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In this paper, a novel algorithm for face recognition is proposed in case of the images having 

illumination artifacts. First homomorphic filtering is done on the input face images to 

achieve partial illumination insensitivity. The fraction of the value of the image gradient to 

the original image intensity is evaluated to get an illumination independent normalized 

image. Here, gradient-domain is preferred since it explicitly accounts for the relationship 

between neighboring pixel points in the image. Then, Locality Sensitive Discriminant 

Analysis (LSDA) is applied to analyze the class relationship between data points. The 

proposed method performs very well, even if the number of training images is not sufficient. 

The experimental results on the extended Yale B database show that a significant 

improvement has been achieved in the recognition rate by making them illumination 

independent. 
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1. INTRODUCTION

Face recognition is an important identity verification 

technique employed in several applications and areas such as 

police verification, access control, video surveillance, and 

many others. It is an assignment to make a true recognition of 

a face in a photograph or video against an already accessible 

dataset of faces. Face recognition starts with detection, 

proceeds with separating the human faces from other objects 

within the image and then identify those detected faces. 

In the last decade, a noteworthy development has been made 

in the field of face recognition. However, the effectuation of 

most intelligent face recognition algorithms is very sensitive 

to the variation of lighting conditions. These algorithms may 

not perform very well under the illumination variation. Many 

approaches have been proposed to get rid of the illumination 

variation effects in recent years [1]. Now the idea of 

development of the illumination-invariant normalization 

approaches for face recognition has been described briefly. To 

the best of our knowledge, almost each technique for face 

identification under variable lighting conditions, followed the 

initiative work of Horn [2], and utilized the fact that the 

luminance of an image is usually smoother than the reflectance. 

It was assumed that the most illumination variation lies in the 

low frequency part of the spectrum. But later on, Xie et al. [3] 

explored that some of the important features for face 

recognition may rest in the low frequency part and so not 

advisable to discard that part. In general, illumination 

normalization techniques can be categorized into three groups. 

The first group adopts image preprocessing techniques for 

normalizing face images under varying illumination 

conditions. Lee et al. [4], the orientated local histogram 

equalization (OLHE) has been proposed to compensate 

illumination, while preserving rich information on the edge 

orientations. Zhang et al. [5], the lighting invariant 

representation of the image was obtained by taking the ratio of 

the image gradients. Their approach was based upon the fact 

that the lighting component changes slowly as compared to the 

reflection component of an image. Impressed by the benefits 

of the gradient domain, Tzimiropoulos et al. [6] have also 

described a novel technique of subspace learning from image 

gradient orientations instead of image intensities for 

recognizing face images. Wang et al. [7], the illumination 

invariant face images were obtained by taking the tangent 

inverse of the ratio of the reflectance change to the original 

reflectance. The algorithm considered the neighborhood of the 

image pixels based upon Weber’s law for this purpose. Ding 

et al. [8], a robust approach to obtain “Multi-Directional Multi-

Level Dual-Cross Patterns” (MDML-DCPs) from the face 

images, has been proposed. The authors used the Gaussian 

operator and its first derivative to make the input images 

illumination insensitive and then proposed a new face image 

descriptor based upon the textural structure of human faces. 

The second group handles the illumination problem by 

considering the 3-D representation of face images. Kumar et 

al. [9], the authors have proposed a 3-D face recognition 

algorithm by making use of the orthogonal tensor locality 

sensitive discriminant analysis (OLSDA). Their algorithm was 

inspired by the Locality Sensitive Discriminant Analysis 

(LSDA) [10, 11]. LSDA maximizes the margin between data 

points that belong to different classes and minimize the 

distance between data points that belong to the same class. 

LSDA represents an image in the form of a one-dimensional 

vector that makes it challenging to reconstruct 3-D face data. 

So, Kumar et al. [9] have used tensor OLSDA to overcome 

this problem by evaluating the mutually orthogonal basis 

functions in the iterative aspect using tensor data 

representation. 
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The third group extracts the invariant illumination 

information from the given intensity images. Chen et al. [12] 

have employed the scale-invariant property of natural images 

to construct a Wiener filter which extracts illumination 

invariant features from the images. The non-sub-sampled 

contourlet transform (NSCT) has been investigated for face 

image recognition in da Cunha et al. [13]. Their algorithm was 

based upon the decomposition of the image into various 

frequency subbands. The obtained coefficients of these 

subbands were used for face recognition directly. Their 

algorithm was extended by taking NSCT in the logarithmic 

domain to extort the illumination invariant facial features in 

Xie et al. [14]. They concluded that the decomposition process 

could not correctly extract the facial features, as the 

reflectance model non linearly characterizes an image. 

