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Perfect binary or ternary sequences exhibit an impulse-like Periodic Autocorrelation 

Function (PACF). Signals with perfect periodic autocorrelation properties are useful in 

many applications in communications and radar fields. The additional complexity in the 

design of radar signals is to take care of the cross-correlation properties when multiple radars 

are sharing the same frequency band. This paper proposes the waveform design approach 

related to the multi-radar network, when radars are employing coherent pulse train or CW 

waveforms. Such practical scenario demands the design of waveforms which have perfect 

autocorrelation and cross-correlation properties. Construction procedure, correlation 

properties and detection performance of such sequences are presented in this paper. 
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1. INTRODUCTION

Discrete-time signals or sequences with impulse like 

autocorrelation functions have many applications in 

measurements, communications and pulse compression radar 

systems. Pulse compression is a technique, which is 

commonly used by radar, sonar and echography to increase the 

Signal-to-Noise Ratio (SNR) and range resolution. To achieve 

this, long duration modulated pulses are transmitted and 

received signal is correlated with transmitted pulse. Most of 

the research related to radar signals are centered around the 

design of waveforms for active radar system that uses 

Aperiodic Autocorrelation Function (AACF) [1]. In general, it 

is not possible to find sequences with an ideal AACF [2]. 

However, CW signals with periodic modulations can yield an 

ideal autocorrelation and are extensively used for radar 

applications. The properties and aptness of such signals are 

studied in [1, 3, 4]. A binary sequence, which has Perfect 

Periodic Auto-correlation Function (PPACF) of length 4 is [1 

1 1 -1]. Furthermore, when a network of multiple radar sensors 

is used, the sequences with ideal periodic auto and cross-

correlation properties are the optimum choice [5-7]. In a 

network of radar sensors, the interference among different 

radars can be minimized efficiently when sequences with good 

cross-correlation property are designed [5].  

This paper is focused on the construction of binary 

sequences with higher energy efficiency that display perfect 

cross-correlation properties in addition to the ideal 

autocorrelation within the Zero Correlation Zone (ZCZ). 

Results presented here show that these sequences are optimal 

in Radar Sensor Network (RSN) and dense target environment, 

particularly when radars are employing coherent pulse train or 

CW waveforms. These sequences are termed as “synthesized 

sequences”.  

The remainder of the paper is arranged as follows. Section 

2 discusses properties of periodic sequences. Section 3 deals 

with the design of sequences with perfect periodic 

autocorrelation. Section 4 explains construction of synthesized 

sequences with perfect periodic auto and cross correlation 

properties. Results and discussions are provided in section 5. 

Finally, Section 6 provides with the conclusions of the study. 

2. PROPERTIES OF PERIODIC SEQUENCES

Let si(n) be a real sequence of length N and the periodic 

repetition of si(n) with period N gives the periodic sequence 

ŝi(n). The autocorrelation and cross-correlation functions of 

such periodic sequences can be given by: 

𝑅𝑖𝑖(τ) = ∑ ŝ𝑖(𝑛)𝑁−1
𝑛=0 ŝ𝑖

∗(𝑛 + τ) 0 ≤ 𝜏˂𝑁 (1) 

𝑅𝑖𝑗(τ) = ∑ ŝ𝑖(𝑛)𝑁−1
𝑛=0 ŝ𝑗

∗(𝑛 + τ) 0 ≤ 𝜏˂𝑁 (2) 

𝑅𝑖𝑖(𝜏) = {
𝐸, 𝑓𝑜𝑟 𝜏 = 0

0, 𝑓𝑜𝑟 𝜏0
 0 ≤ 𝜏˂𝑁 (3) 

where, ŝi(n+τ)=si((n+τ) mod N), and τ=mtb is time delay and tb 

is duration of single bit. Eq. (1) is representing the 

autocorrelation function and Eq. (2) gives the cross-correlation 

function of such periodic sequences. 

The energy ‘E’ associated with the sequence is given by 

𝐸 = ∑ 𝑠𝑖
2

𝑁−1

𝑛=0

(𝑛) (4) 

Luke [2] proposed the methods to synthesize sequences 

having perfect periodic autocorrelation functions and good 

energy efficiency. These sequences are synthesized by 

modifying binary sequences, ternary sequences, M-sequences, 

Legendre sequences, product of two synthesized sequences 

and using computer search. The sequences are synthesized by 

taking advantage of one of the important properties that the 

magnitude of the spectrum of perfect sequences is constant and 

it is given by:  
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S̃𝑖(k) = ∑ ŝ𝑖(𝑛)exp (−
𝑁−1

𝑛=0
𝑗2𝜋𝑛𝑘/𝑁) 0 ≤ 𝑘˂𝑁 (5) 

 

By setting ‘k’ to zero, Eq. (5) becomes: 

 

| S̃𝑖(0)| =|∑ 𝑠𝑖
𝑁−1
𝑛=0 (𝑛)| = √𝐸 (6) 

 

In his work [2], Luke tabulated the perfect sequences up to 

length 60, which have good energy efficiencies. The efficiency 

η of a sequence can be given by Eq. (7). The efficiency of these 

sequences is degraded due to their non-uniform amplitude. 

