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 This paper presents a new approach for extracting and characterizing the fetal 

electrocardiogram from a mixture of maternal and fetal electrocardiograms, which is of very 

low amplitude and therefore its medical characterization would be very difficult and 

unreliable. This method is based on time-scale analysis by using Continuous Wavelet 

Transform and the Scalogram. Previous work in this field has only investigated on time and 

time-frequency methods using the Short Fourier Transform, which does not give convincing 

and accurate results for biomedical signals that require high precision because any part of 

the extracted signal may indicate a dangerous pathology. The effectiveness of this approach 

lies in the fact that the time-scale analysis or scalogram of fetal-maternal electrocardiogram 

mixture has several energetic zones corresponding either to the electrical activity of the heart 

of the fetus or of her mother, which it facilitates considerably the use of these diagrams in 

order to separate maternal and fetal electrocardiograms. Compared to other more recent, the 

results found by simulations are very interesting and the extracted signal corresponds 

approximately to the source. As a consequence, we can characterize and extract all useful 

medical parameters. More importantly, our approach can be implemented on real time life 

by using embedded system such as Raspberry and Digital Signal Processor. 
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1. INTRODUCTION 

 

Today, more than 17 million people die from cardiovascular 

disease annually, according to the World Health Organization 

(WHO). In Morocco, cardiovascular diseases represent the 

first cause of death. A heart defect may occur and alertness 

should be increased and close monitoring of any newborn baby 

is necessary. Whether inherited or not, congenital heart disease 

varies, while remission depends on the speed of diagnosis. 

Each year in Morocco, an average of 6000 newborn babies 

suffer from a heart defect, or congenital heart disease. Prenatal 

pathology is often diagnosed at the onset of symptoms in 

infants, according to specialists, the early diagnosis, that is to 

say before birth or from the first weeks of pregnancy, is made 

quite late in Morocco. It is from there that our scientific 

contribution will present the effective solution which sets up a 

reliable tool capable of making an early detection of cardiac 

malformations: it is the electrocardiogram (ECG). The 

analysis of an ECG is mine information for the cardiologist 

that he operates according to his patient's state of health and 

his symptoms. The electrocardiogram Figure 1 is the recording 

of the electrical activity of the heart contraction via skin 

electrodes positioned at different points on the body. 

 

 
 

Figure 1. ECG signal 

The ECG allows immediate recognition of variations in 

heart rate, rhythm disturbances, conduction disorders and 

myocardial ischemia. Monitoring the fetal heart rate is an 

important factor in monitoring the progress of childbirth. 

Regular recording of the fetal heart rate shows how well the 

baby tolerates uterine contractions, which alter blood flow in 

the placenta and reduce oxygen supply. If the recording does 

not show any abnormality in the fetal heart rate, the baby is 

diagnosed in perfect condition. The fetal electrocardiogram 

FECG can be measured by placing electrodes on the mother’s 

abdomen. However, this signal has very low power and is 

mixed with several sources of noise and interference. 

Nevertheless, the main contamination is the maternal 

electrocardiogram MECG, since its amplitude is much higher 

than that of the fetus. As a result, the basic problem is to extract 

the FECG signal from the mixture of MECG and FECG 

signals, where the interfering MECG is a much stronger signal. 

The aim of this work is to extract and characterize the FECG 

signal, in order to diagnose the condition of the fetal heart by 

using the continuous wavelet transform (CWT) [1, 2] as a very 

powerful mathematical microscope [3]. An ECG electrode 

placed on the mother's abdomen records the electrical activity 

of two hearts and therefore this electrode picks up a mixture of 

two signals: FECG and MECG. Mathematically, the system is 

called determined because the number of mixtures taken by 

two sensors (electrodes) x1 and x2 is equal to the number of 

unknown sources s1 and s2. By construction of the problem, x1 

and x2 are written as follows: 

 

(
x1

x2

) = [
a11 a12

a21 a22
] (

s1

s2

) (1) 
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where, the coefficients aij are real, constant and different from 

zero and:   

 

s1=Fetal ECG (FECG) 

s2=Maternal ECG 

x1=mixture 1 of s1 and s2 

x2=mixture 1 of s1 and s2 

 

We denote:   

 

S = (
s1

s2

) , X = (
x1

x2

) 

 

And: 

 

A=[
a11 a12

a21 a22
] (2) 

 

Thus:  

 

X = AS (3) 

And: 

 

{
x1 = a11s1 + a12s2

x2 = a21s1 + a22s2
 (4) 

 

Here, we only consider linear instantaneous mixtures, so the 

operator A corresponds to a scalar matrix different from zero. 