Nabatchian et al. [15], a maximum filter was used to get 

invariant illumination images, and then mutual information 

(MI) and image entropy were incorporated as a weight factor

for classifiers in face recognition. Their algorithm is also

robust to the face recognition system in case of image

occlusion. Cao et al. [16] extracted the invariant illumination

information from the face images using wavelet coefficients in

the logarithmic domain.

Zhang and Xie [17] concluded that the combination of 

image preprocessing and illumination invariant extraction is 

the best way to attain the satisfied face recognition. Hu et al. 

[18], the classification of image sets is proposed based upon 

the sparse approximate nearest points (SANP) for face 

recognition. The optimization of SANP in their algorithm 

accounts for the minimization of the distance and the 

maximization of the sparsity of the nearest points. Naseem et 

al. [19] formulated their approach for identification of face 

images in terms of linear regression, giving their results in case 

of varying facial expression and occlusion also. Anvaripour 

and Ebrahimnezhad [20], the local shape descriptors were used 

to obtain the boundary fragment extraction using Poisson 

equation properties. Afterward, the Gaussian mixture model 

(GMM) was employed to find the relation between boundary 

fragments and then finally detect the object. Biswas and Ghose 

[21], an algorithm based upon orientation histogram of Hough 

Transform Peaks has been proposed. Tan and Triggs [22], a 

method using local texture feature sets has been presented for 

face recognition in case of uncontrolled lighting conditions.  

Deep learning is a foremost technique in machine learning. 

Deep Neural Networks (DNN) find many applications in the 

field of face recognition, image classification and speech 

recognition. A nice demonstration has been given in Balaban 

[23] about state of the art (SOTA) regarding deep learning and

face recognition. Elmahmudi and Ugail [24] performed

experiments by taking individual parts of the face like nose,

eyes and cheeks and also by joining them. They used two

classifiers viz. cosine similarity and linear support vector

machines to find the recognition rates. Bah and Ming [25],

Local Binary Pattern (LBP) has been employed for face

recognition after preprocessing of the face images using

histogram equalization, contrast adjustment and bilateral filter.

Jin et al. [26], face recognition approach has been

demonstrated using neural learning techniques, which delivers

voice messages to visually impaired persons so that they can

navigate easily. Taigman et al. [27], a nine-layer deep neural

network has been proposed for face identification. A

combination of convolutional neural network (CNN) for

feature extraction, support vector machine (SVM) as classifier

and principal component analysis (PCA) for dimension

reduction has been incorporated in Benkaddour and Bounoua 

[28] for face recognition. Again in Sun et al. [29], a deep

learning approach has been used to extract in-depth

identification verification features for face representations.

Also, Ding and Tao [30], a comprehensive deep learning

framework has been presented for face representation using

multimodal information.

In this paper, we propose a novel method for the 

identification of images under varying illumination to get 

superior recognition rates. We are taking advantage of the 

merits of both first and third groups, i.e., using the 

combination of image preprocessing and illumination 

invariant extraction. In contrast to existing methods, the 

proposed method does not require multiple training images to 

obtain insensitive illumination images. The illumination 

normalized images are obtained by taking the ratio of the 

absolute value of the gradient of the image to the original 

intensity of the image. After preprocessing of the images, they 

are classified using Locality Sensitive Discriminant Analysis 

(LSDA) in the reduced dimensionality domain. 

The organization of different sections in this paper is as 

follows: a brief review of the existing technique of LSDA is 

explained in section 2. Then the proposed method for image 

illumination invariant formulation is given in Section 3. 

Section 4 explores the experimental results, and finally, the 

paper is concluded in Section 5. 

2. PRELIMINARIES

Appearance-based techniques, such as eigenfaces and fisher 

faces, have been effectively used for face recognition [31, 32]. 