Therefore, in case of taking product of two non-uniform 

periodic sequences, the efficiency further decreases to η=η1η2, 

where η1 and η2 are efficiencies of two sequences. Formula for 

calculating η is: 

 

𝜂 = ∑
𝑠2(𝑛)

|𝑠2(𝑛)|𝑚𝑎𝑥

𝑁−1

𝑛=0

 (7) 

 

2.1 Periodic ambiguity function 
 

The Periodic Ambiguity Function (PAF) is another tool, 

which plays an important role for the design of radar signals 

and similar to the ambiguity function used for finite duration 

signals. Ambiguity function is the study of the matched filter 

output, when the received signal is exactly of the same finite 

duration as the transmitted signal except shifted in time (delay 

τ) and Doppler (υ) [1]. The similar concept can be extended to 

the periodic signals by considering finite due to finite dwell 

time [8-11]. Let the dwell time of the signal is PT, where T is 

modulation period and P˃1. On receive the return signal is 

correlated with reference signal in matched filter for N (an 

integer) periods of transmitted signal with M˂P, which is 

shown in Figure 1. 

 

 
 

Figure 1. Relative time durations of transmitted and 

reference signals 

 

If s(t) is the transmitted signal than it obeys: 

 

s(t)=s(t+nT) (8) 

 

where, n=±1, ±2, ±3…. 

During the interval τ≤(P-M)T, the correlator output 

response in delay-Doppler plane is periodic ambiguity 

function and can be given as: 

 

|𝜒𝑁𝑇(𝜏, 𝜐)| =
1

𝑁𝑇
|∫ 𝑠 (𝑡 +

𝜏

2
) 𝑠∗ (𝑡

𝑁𝑇

0

−
𝜏

2
) 𝑒𝑥𝑝(𝑗2𝜋𝜐𝑡)𝑑𝑡| 

(9) 

 

where, τ is delay constant and υ is Doppler shift. 

The relationship between the PAF of N periods and single-

period ambiguity function can be given by: 

 

|𝜒𝑁𝑇(𝜏, 𝜐)| = |𝜒𝑇(𝜏, 𝜐)| |
𝑠𝑖𝑛 (𝜋𝜐𝑁𝑇)

𝑁𝑠𝑖𝑛(𝜋𝜐𝑇)
| (10) 

 

where, 

|𝜒𝑇(𝜏, 𝜐)| = |
1

𝑇
∫ 𝑠(𝑡 + 𝜏

2⁄ )𝑠∗(𝑡 − 𝜏
2⁄ ) 𝑒𝑥𝑝(𝑗2𝜋𝜐𝑡)𝑑𝑡

𝑇

0
|  is 

the ambiguity function of single-period signal. This equation 

gives an important result of PAF in terms of ambiguity 

function of a single period multiplied by function similar to 

sampling function of N and T [1, 9]. 

 
2.2 Cyclic shift property of periodic sequences  

 

Let us consider a sequence Xn=[x1, x2, x3,…, xN] of length N. 

any of its shifted sequence after ‘s’ cyclic shifts X(n+s)=[xs, 

xs+1, …, xN,  x1, x2, x3,… xs-1] where 1≤s≤N. If we consider, 

X5=[0 0 0 1 1] than after one shift X5+1=[1 0 0 0 1]. Sequence 

achieved after five shifts is an original sequence. Therefore, 

the periodic autocorrelation property of the shifted sequence is 

same as the original sequence, since the periodic 

autocorrelation property is invariant to cyclic shifts. However, 

the aperiodic autocorrelation function of cyclically shifted 

sequence may be different from the original one. Next section 

explains construction of binary sequences which have perfect 

periodic autocorrelation property. 

 

 

3. SEQUENCES WITH PERFECT PERIODIC 

AUTOCORRELATION 
 

Two important sequences, M-sequences and Legendre 

sequences are considered here for the design of synthesized 

binary sequences. M-sequences and Legendre sequences 

exhibit lowest PACF equal to |Rii(τ≠0)=1|. The Ipatov code 

[12] is also a code pair which exhibits perfect periodic 

autocorrelation (the cross correlation of the code pair) and 

minimal mismatch loss. But the construction method of 

reference code for Ipatov pair is complicated. M-sequences 

and Legendre sequences having code length N produce 

periodic autocorrelation of peak value equal to N and uniform 

sidelobes of value 1. Figure 2 shows the periodic 

autocorrelation function of M-sequence of code length N=7. 

The PACF clearly show that the magnitude of sidelobes other 

than peak is ‘1’ which is constant. Levanon [13] and Jahangir 

[14] demonstrated the ideal periodic correlation properties of 

M-sequences and Legendre sequences by taking the cross-

correlation between the unipolar version {1, 0} of transmitted 

signal and the bipolar reference signal {±1}. It is shown that 

this method is advantageous in context of Non-coherent Pulse 

Compression (NCPC) radar. These sequences are also 

optimized to achieve perfect auto and cross correlation 

properties and referred as optimized Punctured ZCZ 

Sequence-pair Sets (PZCZSPS), proposed by Lei and Liang [5, 

15, 16]. The periodic cross-correlation property of punctured 

M-sequence for N=7 is shown in Figure 3 where all off-peak 

sidelobes are zero. To achieve zero sidelobes, the number of 

‘1’s must be larger than the number of ‘0’s by one element in 

a given M-sequence. It can be observed from Figure 3 that the 

peak lobe value is 4 because the number of ‘1’s in the 

transmitted signal are 4 and ‘0’s are 3. The perfect periodic 
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cross-correlation property is achieved at the cost of high 

energy loss. The energy efficiency of unipolar M-sequence 

(N=7) is nearly 57% and such signals are preferred in non-

coherent processing [13, 14]. 