The problem, is how we  can determine s1 and s2 from x1 and 

x2 without having the scalar matrix A. Recently a very 

interesting approach was proposed by Ziani et al, since his first 

paper [2] which is based on statistical methods, the second 

paper [3] deals with the fetal electrocardiogram extraction 

based on the wavelet. The third article [4] is based on Non-

negative Matrix Factorization NMF. Other articles focused on 

the characterization of the QRS complex using Time Analysis. 

However, it is restricted to the very special case when each 

source occurs alone in large enough time intervals. Due to this 

limitation, poor performance is often obtained when dealing 

with real sources, like biomedical signals, which do not match 

always this requirement. To overcome this restriction, we 

proposed our approach based on Time-Scale domain analysis, 

which is efficient and provides a very high performance. This 

paper is organized as follows: In Section 2, we started by the 

presentation of the experimental methods. Then, we report the 

most important findings, including results of statistical 

analyses as appropriate and comparisons to other research 

results [5-10] in Section 3. As for section 4, it deals with the 

comparison with to the Time-Frequency Analysis and drew 

various conclusions from this investigation. 

 

 

2. RESEARCH METHOD  

 

2.1 Theoretical background 

 

2.1.1 Wavelet 

A wavelet Figure 2 is a function φ(t) which satisfies certain 

mathematical criteria [11-13]. 

 

 
 

Figure 2. Morlet wavelet 

-Wavelet must have finite energy:  
 

€ = ∫ ⎹ψ(t)⎸2
+∞

−∞

 (5) 

 

- Admissibility constant: 

 

𝒬=∫
 ⎸ ψ(f)̂⎹2

f

+∞

0
df (6) 

 

-The Fourier transform of ψ (t)  

 

ψ(f)̂ = ∫ 𝜓(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
+∞

−∞

 (7) 

 

2.1.2 Continuous wavelet transform CWT 

The continuous wavelet transform (CWT) is a very effective 

time-scale method for characterizing complex signals. A 

common application of the (CWT) is in the detection of edges 

and singularities of signals using multi-resolution analysis. 

The (CWT) of a signal x(t) with an analyzing wavelet ψ(t) can 

be defined as:     

 

T (a, b)=
1

√a
∫ x(t)ψ∗(

t−b

a
)

+∞

−∞
dt (8) 

 

where, a, b ∈ ℝ and a ≠0, ψ* is a complex conjugate parameter, 

respectively [14, 15]. The normalized wavelet is often written 

more compactly as       

 

𝜓a,b=
1

√a
 𝜓(

t−b

a
) (9) 

 

At a specific scale a and location b the relative contribution 

of the signal energy is given by the two-dimensional wavelet 

energy density function: 

 

E(a, b) = |T(a, b)|2 (10) 

 

A plot of E(a,b) is known as a scalogram or Times- Scales 

Image (TSI). 

 

2.2 Algorithm 

 

The approach presented in this article is detailed in the 

algorithm below dissolved in Figure 3. 

 

2.3 Description of algorithm 

 

We consider the following linear instantaneous mixture (Eq. 

(1)) of two real valued sources. So, the CWT of x1 and x2 can 

be written as: 

 

T1(a, b)=
1

√a
∫ x1(t)ψ∗ (

t−b

a
)

+∞

−∞
dt 

=a11 [
1

√a
∫ s1(t)ψ∗ (

t−b

a
)

+∞

−∞
dt ] +

a12 [
1

√a
∫ s2(t)ψ∗ (

t−b

a
)

+∞

−∞
dt ]    

 

T2(a, b)=
1

√a
∫ x2(t)ψ∗(

t−b

a
)

+∞

−∞
dt =

 a21 [
1

√a
∫ s1(t)ψ∗ (

t−b

a
)

+∞

−∞
dt ] +

a22 [
1

√a
∫ s2(t)ψ∗ (

t−b

a
)

+∞

−∞
dt ] 
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Figure 3. Algorithm 

 

Thus: 

 

{
T1(a, b) = a11T11 + a12T22

T2(a, b) = a21T11 + a22T22
 (11) 

 

where: 

 

𝐓𝟏𝟏 =
1

√a
∫ s1(t)ψ∗ (

t−b

a
)

+∞

−∞
dt  is the CWT of s1  

 

And   

 

𝐓𝟐𝟐 =
1

√a
∫ s2(t)ψ∗ (

t−b

a
)

+∞

−∞
𝐝𝐭 is the CWT of s2 

 

At a specific scale a and location b the relative contribution 

of the signal energy is given by the two-dimensional wavelet 

energy density function: 