These techniques make use of linear discriminant analysis 

(LDA) [33], principal component analysis (PCA) [34], and 

independent component analysis (ICA) [35]. LDA is a 

supervised technique that uses ground truth information as 

training data, whereas PCA belongs to an unsupervised 

category. Both of these techniques convert the higher 

dimensional image data into lower-dimensional space. 

However, both techniques experience few limitations when 

dealt with high dimensional image data, such as the curse of 

dimensionality and their drawback to consider only the 

Euclidean structure of data, whereas they fail to find out the 

sub-manifold structure of the data. 

2.1 Locality sensitive discriminant analysis 

Locality sensitive discriminant analysis (LSDA) [10] is a 

comparatively new tool for the reduction of linear dimension 

by utilizing the discriminating information and geometric 

structures. The role of LSDA is to construct the nearest 

neighborhood graph to characterize the local geometrical 

structure of the data manifold. Suppose, X=[x1, x2, … xn] be a 

data-set having 𝑛  number of data points in 𝑑 -dimensional 

space. Each data point belongs to one of the 𝐶classes, c=1, 

2, …C, and each class is having 𝑛𝑐 number of samples in the

way that ∑ 𝑛𝑐 = 𝑛.
𝐶
𝑐=1  The following algorithm is adopted by

LSDA to extort discriminating features in lower dimensional 

space. 

Algorithm: 

1. A nearest neighborhood graph ‘G’ is constructed using

each sample and its 𝑘  nearest neighbours. Let  𝑁(𝑥𝑖) =
{𝑥𝑖
1, 𝑥𝑖

2, … . 𝑥𝑖
𝑘} be the set of nearest neighbours of xi, then the

weight matrix of ‘G’ is given by 
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Wij= {
1     if  xi∈N(𝑥𝑗)  or  𝑥𝑗∈ N(𝑥𝑖)

0  otherwise
(1) 

2. The graph ‘G’ is divided into two subgraphs Gw and Gb,

called the ‘within class graph’ and the ‘between class graph’ 

respectively. For each sample xi, where, (i=1, 2, …C), the set 

of its k nearest neighbours N(xi) is divided into two subsets 

Nw(xi) and Nb(xi). 

Where Nw(xi) is the set of nearest neighbours having same 

label as of xi and Nb(xi) is the set of neighbours having labels 

other than that of xi. These subsets Nw(xi) and Nb(xi) are defined 

as below: 

𝑁𝑤(𝑥𝑖) = {𝑥𝑖
𝑗
 where 𝑙(𝑥𝑖

𝑗
) = 𝑙(𝑥𝑖), 𝑗 = 1,2, … . 𝑘} (2) 

𝑁𝑏(𝑥𝑖) = {𝑥𝑖
𝑗
 where 𝑙(𝑥𝑖

𝑗
) ≠ 𝑙(𝑥𝑖), 𝑗 = 1,2, … . 𝑘} (3) 

where, l(xi) is class label of xi. Clearly, the sets Nw(xi) and Nb(xi) 

are disjoint and 𝑁𝑤(𝑥𝑖) ∪ 𝑁𝑏(𝑥𝑖) = 𝑁(𝑥𝑖). Let Ww and Wb be

the weight matrices of Gw and Gb respectively and are defined 

as below: 

Ww,ij= {
1     if  xi∈𝑁𝑤(𝑥𝑗)  or  𝑥𝑗𝑁𝑤(𝑥𝑖)

0     otherwise
(4) 

Wb,ij= {
1     if  xi∈𝑁𝑏(𝑥𝑗)  or  𝑥𝑗𝑁𝑏(𝑥𝑖)

0  otherwise
(5) 

3. To acquire a low dimensional feature space, the following

two objective functions are formulated for the two subgraphs. 

min∑(𝑦𝑖 − 𝑦𝑗)
2

𝑖,𝑗

𝑊𝑤,𝑖𝑗 (6) 

max∑(𝑦𝑖 − 𝑦𝑗)
2

𝑖,𝑗

𝑊𝑏,𝑖𝑗 (7) 

where, yi is a 𝑑 ̂dimensional feature vector extorted from

𝑑dimensional feature vector xi and �̂� ≪ 𝑑. Suppose A be the 

transformation matrix, such that 𝑦𝑖 = 𝐴𝑇𝑥𝑖 , 𝑖 = 1,2, ……𝑛.

4. In the end, the transformation matrix can be attained by

solving the following expression of generalized Eigen-value 

problem. 

