were obtained from 

Alexnet CNN architecture. These features were reduced from 

96 to 18 to obtain effective features. Thus, the recognition 

accuracy performance of the classification was increased, 

while the training time of classification was decreased. 

•Step-4: In this step, the classification was realized using 

effective 18 features, which were obtained in the previous step 

for each of 21 categories of 2100 remote sensed land images 

with KNN and SVM classifiers. 

The efficiency of this hybrid GA-WEE-CNN method 

proposed in the present study was tested in UC-Merced dataset. 

80% of all images were used as training data, while 20% were 

used as testing data. Experimental results demonstrated that 

the proposed GA-WEE-CNN method yielded satisfactory 

results in terms of classification accuracy. The flow chart of 

GA-WEE-CNN method for UC-Merced Images Classification 

is shown in Figure 6. 

Properties of the bit capacity of the proposed method: 

• In GA construction, a chromosome consists of a total 

of 16 bits.   

• The first four bits of each of these individuals (1st, 2nd, 

3nd and 4th bits) represent the 16 types of wavelet families, 

which are db2, db4, db5, db10, bior1.3, bior2.2), bior3.5, 

bior6.8, coif1, coif2, coif3, coif5, sym2, sym3, sym5, and 

sym8. 

• The second four bits of each of these individuals (5th, 

6th, 7th and 8th bits) represent the Ep parameter values (1 to 

16) of the WSE. 

• The third four bits of each of these individuals (9th, 

10th, 11th and 12th bits) represent the p parameter values (1 

to 16) of the WNE. 

• The third four bits of each of these individuals (13th, 

14th, 15th and 16th bits) represent the t parameter values (1 

to 16) of the WTE. 

Chromosomes are randomly selected for the first population. 

The GA-WEE-CNN aims to display the highest performance 

for the classifier. GA-WEE-CNN system used 21 categories of 

2100 remote sensed land UC-Merced images for training and 

testing. 80% of the images were used as training data, while 

20% were used as testing data. In the existing literature, these 

percentages are generally used for training and testing as 

demonstrated by previous studies on this topic. Therefore, 

these percentages were selected for training and testing. The 

obtained results indicate that the proposed GA-WEE-CNN 

method yielded satisfactory results in terms of classification 

accuracy.   

The optimal wavelet family and optimal value of the 

parameters of the WSE, WNE, and WTE were calculated 

using GA-WEE-CNN method, which suggested the optimum 

values. As a result, GA-WEE-CNN method proves to be a very 

powerful and real-time system for the classification of 21 

categories of 2100 remote sensed land UC-Merced images. In 

the present study, a triple cross-validation scheme is 

implemented using GA. The mean values are calculated to find 

the performance of GA-WEE-CNN method. 

60 chromosomes were selected as the initial population 

randomly. Each of these chromosomes creates a total of 16 bits. 

The coding values of Ep, p, t parameter of the GA and coding 

of wavelet families are given in Table 1 and Table 2, 

respectively. 

 

 
 

Figure 6. Block diagram of GA-WEE-CNN method for UC-merced images classification 
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Table 1. Coding for parameters of GA 

 
Values of Ep 

parameter 

Values of p 

parameter 

Values of t 

parameter 
Coding 

1 1 0.1 0 0 0 0 

1.5 1.06 0.15 0 0 0 1 

2 1.12 0.2 0 0 1 0 

2.5 1.18 0.25 0 0 1 1 

3 1.24 0.3 0 1 0 0 

3.5 1.3 0.35 0 1 0 1 

4 1.36 0.4 0 1 1 0 

4.5 1.42 0.45 0 1 1 1 

5 1.48 0.5 1 0 0 0 

5.5 1.54 0.55 1 0 0 1 

6 1.6 0.6 1 0 1 0 

6.5 1.66 0.65 1 0 1 1 

7 1.72 0.7 1 1 0 0 

7.5 1.78 0.75 1 1 0 1 

8 1.84 0.8 1 1 1 0 

8 1.9 0.9 1 1 1 1 
 

Table 2. Coding of wavelet families 
 

Values of wavelet families Coding 

1 0 0 0 0 

2 0 0 0 1 

3 0 0 1 0 

4 0 0 1 1 

5 0 1 0 0 

6 0 1 0 1 

7 0 1 1 0 

8 0 1 1 1 

9 1 0 0 0 

10 1 0 0 1 

11 1 0 1 0 

12 1 0 1 1 

13 1 1 0 0 

14 1 1 0 1 

15 1 1 1 0 

16 1 1 1 1 

 

In the present study, the performance of GA-WEE-CNN 

method was calculated using classification accuracy. The 

classification accuracy rates for the data sets were calculated 

using Eqns. (1-2). 