 

{
𝐄𝟏 = |𝐓𝟏(𝐚, 𝐛)|𝟐 ≈ 𝐚𝟏𝟏

𝟐|𝐓𝟏𝟏(𝐚, 𝐛)|𝟐 + 𝐚𝟏𝟐
𝟐|𝐓𝟐𝟐(𝐚, 𝐛)|𝟐

𝐄𝟐 = |𝐓𝟐(𝐚, 𝐛)|𝟐 ≈ 𝐚𝟐𝟏
𝟐|𝐓𝟏𝟏(𝐚, 𝐛)|𝟐 + 𝐚𝟐𝟐

𝟐|𝐓𝟐𝟐(𝐚, 𝐛)|𝟐
 (12) 

 

So the ratio Γ can be written as: 

 

𝚪 =
𝐄𝟏

𝐄𝟐

 =  
𝐚𝟏𝟏

𝟐|𝐓𝟏𝟏(𝐚, 𝐛)|𝟐 + 𝐚𝟏𝟐
𝟐|𝐓𝟐𝟐(𝐚, 𝐛)|𝟐

𝐚𝟐𝟏
𝟐|𝐓𝟏𝟏(𝐚, 𝐛)|𝟐 + 𝐚𝟐𝟐

𝟐|𝐓𝟐𝟐(𝐚, 𝐛)|𝟐
 (13) 

 

Therefore, our goal is to determine the coefficients a11, a12, 

a21 and a22 in order to solving Eq. (1). Also, the heart rate of 

the fetus is very high compared to that of her mother. Then, 

there are at least two pairs (ai, bi) and (aj, bj) in the time-scale 

space such as the continuous wavelet transform of s1 or s2 is 

equal to zero i.e. 

 

T11 = 0 and T12≠0 or T11 ≠ 0 and T12 = 0 

 

This implies that: 

 

▪ if T11=0 and T22≠0 

 

So: 

 

Γ =
E1

E2
 =  

𝑎11
2|T11(a,b)|2

𝑎21
2|𝑇11(𝑎,𝑏)|2= 

𝑎11
2

𝑎21
2 

 
 𝑎11

𝑎21

=  √Γ = Γ1 (14) 

 

▪ if T11≠0 and T22=0 

So: 

 

Γ =
E1

E2
 =  

𝑎12
2|T22(a,b)|2

𝑎22
2|𝑇22(𝑎,𝑏)|2= 

𝑎12
2

𝑎22
2 

 
 𝑎12

𝑎22

=  √Γ = Γ2 (15) 

 

So by replacing Eq. (14) and Eq. (15) in Eq. (1) we get:  
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{
x1 = a11s1 + a12s2

x2 = a21s1 + a22s2
 

 

{
x1 = Γ1. a

21
s1 + Γ2 . a

22
s2     (a)

x2 = a21s1 + a22s2                 (b)
 

 

s1 =
x1 − Γ2. x2

a21(Γ1 − Γ2)
 (16) 

 

- Γ2. (𝑏) implies: s1 presents the Fetal ECG: FECG  

 

It is interesting to note that the calculation of Γ1 and Γ2 

allows us to determine the desired signal. What is particularly 

striking in this work is the extreme ease for determining the 

ratios Γ1 and Γ2. The continuous wavelet transforms (CWT) as 

a matter of fact is a mathematical microscope which allows the 

detection of the frequency content of a signal and especially 

the detection of all the irregularities contained in an 

electrocardiogram. As we know, the most important wave in 

an electrocardiogram is the QRS complex which provides all 

medical parameters of the electrical activity of the heart. The 

highlight point of this approach is based on the fact that the 

signal recorded by the electrode placed on the mother's 

abdomen contains both, the QRS complexes corresponding to 

the fetus and to its mother, although the amplitude of the fetal 

electrocardiogram  is much lower, the fetus' heart rate is higher 

than that of its mother, so the QRS complexes will be located 

clearly in the time-scale domain or  scalogram and therefore 

we can easily locate all points (ai , bi) where one of the sources 

occurs alone i.e. (T11=0 and T22≠0) and (T11≠0 and T22=0) as 

shown in Figure 4 and Figure 5. Therefore, it is enough to 

determine the ratio Eq. (13) at each point (ai, bi) and by 

determining the period of repetition of these points we will 

make the average of all the founded values Eq. (14), Eq. (15). 

 

 

3. RESULTS AND ANALYSIS  

 

In this section, it is explained the results of our research and 

at the same time is given the comprehensive discussion. 