𝑋(𝛽𝐿𝑏 + (1 − 𝛽)𝑊𝑤)𝑋
𝑇𝐴 = 𝜆𝑋𝐷𝑤𝑋

𝑇𝐴 (8) 

3. PROPOSED METHOD

The proposed approach for face recognition can be 

accomplished in the following three phases: 

–Preprocessing to get the illumination insensitive

representation 

–Dimensionality reduction using Locality Sensitive

Discriminant Analysis 

–Matching score generation using nearest neighborhood

classifier and final decision 

Here, we are going to explain all these steps in detail. 

3.1 Illumination insensitive representation 

The proposed procedure to obtain illumination insensitive 

representation of the images, includes two steps: a) 

homomorphic filtering of the original image; b) further 

gradient face computation using the filtered image. Basically, 

the homomorphic filter is used to attenuate the contribution 

made by the low frequencies (illumination) and amplify the 

contribution made by high frequencies (reflectance). The net 

result is sharpening of features and flattening of lighting 

variations in an image by the simultaneous dynamic range 

compression and contrast enhancement. Further, the second 

pre-processing step, performs photometric normalization of 

the filtered image using the Gradient face approach. It again 

makes the images, illumination invariant to a greater extent. 

Let Ω be an open subset of ℜ2, a scalar function ℎ defined

on Ω be the depth of the shape, and (lx, ly, lz) be the illuminant 

direction vector. According to Lambertian reflectance model, 

the image irradiance equation of the surface illuminated by a 

single distant light source and in the absence of self shadowing, 

is written as: 

𝐼(𝑥, 𝑦) = 𝑅(𝑥, 𝑦)𝐿(𝑥, 𝑦) (9) 

where, R(x, y) and L(x,y)=(lx, ly, lz)are the reflectance and 

illuminance at a pixel point (x, y) of an image whose intensity 

value is I(x, y) at that particular pixel. 

The illumination component of an image generally tends to 

vary slowly by spatial variations, where as the reflectance 

component changes precipitously. These characteristics lead 

to apply Fourier transform to the image, so as to associate the 

low frequencies with illumination and the high frequencies 

with reflectance. To reduce the impact of illumination, a 

homomorphic filter H(u, v) is used in our proposed algorithm. 

It is a slightly modified form of the Gaussian high pass filter 

[36]. The function H(u, v) is defined as: 

𝐻(𝑢, 𝑣) = (𝛾𝐻−𝛾𝐿) [1 − 𝑒
−𝑐[

𝐷2(𝑢,𝑣)

𝐷0
2 ]

] + 𝛾𝐿 (10) 

where, D(u, v) is the distance from a point (u, v) in the 

frequency domain to the center of the frequency window. D0 

is the cutoff distance measured from the origin. The 

parameters of the filter, γL<1 and γH>1 are chosen so as to 

amplify the effect of reflectance and to attenuate the effect of 

illumination and c is a constant to control the sharpness of the 

slope of the filter function as it transitions between γH and γL. 

Now, take the natural logarithm of Eq. (9), as the Fourier 

transform of a product is not the product of transforms. Also 

add 1 to the original image to avoid ambiguity in considering 

logarithm of the image having zero intensity values. Suppose, 

we define 

𝐼1(𝑥, 𝑦) = 𝑙𝑛(𝐼(𝑥, 𝑦)) = 𝑙𝑛𝑅(𝑥, 𝑦) + 𝑙𝑛𝐿(𝑥, 𝑦) (11) 

Then, after taking Fourier transform of Eq. (11) 

ℱ{𝐼1(𝑥, 𝑦)} = ℱ{𝑙𝑛𝑅(𝑥, 𝑦)} + ℱ{𝑙𝑛𝐿(𝑥, 𝑦)}

I1(u, v) = 𝑅(𝑢, 𝑣) + 𝐿(𝑢, 𝑣)
(12) 

Afterwards, apply filter H(u, v), defined in Eq. (10), on 

I1(u, v), we get

Z(u, v) = H(u, v)I1(x, y) (13) 

Then, taking the inverse Fourier transform of the filtered 

image, we obtain 
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𝑧(x, y) = ℱ−1{Z(u, v)} (14) 

Finally, we take the exponential of the filtered image in 

spatial domain in reverse order as z(x, y) was processed after 

taking the natural algorithm of the original image I(x, y). 