 

 
 

Figure 2. Periodic autocorrelation function of M-sequence 

N=7 

 

 
Transmitted sig=[1 1 1 0 1 0 0]; Reference sig=[1 1 1 -1 1 -1 -1] 

 

Figure 3. Periodic cross-correlation of M-sequence N=7 

 

For coherent processing, the reference signal must be same 

as the transmitted signal. Therefore, there is a need to design 

synthesized binary sequences which have perfect periodic 

autocorrelation property with higher energy efficiency so that 

these sequences can be used in high resolution radar 

applications. 

To enhance the detection capability of a radar system, the 

energy associated with reflected echo must be large which is 

directly proportional to the transmitted energy of the signal. 

On the other hand, range resolution depends upon pulse 

compression, which is equal to N, where N is length of the 

sequence. Therefore, it is significant to discuss the 

construction of the sequences which have higher energy 

efficiency and large sequence length. Luke [2] presents such 

sequences only up to lengths 60 and the maximum energy 

efficiency of these sequences is less than or equal to 82% 

except for a ternary sequence of length 57. In this paper perfect 

amplitude-symmetric binary sequences of high energy 

efficiency above lengths 60 are investigated and listed in Table 

1. These sequences are derived either from M-sequences or 

Legendre sequences which can be written in the form of 

(N+1)/2 positive ‘1’s and (N-1)/2 negative ‘1’s. Another major 

advantage of such binary sequences is as the length of the 

sequence increases, the energy efficiency also increases and 

approaches 1 as N approaches infinity [2]. Table 1 shows the 

synthesized binary sequences which have energy efficiency 

above 82%. This table includes sequences form N=63 to 

N=199, which satisfy the condition (N+1)/2 positive and (N-

1)/2 negative bits in the sequences and all are prime numbers 

except 63. 

In all synthesized binary sequences the value of ‘a’ is 

calculated by using Eq. (11), where N is an odd integer. 

 

𝒂 =
−1

1 +
2

√𝑁 + 1

 
(11) 

 

Though this paper includes synthesized binary sequences 

only up to length 199, but such sequences can be designed for 

any sequence length N, where N≡3(mod4), and N is prime 

number. Next section explains the design of larger length 

sequences which are not prime, by using product of two 

sequences. 

 

Table 1. Synthesized binary sequences with energy efficiency η>82% 

 
N η (%) Sequence of good energy efficiency 

63 82.3 a  a  a  a  a  1 a  a  a  a 1 1 a  a  a 1 a  1  a  a  1  1  1  1  a  1  a  a  a  1 1 1  a  a  1  a  a  1  a  1  1  a  1 1  1  a  1  1  a   a  1  1  a  1  a  1  a  1  1 1 1 1 1 (a=-0.8) 

67 82.7 1  a 1 1 a 1 a 1  1  a   a  1  1  1  a  a  a  a  1 a 1 a  a  a  a  a  a  1 1 a 1 1 1 a  1  a a  a  1  a  a  1 1 1  1 1 1 a 1 a 1 1  1 1 a  a  a  1 1  a  a  1 a 1 a  a 1  ( a=-0.805) 

71 83 1 a a a a  a  a 1 a  a   a  1  a 1 1 a  a  1 a  a  a 1 1 1 a  a  1 a 1 a  a  1 a  1 1 1 a  a  a  1  a  1 1  a  1  a 1 a  a  a  1 1  1 a  1 1  a   a 1 a  1  1 1 a  1 1  1 1 1 1 (a=-0.81) 

79 83.6 
1 a a 1 a  a 1 1 a  a  a  a  1  a  1 1  a  1 a  a  a  a  a  a  1  a  a  1  1 1 1 a  a 1 1 1 a  1 a 1  a  1  a  1  a   a  a  1  1  a  a   a   a  1 1 a  1  1 1  1  1  1 a 1  a  a 1  a 1 1 1 1 a  a  1 1 a 1 1   

( a=-0.817) 

83 83.9 
1 a  1  a  a  1  1  a  1  a   a   a  a  1  1  1  a  a  1  1  1  a  1  a  1  a  a  a  a  a  a  a  1  a  1     1  a  a  a  1  a  a  1  1  a  1  1  1  a  a  1  a  1  1  1  1  1  1  1  a  1  a  1  a  a  a  1  1  a  a   

a  1  1  1  1  a  1  a  a  1  1  a  1  (a=-0.821) 

103 85.1 
1  a  a  1  a  1  1  a  a  a  1  1  1  a  a  a  a  a  a  a  1  1  1 a  1  a  a  1  a  a  a  1  a  a  a  1   a  1  a  1  1  a  1  1  1  1  a  1  1  a  a  1  a  1  1  a  a  1  a  a  a   a  1  a  a  1  a  1  a  1  1    