Results can be presented in Figures 5-8. The data is extracted 

from the DaISy database [15] (Database for the Identification 

of Systems). The sampling frequency is 250 Hz. We used 

Matlab and Python on Windows 7. The mixed signal x1 and x2 

are parameterized with T=2500 s as in Figure 5. 

 

3.1 Results 

 

As mentioned in section 2, we applied the algorithm Figure 

3 step by step. First, we applied the wavelet transforms to the 

input signals x1 and x2, and then we developed the 

corresponding scalogram. Second, we determined the points 

(ai, bi) mentioned in the previous section, then we calculated 

the ratios Γ1 and Γ2. The results of the first simulation are given 

in Figure 6. Accordingly, the desired signal presenting the 

electrical activity of the fetal heart could be determined. The 

second simulation Figure 7 shows the time evolution of the 

extracted signal as well as its scalogram. Furthermore, the 

third simulation Figure 8, presents a characterization of the 

extracted signal S1 in order to extract medical parameter such 

as the heart rate and the visualization of all characteristic 

waves, namely T, QRS and U. 

 

3.2 Discussion 

 

The extraction of fetal ECG is often challenging, because 

prenatal screening of congenital heart disease is important for 

investigation of affected fetuses for comorbidities, 

prognostication, preparation for postnatal management, and 

parental choice about continuation of pregnancy. In this 

research we discovered a new method for extracting the fetal 

electrocardiogram from an abdominal signal which contains a 

mixture of the electrical activity of the fetal’s heart and her 

mother as shown in Figure 9. At first sight the fetal signal 

seems to be just an artefact of maternal signal owing to its very 

low amplitude that is why the extracted ECG (s1) highlights 

the scientific contribution of our approach because it contains 

all the important waves (P, QRS, T and U) Figure 8 for making 

a successful clinical diagnosis. As shown in Figure 8, the 

electrical activity of the fetal heart is normal and there is no 

more abnormality. Besides, we can make a regular monitoring 

by implementing the present approach on real time life by 

using embedded system such as Raspberry or digital signal 

processor DSP since the execution time of the algorithm is 

really optimal. The added value of this article is that it presents 

a clear approach with a minimum execution time and which 

has led to surprising and high quality results. A Comparison of 

other methods such as statistical methods [14, 15], time-

frequency methods [16, 17] and ica-svd methods [2-4, 18], our 

approach is accurate, reliable and can be generalized to all 

biomedical signals and audio signals. Moreover, it can be 

applied to speech recognition and classifications. 

 
Figure 4. Process of locating points (ai, bi) 

382



 

 
 

Figure 5. Data mixtures x1 and x2 

 

 
 

Figure 6. Ratios Γ1 and Γ2 
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Figure 7. Extracted signal FECG 

 

 
 

Figure 8. Characterization Extracted signal FECG 

 

 
 

Figure 9. Abdominal electrocardiogram 
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4. CONCLUSION 

 

The question which then arises is how to extract the fetal 

ECG from a mixture a fetal and maternal ECG. The proposed 

algorithm this paper is based on the continuous wavelet 

transform as an advanced and very rich mathematical tool 

which makes it possible to locate in time and in precise 

chronological order the frequencies contained in a stationary 

or no stationary signal and it is this property which allowed us 

to separate the foetal and maternal contributions in the time-

scale domain. As a result, we were able to extract the fetal 

electrocardiogram. The simulation of the algorithm was done 

on Python and Matlab and it is applied to a real signal from the 

DAISY database, the results found are in perfect agreement 

with the results of the database. I really want to emphasize the 

simplicity of the algorithm and its notable reliability which 

allowed us to make a deep characterization leading to a 

successful early detection. What is more important here is the 

possibility of implementation of the algorithm in real time 

through the use of embedded processor and this allows regular 

monitoring of pregnant women to reassure themselves about 

the cardiac state of their foetuses. Currently, pediatric 

cardiologist uses ultrasound, which unfortunately remains a 

limited and non-rich tool and which can’t completely show the 

foetal morphology malformations a statement that what is 

expected, as stated in the introduction Prenatal screening for 

structural congenital heart disease allows the preparation of 

postnatal intervention in most instances; in a minority of cases 

(mainly critical left-heart lesions), fetal cardiac intervention 

can be considered. Finally, we can’t deny that this paper 

presents an important tool for detecting cardiac malformations 

for fetuses. Future works will be the concretization of this 

approach by an important industrial product. 
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NOMENCLATURE 

Abbreviations 

CWT Continous Wavelet Transform 

TSI Time scale image 

BPM 

ECG 

FECG 

Beat by minute 

Electrocardiogram 

Fetal electrocardiogram 
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