Inew(x, y) = ez(x,y) (15) 

Finally, we get homomorphic filtered image as Inew(x, y), 

which is further processed to neglect illumination effects upto 

a great extent. As we have discussed earlier, the value of L(x, 

y) depends upon the lighting source, therefore it is assumed

that L(x, y) varies very slowly as compared to R(x, y). Let (i, j)

be the position of any pixel in the considered image under

varying illumination. Then Li,j and Li+1,j are approximately

equal, where (i, j) and (i+1, j) are neighbouring points of an

image. Again we consider the obtained filtered image as a

function of illumination L1(x, y) and reflectance R1(x, y).

𝐼𝑛𝑒𝑤(𝑥, 𝑦) = 𝑅1(𝑥, 𝑦)𝐿1(𝑥, 𝑦) (16) 

The filtered images are further processed in the gradient 

domain, so as to set up relationship with the neighbouring 

pixels also. The image gradients are evaluated using central 

difference operator in the interior of the image grid and 

appropriate forward and backward difference operator on the 

boundaries of the image. The formulae for calculating the 

image gradients are given as: 

𝑝𝑖,𝑗 =

{

𝐼𝑖+1,𝑗
𝑛𝑒𝑤 − 𝐼𝑖−1,𝑗

𝑛𝑒𝑤

2
    if (𝑖, 𝑗) ∈ image interior

𝐼𝑖+1,𝑗
𝑛𝑒𝑤 − 𝐼𝑖,𝑗

𝑛𝑒𝑤   if (𝑖, 𝑗) ∈ left boundary

𝐼𝑖,𝑗
𝑛𝑒𝑤 − 𝐼𝑖−1,𝑗

𝑛𝑒𝑤    if (𝑖, 𝑗) ∈ right boundary

 

𝑞𝑖,𝑗 =

{

𝐼𝑖,𝑗+1
𝑛𝑒𝑤 − 𝐼𝑖,𝑗−1

𝑛𝑒𝑤

2
if (𝑖, 𝑗) ∈ image interior

𝐼𝑖,𝑗+1
𝑛𝑒𝑤 − 𝐼𝑖,𝑗

𝑛𝑒𝑤 if (𝑖, 𝑗) ∈ upper boundary

𝐼𝑖,𝑗
𝑛𝑒𝑤 − 𝐼𝑖,𝑗−1

𝑛𝑒𝑤  if (𝑖, 𝑗) ∈ lower boundary

 

Using the above formulae of pi,j and qi,j in reflectance model 

defined in Eq. (16), we have 

𝑝𝑖,𝑗 = (
𝜕𝑅1

𝜕𝑥
)
𝑖,𝑗

𝐿𝑖,𝑗
1

(17) 

𝑞𝑖,𝑗 = (
𝜕𝑅1

𝜕𝑦
)
𝑖,𝑗

𝐿𝑖,𝑗
1

(18) 

The absolute value of the gradient of the image Inew(x, y) is 

evaluated by taking the square root of the sum of the square of 

gradient of the image in x-direction and𝑦-direction. 

|𝛻𝐼𝑛𝑒𝑤(𝑥, 𝑦)| = √(𝑝𝑖,𝑗)
2
+ (𝑞𝑖,𝑗)

2

= √((
𝜕𝑅1

𝜕𝑥
)
𝑖,𝑗

)

2

+ ((
𝜕𝑅1

𝜕𝑦
)
𝑖,𝑗

)

2

. 𝐿𝑖,𝑗
1

(19) 

In order to attain illumination insensitive normalized image, 

the ratio of the absolute value of the gradient of the image to 

the original image intensity is computed in the following 

manner. 

|𝛻𝐼𝑛𝑒𝑤(𝑥, 𝑦)|

𝐼𝑛𝑒𝑤(𝑥, 𝑦)
=

√((
𝜕𝑅1

𝜕𝑥
)
𝑖,𝑗
)

2

+ ((
𝜕𝑅1

𝜕𝑦
)
𝑖,𝑗

)

2

𝑅𝑖,𝑗
1

(20) 

Since the reflectance component R1(x, y) is illumination 

insensitive and the right hand side of Eq. (20) is independent 

of the illumination component L1(x, y), we have obtained 

illumination insensitive normalized image. In practical 

applications, the zero intensity value of the image in Eq. (20) 

gives infinite value to the illumination invariant measure. To 

avoid this type of ambiguity, we take the tangent inverse of the 

Eq. (20). 