1  a  1  1  1  a  1  1  a  1  a  a  a  1  1  1  1  1  1  1 a  a  a 1  1  1 a  a 1 a 1  1  (a=-0.836) 

107 85.3 
1 a 1 a  a 1  1  1  1 a  a  a  a  a  a 1 a 1  a 1  1  1  a  1 a 1 a 1  a  a  1 1 a  a  a  a  a  1  a  a  a  a  1  a  1  1 a  a  a 1  1 a  a  1  1 a  a  1  1  1  a  a  1  a  1  1  1  1 a  1  1  1  1  1  a  a  1  

1  a  1 a 1 a  1  a  a  a  1  a  a  1  a  1  1  1  1  1  1  a  a  a  a  1  1 a 1  (a=-0.839) 

127 86.2 
1  a  a  1  a  1  1  1  a  a  1  a  1  a  1  a  a  a  a   a  1  a  a  1  1  a  a  1  1  1  a  a  a  1  a   a     a  a  a  1  1  a  a  1  a  1  1  a  1  a  a  1  a  1  1  1 1  1  1  1  a  a  a  1  a  1  1  1  a  a  a  

a  a   a  a  1  a  1  1  a  1  a  a  1  a  1  1  a  a  1  1  1  1  1  a  1  1  1  a  a  a  1  1  a  a  1  1  a     1  1  1  1  1  a  1  a  1  a  1  1  a  a  a  1  a  1  1   (a=-0.85) 

131 86.4 
1 a  1  a  a  a  1  a  1  a  1  a  a  a  1  a a  1  1  1  a  a  1  1  1  a  1 a  a  1  1  1  1  a  a  a  a   1  a  a  1  a  1  a  a  a  a  1  a  a  1  1  a  a  1  a  1  1  a  a  a  a  a  a  a  a  1  1  1  1  1  1  

1    1  a  a  1  a  1  1  a  a  1  1  a  1  1  1  1  a  1  a  1  1  a  1  1  1  1  a  a  a  a  1  1  a  1  a  a    a  1  1  a  a  a  1  1  a  1  1  1  a  1  a  1  a  1  1  1  a  1   (a=-0.852) 

139 86.6 
1  a  1 1  a  a  a  a  1  a  1  a  1  a  1 1  a 1  1  1  a  1  1  1  a  a  1  1  a  a  a  a  1  1  a  a  a    a  a  1  1  a  a  1  a  a  a  a  1  a  1  a  a  1  a  a  1  a  1  1  1  1  1  a  a  a  a  a  1  a  1  a  

1 1  1  1  1  a  a  a  a  a  1  a  1  1  a  1 1  a  1  a  1  1  1  1  a  1  1  a  a  1  1  1 1  1  a  a  1  1     1  1  a  a  1  1  a  a  a  1 a  a  a  1  a  a  1  a  1  a  1 a  1  1  1  1  a  a  1   (a=-0.855) 

151 87.1 

1  a  a  1  a  a  1  1  a  a  a  a  1 1 1 1 a  a  a  a  a  a  a  1  1  a  1  1  1  a  1  a  a  1  a  1  a    a  a  a  a  1  a  a  a  a  1  a  1  a  a  1  1  1  1  a  1  1  a  a  1  1  a  1  a  1  1  1  a  a  1  1  

a    1  a  1  a  1  a  1  a  a  1  1  a  a  a  1  a  1  a  a  1  1  a  a  1  a  a  a  a  1  1  a  1  a  1  1  1     1  a  1  1  1  1  1  a  1  a  1  1  a  1  a  a  a  1  a  a  1  1  1  1  1  1  1  a  a  a  a  1  1  

1  1  a    a  1  1  a  1  1    (a=-0.86) 

163 87.5 

1  a  1  1  a  1  a  1  1  a  a  1  1  1  a  a  a  1  1  1  1  a  a  1  a  a  a  1  1  1  1  1  1  a  a  a  a  1  a  a  a  a  1  a  1  1  a  a  1  a  1  a  1  a  a  a  a  a  a  1  a  a  a  1  a  a  1  1  1  a  1  a     

1  1  a  1  1  a  1  1  1  a  1  a  a  a  1  a  a  1  a  a  1  a  1  a  a  a  1  1  a  1  1  1  a  1  1  1     1  1  1  a  1  a  1  a  1  1  a  a  1  a  1  1  1  1  a  1  1  1  1  a  a  a  a  a  a  1  1  1  a  1  1  

a    a  a  a  1  1  1  a  a  a  1  1  a  a  1  a  1  a  a  1    ( a=-0.865) 

167 87.6 

1  a  a  a   a  1  a  a  a  a  1  a  a  1  a  1  a  1  a  a  1  a  a  1  a  a  1  a  a  a  1  a  a  a  1  1     a  1  a  1  1  1  a  1  a  1  1  a  a  a  a  1  1  1  a  1  a  a  a  1  1  a  a  a  a  a  a  1  1  1  1  

1     a  1  1  a  a  a  1  1  1  a  1  1  a  a  1  a  a  a  1  1  1  a  a  1  a  a  a  a  a  1  1  1  1  1  1  a    a  1  1  1  a  1  a  a  a  1  1  1  1  a  a  1  a  1  a  a  a  1  a  1  a  a  1  1  1  a  1  1  1  

a  1  1     a  1  1  a  1  1  a  1  a  1  a  1  1  a  1  1  1  1  a  1  1  1  1  (a=-0.866) 