 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  (𝐶) =
∑ 𝑎𝑠𝑠𝑒𝑠𝑠(𝑐𝑘)|𝐶|

𝑘=1

|𝐶|
, 𝑐𝑘 ∈ 𝐶 

𝑎𝑠𝑠𝑒𝑠𝑠(𝐶) = {
1      𝑖𝑓𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑐) = 𝑐. 𝑚
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(1) 

𝑎𝑠𝑠𝑒𝑠𝑠(𝑐) = {
1, 𝑖𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑐) = 𝑐. 𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 

where, C is number of classes. c.m is the class of substance c, 

and (c) gives the classification of GA-WEE-CNN. 

 

 

4. RESULTS  

 

The performance of the proposed GA-WEE-CNN is 

assessed using classification accuracy. The performances of 

classical KNN, SVM classifiers with optimal wavelet families 

and optimal parameters of the WSE, WNE, and WTE were 

compared to evaluate the performance of the GA-WEE-CNN 

method. The best classification accuracy of the proposed GA-

WEE-CNN was found to be 98.8%. Later, values of Ep, p, t 

parameters of the WSE, WNE, WTE and wavelet family were 

calculated as 5, 1.12, 0.4, and db4, respectively. Table 3 

presents the highest four performances and parameter values 

of the suggested GA-WEE-CNN. 

In the present study, we ran many iterations for GA to find 

the highest classification accuracy rates. We proved the 

highest classification accuracy rates in Table 4, and, in Table 

3, the classification accuracy of the GA-WEE-CNN based 

system was compared with previous methods [35-42]. It can 

be understood from Table 3 that the highest performance for 

the classification of UC-Merced dataset was obtained using 

GA-WEE-CNN with an accuracy rate of 98.8%.  

As given in Table 3, the proposed method displayed the best 

performance rate, which shows the effectiveness of the 

proposed method. The proposed method produced the most 

advanced performance with accuracy rates of 98.8% just using 

18 features. In another study similar to the proposed study, 

ResNet-TP, a two-pathway convolutional network with 

context aggregation [42] technique was proposed. However, 

classical CNN architecture was used in this study. Although 

the working time for conventional CNN was not specified, the 

performance rate achieved was lower than the method 

proposed in the present study. 

 

Table 3. The comparison of GA-WEE-CNN based system 

with the previous methods  

 
Method Accuracy % Reference 

CaffeNet 95.02±0.81 Xia et al. [35] 

GoogLeNet 94.31±0.89 Xia et al. [35] 

VGG-VD-16 95.21±1.22 Xia et al. [35] 

CNN-ELM 95.62 Weng et al. [36] 

salM3LBP-CLM 95.75±0.80 Bian et al. [37] 

TEX-Net-LF 96.62±0.49 Anwer et al. [38] 

Fusion by addition 97.42±1.79 Chaib et al. [39] 

CNN fusion 98.02±1.03 Yu & Liu [40] 

ResNet50 98.50±1.40 Scott [41] 

ResNet-TP-50 98.56 Zhou [42] 

GA-WEE-CNN 98.8 The Proposed Method 

 

 

5. CONCLUSION 

 

In the present study, GA-WEE-CNN was proposed as an 

intelligent system for the classification of remote sensed land 

UC-Merced images. The direct use of the feature vector, rapid 

training, and test time and the ability to generalize over 

traditional classification methods are the main advantages of 

the GA-WEE-CNN classification system. In the present study, 

the GA-WEE feature reduction method from the obtained 

CNN features was used for the first time in the existing 

literature. 4096 features were obtained from CNN based on 

Alexnet architecture from each of these remote sensed land 

UC-Merced images, and were later reduced to 18 features by 

applying WSE, WNE, Shannon Entropy, Log Energy Entropy, 

and Threshold Entropy values. Finally, these obtained features 

were given to classifiers such as KNN and SVM for 

classification.  
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Table 4. The best four performance and parameter values of the suggested GA-WEE-CNN. 

 

Used Method 
Type of the 

Used Classifier 

Value of Ep 

parameter 

Value of p 

parameter 

Value of t 

parameter 

Used Wavelet 

Family 

Accuracy 

(%) 

GA-WEE-CNN SVM 5 1.12 0.4 db4 98.8 

GA-WEE-CNN SVM 4 1.3 0.6 sym3 96.67 

GA-WEE-CNN SVM 2 1.42 0.6 db2 93.58 

GA-WEE-CNN KNN 6 1.48 0.2 coif2 92.84 

 

The performance of the suggested GA-WEE-CNN was 

assessed using classification accuracy. The performances of 

classical KNN and SVM classifiers with optimal wavelet 

families and optimal parameters of the WSE, WNE, and WTE 

were compared to evaluate the performance of the GA-WEE-

CNN method. As shown in Table 4, the best classification 

accuracy of the suggested GA-WEE-CNN was found to be 

98.8%. These results demonstrate the advantage of the 

proposed GA-WEE-CNN. 
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