𝐼𝑓𝑖𝑛𝑎𝑙(𝑥, 𝑦) = 𝑡𝑎𝑛−1 (
|∇𝐼𝑛𝑒𝑤(𝑥, 𝑦)|

𝐼𝑛𝑒𝑤(𝑥, 𝑦)
) (21) 

Figure 1. Concept map to generate illumination insensitive 

normalized images 
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Figure 2. Illumination sensitive images (Top-row), 

homomorphic filtered images (Middle-row), and gradient-

based illumination insensitive normalized images (Last-row) 

To avoid the computational difficulty for the pixels having 

zero value in Inew(x, y) as well as in their gradients, we set the 

intensity of these pixels by zero in the new Image Ifinal(x, y). 

The concept map of the whole process to generate illumination 

insensitive normalized images is given in Figure 1.  

Some samples of the illumination insensitive normalized 

images from the Yale B database are shown in Figure 2 using 

the proposed algorithm. 

3.2 Dimensionality reduction and matching 

After getting the illumination insensitive normalized images, 

LSDA has been employed on the vector form of an image 

using the procedure explained in section 2.1. LSDA computes 

a projection matrix using training images along with their 

predefined class label information. Such a projection matrix 

projects the images into a low dimensional space where the 

images sharing same class label are closer and the images 

having different class label are far apart. This projection 

matrix is preserved for recognition phase. To identify the class 

of a probe image, the illumination insensitive normalized 

image is obtained first. This preprocessed image is projected 

into the same low dimensional space computed using gallery 

images (preserved previously). Finally, a nearest 

neighbourhood classifier is used to compute matching scores 

between probe image and gallery images. Euclidean distance 

measure is used as distance metric. 

4. EXPERIMENTS AND DISCUSSIONS

The proposed algorithm is tested on facial image databases

with illumination artifacts. The performance of any face 

identification system is unfavorably affected by alterations in 

the facial look caused by variation in lighting. So we proposed 

an algorithm to preprocess the face images and to make them 

illumination insensitive before classify them through LSDA. 

In our experimental study, we have chosen input images 

from standard benchmark datasets such as AR database [37], 

Yale, and extended Yale B database [38-41]. The results 

obtained using the proposed algorithm have been compared 

with well known state-of-art algorithms such as principal 

component analysis (PCA), linear discriminant analysis 

(LDA), local binary pattern (LBP) and local binary pattern 

(LBP) block-wise, with and without insensitive illumination 

representation.  

In the first step, the facial images severely affected by 

illumination variation are preprocessed. An illumination 

insensitive normalized image representation is obtained using 

the procedure explained in Section 3.1. Secondly, a feature 

vector with a reduced dimension is obtained using LSDA. An 

image matrix of size n×m is converted into a vector of size 

nm×1, as LSDA works on vector form of data. Finally, the 

nearest neighbourhood classifier is used to compute matching 

scores between probe image and gallery images. The 

Euclidean distance measure is used as a distance metric. 

4.1 Accuracy analysis 

AR database contains facial images from 126 individuals 

(70 men and 56 women). All the 26 images per individual were 

acquired in two sessions at an interval of 2 weeks. During each 

session, 13 images per individual with varying facial 

expressions, illumination, and occlusion (sun, glasses, and 

scarf) were captured. It is a color image database, which is 

converted to a database of 256 grayscale images for 

experimentation. Here, we have used, in total, 100 individuals 

who have complete face sequences from both sessions. We 

select the training images and the testing images from the non-

occluded face images in this dataset. In this way, we are using 

14 images per subject for experiment purposes. Yale database 

contains 165 grayscale images of 15 individuals. There are 11 

images per subject, one per different facial expression or 

configuration: center-light, with glasses, happy, left-light, 

without glasses, healthy, right-light, sad, sleepy, surprised, and 

wink. The extended Yale B face database contains 22230 

images of 38 individuals. There are 9×65 images per person, 

9 poses and 65illumination conditions (64 illumination + 1 

ambient). Out of 9 poses only frontalpose and 64 illumination 

conditions are considered for all 38 individuals for 

experimentation in this paper. 