179 87.9 

1  a  1  a  a  a  1  1  1  a  1  1  a  a  a  a  a  a  1  a  a 1 a 1  1 a 1 a 1 a 1 a  1  1  1  1 a 1  1 a 1  1 a  a 1 a  a  a  a  a 1 a  a 1  1  1 a  a 1 a  a  a 1  1 a  a  a  a  a 1 a 1 1 1 a  a  a  a  1  1  

a  a  a  a  1  a  1  a  a  a  1  1  1  a  1  a  1  1  1  1  a  a  1  1  1  1  a  a  a  1  a  1  1  1  1  1  a  a  1  1  1  a  1  1  a  a  a  1  1  a  1  1  1  1  1  a  1  1  a  a  1  a  a  1  a  a  a  a  1  a  1  a  

1  a  1  a  a  1  a  1  1  a  1  1  1  1  1  1  a  a  1  a  a  a  1  1  1  a  1  (a=-0.87) 

191 88.2 

1 a  a  a  a  a  a 1 a  a  a  1  a  a  1 a  a  a  a  1 a 1  1  a  a  a  a  a  1  1 a 1 a 1 a 1 a 1 1 a   a  1 1 a 1 a  a  1  a  a  a  a  a 1 a 1  1  1  1 a  a  1  1  1 a  a  1 a  a  a  1 1 a 1  1 a 1 a  a  a     

a  a  1  1  1 a  a 1  1  1  a  1 a 1  1  1 a  a  a 1  a 1 a  a  a 1  1  a  a  a  1 1  1  1  1 a 1 a  a     1  a  a 1  1 1 a  1  1 a  a  a 1 1 a  a  a  a 1 a 1  1  1  1  1 a 1  1 a 1 a  a 1  1 a  a 1 a 1 a 1 

a 1  a  a 1  1  1  1  1 a  a 1 a 1  1  1  1 a 1  1 a 1  1  1  a  1 1  1  1  1  1 (a=-0.874) 

199 88.4 

1 a  a 1 a  a 1 a  a  a  a 1  1 a  a 1 a 1 a  1 a 1  1 a 1 a  a 1 a  a 1 a  a  a 1 a  a 1  1  1 a  1  1  a 1 a  a  a 1  a  a  a  a  a 1  1 a  a  a 1  1 a  a  a  a  a  a 1  1  1 a 1 a 1  1  1  1  1 1 a  a  a    

1  1  1  1 a 1  1 a  a  a  a 1 a 1  1  1 a 1 a 1 a  a  a 1 a 1  1  1  1 a  a  1 a  a  a  a 1  1  1 a  a  a  a  a  a 1 a  1 a  a  a 1  1  1  1  1  1 a  a 1  1  1 a  a 1  1  1  1  1 a 1  1  1 a 1 a  a 1 a  a  

a 1  1 a 1  1  1 a 1  1 a 1  1 a 1 a  a  1 a  1  a 1 a 1  1 a  a 1  1  1  1 a 1  1 a 1 1  (a=-0.876) 
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3.1 The product of two sequences 

 

To construct the longer length sequences other than prime 

number with perfect periodic autocorrelation, recall the 

procedure explained by Luke [2]. He presented the detailed 

analysis of constructing arrays by two-dimensional folding of 

sequences and construct the sequences by periodical 

multiplication of arrays and sequences. The method of finding 

a perfect sequence of length N with N=N1×N2 is explained as:  

Definition: Let u=[u0, u1, u2, …, uN2-1] and v=[v0, v1, v2, …, 

vN1-1)] be two sequences with GCD(N1, N2)=1. The product 

sequence S=[s0, s1, s2, …, sN-1] is of length N=N1×N2. 

Each element of S is given by: 

 

𝑠𝑙=𝑢𝑙1
.𝑣𝑙2

, l=0, 1, 2, …, N-1 (12) 

 

In Eq. (12), l1=l (mod N1) and l2=l (mod N2) 

The product sequence is denoted by S=u⨂v. The 

construction is illustrated in the following example. 

Example: Let two sequences u=u0, u1, u2=[1 1 -1] and v=v0, 

v1, v2, …, u6=[l 1 1 -1 1 -1 -1]. We can construct the 3x7 matrix 

to achieve the product sequence of length 21.  
 

[ 
 1     1      1    – 1     1   – 1     – 1
  1     1      1    – 1      1   – 1    – 1
– 1  – 1   – 1      1    – 1     1      1

] 

 

where, the first row is u0v, the second row is u1v and the third 

row is u2v. The product sequence, S=u⨂v. The final product 

sequence is written as:  

 

S = [1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1]. 

 

This final sequence ‘S’ is achieved by reading the above 

matrix along the extended diagonal that starts from the upper 

left corner [2]. This procedure can be used to design the perfect 

periodic sequences of lengths other than prime numbers 

provided sequences ‘u’ and ‘v’ exhibit perfect periodic 

autocorrelation. 

In next section, construction of ‘synthesized sequences’ 

with perfect auto and cross correlation properties is explained 

using product of two sequences without degrading the 

efficiency of the product sequence. The length of these 

sequences is N=N2×N1 where N1 is the length of any odd length 

synthesized binary sequence and N2 is the order of Walsh 

Hadamard matrix.  
 

 

4. CONSTRUCTION OF SEQUENCES WITH 

PERFECT PERIODIC CORRELATIONS 
 

To understand the design concept of perfect periodic 

autocorrelation and cross correlation sequences, we should 

consider a synthesized binary sequence derived by using the 

procedure explained in Sec. 3. To examine the perfect periodic 

autocorrelation property, synthesized binary sequence of 

length 7 (for which value of a=-0.586) is considered. S7=[1 1 

1 -0.586 1 -0.586 -0.586]. The amplitude of transmitted signal, 

PACF and periodic ambiguity function of this sequence is 

illustrated in Figure 4.  

To construct the set of synthesized sequences which have 

perfect autocorrelation and cross correlation properties, the 

procedure is as follows: 

 

Step 1. Consider a synthesized binary sequence ‘S’ of odd 

length. Let the length of sequence is considered N1. 

Step 2. A Walsh Hadamard matrix H of order N2, where N2 

is the length of each sequence and is equal to the number of 

the sequences in the matrix. In this example, Walsh Hadamard 

matrix H of order 4 by 4 is considered.  

Step 3: To construct the synthesiz sequences of N2 

sequence-sets, the product of two sequences method is to be 

applied. By adopting this process, each synthesized binary 

sequence will be multiplied with each row of Hadamard matrix 

H, which generates the N2 number of sequences by using bit 

multiplication operation given by (12). 
 

𝐻 = [

1      1       1      1
1   – 1     1   – 1
1     1    – 1   – 1
1    – 1   – 1     1

] (13) 

 

Since the synthesized binary sequence has odd length that 

is N1 and the Hadarmard matrix consisting of Walsh sequence 

of length N2, which is even, the length of each sequence after 

product of two sequences is N=N1×N2. The constructed 

sequences have minimum zero correlation zone in between 1 

to (N1-1) in their periodic autocorrelation functions. The 

number of sequence-sets with perfect correlation properties is 

equal to the order of the Hadamard matrix (i.e. N2). 

Mathematically the final set of sequences [s(p)] can be 

represented as:  

 

ℎ(𝑝)=[ℎ0
𝑝

 ℎ1
𝑝

 ℎ2
𝑝

 ℎ𝑁2−1
𝑝

] (14) 

 

where, p=1, 2, …, N2, and h(p) represents each row of Walsh 

Hadamard Matrix. 

 

𝑠𝑗
(𝑝)

=Sj(mod N1)hj( mod N2)
𝑝

 (15) 

 

where, 1≤ p≤N2 and 0≤j≤N1-1. 

And finally a set of 4 sequences (N2=4) related to 𝑺 are: 

 

𝑺=[s(1); s(2); s(3); s(4)] (16) 

 

In Eq. (15) the Sj is synthesized binary sequences of length 

N1 and hj is Hardamard sequence of length N2. 

 

 
(a) 

 
(b) 
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(c) 

 

Figure 4. (a) Amplitude of transmitted signal (b) PACF (c) 

PAF of synthesized binary sequence N=7. S7=[1 1 1 -0.586 1 

-0.586 -0.586] 

 

Table 2. Sequences with perfect periodic auto and cross-

correlation properties (a=0.586 and ā=-0.586) 

 
Sequence 

Length (N) 

Efficiency 

(η) (%) 
Synthesized sequences 

28 72 

s(1)= [ +  +   +   ā   +   ā    ā   +   +   

+   ā   +   ā   ā   +   +   +  ā   +   ā   

ā   +   +   +   ā  +   ā   ā] 

s(2) = [+    −     +    a   +   a   ā   −   

+   −   ā   −  ā   a   +   −   +  a  +   a   

ā  −   +   −   ā  −   ā   a] 

s(3) = [+  +   −   a   +   ā    a   −   +   

+  a   −   ā   ā   −   −   +   ā   −   a   

ā    +   −   −   ā   +   a   a] 

s(4)   = [+  −   −   ā   +   a   a    +   +   

−   a   +  ā   a   −   +   +  a   −   ā   ā   

−    −   +   ā   −   a   ā ] 

 

To demonstrate the perfect periodic auto and cross 

correlation properties, two sequences N1=7 of odd length and 

Walsh Hardmard matrix of N2=4 are considered. It is easy to 

see that GCD(7,4)=1 (greatest common divisor of 7 and 4 is 

1), then the resulting synthesized sequences will have the 

length N=7×4=28. 

A set of 4 synthesized sequences can be constructed by 

using this method. However, from Eq. (13) it can be observed 

that the sequence 3 and sequence 4 of Walsh Hadamard matrix, 

row 3 is one bit shifted version of row 4. When we take the 

product of the synthesized binary sequence with row 3 or row 

4 of Hdamard matrix, the resulting sequences will have same 

periodic property (as explained in sec. 2.2). Hence, out of four 

sequences only three sequences will demonstrate perfect 

cross-correlation properties. Additionally, the resulting 

sequences have the same efficiency as the original signal that 

is N1 because the efficiency of the Hadamard sequence is 1 (i.e. 

100%). By using “+” and “−” symbols for “1” and “−1” and 

“a” and “ā” for 0.586 and ˗0.586 respectively, a set of four 

sequences is presented in Table 2. From Table 2, the sequences 

s(3) and s(4) are: 

 

s(3) = [+ + − a +  ā  a −  +  + a − ā  ā −  −  +  ā −  a  ā  +  − − ā 

+ a  a] 

s(4) = [+ −  −  ā  +  a  a  + + −  a  +  ā  a −  + + a −   ā   ā −  −  

+  ā − a  ā ]. 

 

The above two sequences clearly show that these are the 

shifted versions of each other. Hence, the periodic 

autocorrelation and cross-correlation property of these two 

sequences are similar. Therefore, only a set of three sequences 

(i.e. either s(1) s(2) s(3)  or s(1) s(2) s(4)) will exhibit perfect cross-

correlation property. The perfect cross-correlation property of 

s(1) s(2) and s(3) is shown in Figure 6. If the large number of 

sequences in a set are required, we must consider the higher 

order of Walsh Hadamard matrix. Figure 5 shows the ideal 

ACF property of s(1) s(2) s(3). 

 

 
 

Figure 5. Periodic autocorrelation of sequences s(1) s(2) and 

s(3) shown in Table 2 

 

 
 

Figure 6. Periodic cross-correlation of sequences s(1) s(2) and 

s(3) shown in Table 2 

 

 
(a) Periodic autocorrelation of signal s(1) N=796 

 
(b) Periodic autocorrelation of signal s(2) N=796 
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(c) Periodic cross-correlation of signals s(1) and  s(2) 

 

Figure 7. Periodic auto and cross-correlations of two signals 

for N= 796 (199x4) 

 

It is evident from the Figures 5 and 6 that the proposed 

sequences have perfect autocorrelation and cross correlation 

properties. Additionally, Figure 7 establishes the perfect 

periodic auto ans cross correlation properties of higher length 

N=796, which is the product of two sequences (N1= 199, N2=4). 

It is clearly observed that the zero correlation zone in 

autocorrelation is (N1-1 =198) and in cross-correlation graph 

ZCZ extends from -796 to +796. The impulse like 

autocorrelation function in Figures 7(a) and 7(b) shows the 

range resolution capability of these sequences. Performance of 

synthesized sequences in presence of Doppler shift is 

examined in section 4.1 with the help of periodic cross 

ambiguity function. 

 

4.1 Periodic cross ambiguity function 

 

When the transmitted signal reflects back from a moving 

target, that results phase shift in received signal. This shift in 

received signal is corresponding to a Doppler shift. The main 

outcome of Doppler shift is that the autocorrelation peak will 

be reduced and also changes the sidelobe values in ambiguity 

function. To analyze the performance of periodic signals, 

Levanon [1, 9] introduced the concept of periodic ambiguity 

function. The PAF, of any single sequence can be represented 

by (17): 

 

|𝜒𝑇(𝜏, 𝜐)|𝑠𝑖𝑛𝑔𝑙𝑒 = 

|
1

𝑇
∫ 𝑠(𝑡 + 𝜏

2⁄ )𝑠∗(𝑡 − 𝜏
2⁄ ) exp(𝑗2𝜋𝜐𝑡)𝑑𝑡

𝑇

0

| 
(17) 

 

where, T is one period of the signal.  

When PAF of two different signals s(1) and s(2)  is considered 

that is referred as periodic cross-ambiguity function and can 

be achieved by replacing |𝜒𝑇(𝜏, 𝜐)|  in Eq. (10) with 

|𝜒𝑇(𝜏, 𝜐)|𝑝𝑎𝑖𝑟  which is given in (18). 

 
|𝜒𝑇(𝜏, 𝜐)|𝑝𝑎𝑖𝑟 = 

|
1

𝑇
∫ 𝑠(1)(𝑡 + 𝜏

2⁄ )𝑠(2)∗
(𝑡 − 𝜏

2⁄ )  exp(𝑗2𝜋𝜐𝑡)𝑑𝑡 
𝑇

0

| 
(18) 

 

Figure 8 is showing the un-normalized periodic cross-

ambiguity function of two sequence s(1) and s(2). This figure 

concludes that the cross-correlation is perfect for zero Doppler 

shift. When Doppler shift in not zero perfect cross -correlation 

property does not hold. From the figure, when 28υtb (Doppler 

axis) is equal to 0.5 the maximum peak is 0.16 compared to 

the autocorrelation peak height of 1.00. This relationship 

shows that 28𝜐tb=0.5 or υ=0.018/tb, where 𝜐 is doppler shift 

and tb is the duration of one bit of the sequence. Let the value 

of tb=0.1 microsecond, then the value of υ=0.18 MHz will 

cause such high cross-correlation peaks. It concludes that the 

periodic cross-ambiguity function of two signals exhibit such 

high cross-correlation peaks only when the carrier frequencies 

of the two signals are different by Δf=0.18 MHz. If two radars 

are operating in 10 GHz, such high peaks will appear when a 

target is moving with a speed of 2700 meters/sec. 

 

 
 

Figure 8. Periodic cross-ambiguity function of sequences s(1) 

and s(2) of length N=28 (shown in Table 2) 

 

 

5. RESULTS AND DISCUSSIONS 
 

Design of synthesized sequences, as applicable to multi-

radar network and dense target environment, particularly when 

radars are employing coherent pulse train or CW waveforms 

have been presented in this paper. Two major issues are 

addressed here. (i) perfect periodic synthesized binary 

sequences with variable amplitude and higher energy 

efficiency are designed to achieve zero sidelobes in zero 

correlation zone so that even a small target present near the 

large target can be detected. (ii) to avoid the interference of 

multiple waveforms in applications such as RSN, MIMO radar 

or CDMA communications, it is desired to make sidelobes as 

low as possible [16-22]. The perfect periodic autocorrelation 

property of synthesized sequences are shown in Figures 4(b), 

5, 7(a) and 7(b). Perfect periodic cross-correlation property of 

waveforms explained in section 4 is verified in Figures 6 and 

7(c). The periodic cross-ambiguity function of the two 

sequences s(1) and s(2)  is shown in Figure 8 for length n=28, 

which represent the doppler shift property of synthesized 

sequences shown in Table 2.  

For the detection performance evaluation of a radar system, 

the common parameters are probability of detection (PD), 

probability of false alarm (Pf) and probability of miss detection 

(PM). The relationship between PM and PD is given by PM=(1− 

PD). Therefore, only two parameters that is PD and Pf are 

sufficient to reveal the performance of designed sequences. To 

demonstrate the detection performance of proposed sequences, 

three types of sequences are considered. These three sequences 

are: proposed code which are referred as synthesized sequence, 

optimized PZCZSPS sequence, which perform promising in 

multi-radar network [5, 15, 16] and Gold code or gold 

sequence [17]. Gold codes are well-known binary sequences 

which have good aperiodic auto and cross correlation 

properties.  

Detection performance of these three types of sequences are 

simulated in Figure 9 for three different values of Pf 

considering single radar system. Figure 9(a) shows the graph 

of PD Vs SNR while Pf is kept 10-2. To achieve the PD = 0.9, 

the proposed synthesized code requires 1.0 dB of SNR. To 
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achieve the same value of probability of detection using 

optimized PZCZPS and Gold code the SNR values are about 

2.5 dB and 3.0 dB respectively. Similarly, in Figure 9(b), the 

value of Pf=10-3. Probability of detection PD=0.9 can be 

achieved with SNR value of 1.5 dB by using synthesized 

sequence whereas for optimized PZCZPS and Gold code SNR 

values are nearly 3.25 dB and 3.5 dB respectively to achieve 

the same PD. In Figure 9(c), synthesized sequence needs 2.0 

dB of SNR to achieve PD=0.9. For optimized PZCZPS and 

Gold code the SNR values are approximately 3.4 dB and 4.2 

dB respectively to achieve same value of PD. In Figures 9(a)-

(c), detection performance of synthesized sequence of length 

28 is compared with optimized PZCZPS of length 28 and Gold 

sequence of length 31. For each SNR value, Monte-Carlo 

simulation has been run 104 times. Analysis shown in Figures 

9(a)-(c) establishes that the detection performance of 

synthesized sequences is significantly better than the 

optimized PZCZPS sequences and Gold codes. 

 

 
(a) Pf =10-2 

 
(b) Pf =10-3 

 
(c) Pf =10-4 

 

Figure 9. Probability of detection Vs SNR for different 

values of Pf: (a) Pf=10-2 (b) Pf=10-3 (c) Pf=10-4 

 

 

6. CONCLUSIONS 

 

This paper explores the design procedure of synthesized 

sequences with perfect periodic auto and cross-correlation 

properties. Sec. 3 describes the design of synthesized binary 

sequences with variable amplitude using M-sequences and 

Legendre sequences of odd lengths which have higher energy 

efficiency and perfect periodic autocorrelation properties. 

Construction procedure of proposed synthesized sequences 

having perfect periodic autocorrelation as well as cross 

correlation properties is explained in Sec. 4. Figures 5, 7(a) 

and 7(b) show the perfect periodic ACF of synthesized 

sequences, whereas Figures 6 and 7(c) are displaying the 

perfect periodic cross-correlation property within the zero-

correlation zone. The periodic cross-ambiguity function 

shown in Figure 8 represents that the synthesized sequences 

are reasonably good even in higher Doppler shift. In any multi-

radar scenario, when radars are employing coherent pulse train 

or CW waveforms, proposed sequences are predominantly 

suitable. The significant advantage of the proposed sequences 

is that the mutual cross-correlation values in zero correlation 

zone is very low. Additionally, impulse like autocorrelation 

function shown in Figures 7(a) and 7(b) displays the high 

range resolution capability of proposed sequences. Based on 

ideal correlation properties and higher energy efficiency, the 

proposed codes can be used in multiple radar systems, sharing 

the same frequency band for avoiding mutual interferences 

and enhancing detection and measurement performance of the 

radar systems. 
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NOMENCLATURE 

 

τ time delay 

υ Doppler shift 

η energy efficiency 

χ ambiguity function 

tB duration of single bit 

PD probability of detection 

Pf probability of false alarm 

PM probability of miss detection 
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