The results on AR database without illumination insensitive 

representation are given in Table 1. The results are taken on 

increasing gallery size (Tr) starting from 2 images per 

individual to 10 images per individual. The remaining images 

out of14 per individual are taken as probe images (Ts). The 

results are taken using LBP uniform, LDA, PCA, LBP uniform 

blockwise and LSDA. Results are found improving with 

increasing gallery size. Results on illumination insensitive 

normalized images are listed in Table 2.  

Table 1. Mean classification accuracy along with standard deviation (Mean (SD)) for AR database without illumination 

insensitive normalization 

Feature Extraction Tr=2 Ts=12 Tr=4 Ts=10 Tr=6 Ts=8 Tr=8 Ts=6 Tr=10 Ts=4 Tr=12 Tr=2 

LBP 24.83 (1.72) 32.30 (1.82) 41.13 (1.78) 46.67 (1.89) 47.50 (1.17) 48.25 (1.25) 

LBP- Blockwise 47.12 (2.01) 65.54 (1.49) 72.56 (1.39) 78.56 (1.34) 84.89 (1.15) 87.84 (1.23) 

LDA 58.16 (1.58) 74.50 (2.10) 88.88 (2.05) 93.08 (1.27) 94.23 (1.65) 97.00 (1.54) 

PCA 31.52 (1.31) 64.70 (1.38) 77.37 (1.98) 84.83 (1.52) 87.00 (1.16) 92.00 (1.22) 

LSDA 81.92 (1.32) 92.20 (1.87) 94.50 (1.89) 95.83 (0.72) 97.25 (0.82) 98.00 (0.79) 
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Table 2. Mean classification accuracy along with standard deviation (Mean (SD)) for AR database after illumination insensitive 

normalization 

Feature Extraction Tr=2 Ts=12 Tr=4 Ts=10 Tr=6 Ts=8 Tr=8 Ts=6 Tr=10 Ts=4 Tr=12 Ts=2 

LBP 25.73 (1.65) 33.80 (1.78) 42.28 (1.79) 47.87 (1.82) 48.52 (1.27) 48.95 (1.26) 

LBP- Blockwise 49.97 (1.45) 67.34 (1.62) 74.67 (1.63) 80.23 (1.26) 86.67 (0.75) 89.87 (0.67) 

LDA 61.00 (1.51) 86.90 (1.58) 92.75 (1.39) 94.50 (1.12) 96.13 (0.86) 97.50 (0.83) 

PCA 45.25 (1.23) 66.00 (1.18) 78.50 (1.54) 86.67 (1.09) 93.50 (1.07) 94.75 (1.04) 

LSDA 83.17 (1.52) 92.90 (1.29) 95.27 (1.32) 96.83 (0.87) 98.50 (0.65) 99.01 (0.64) 

Table 3. Mean classification accuracy along with standard deviation (Mean (SD)) for Yale database without illumination 

insensitive normalization 

Feature Extraction Tr=5 Ts=6 Tr=6 Ts=5 Tr=7 Ts=4 Tr=8 Ts=3 Tr=9 Ts=2 

LBP 47.11 (1.11) 55.19 (1.23) 56.12 (1.66) 57.19 (1.56) 63.23 (1.79) 

LBP- Blockwise 61.11 (1.11) 67.17 (1.19) 71.11 (1.11) 72.81 (1.34) 77.67 (1.45) 

LDA 81.06 (1.11) 84.06 (1.90) 86.13 (1.49) 90.97 (2.01) 92.03 (1.69) 

PCA 65.91 (1.99) 68.41 (1.91) 76.13 (1.69) 77.61 (2.01) 80.21 (1.39) 

LSDA 81.11 (1.09) 84.10 (1.34) 88.24 (1.42) 91.51 (1.42) 93.23 (1.82) 

Table 4. Mean classification accuracy along with standard deviation (Mean (SD)) for Yale database after illumination insensitive 

normalization 

Feature Extraction Tr=5 Ts=6 Tr=6 Ts=5 Tr=7 Ts=4 Tr=8 Ts=3 Tr=9 Ts=2 

LBP 51.15 (1.23) 57.69 (1.11) 58.39 (1.39) 61.49 (1.59) 66.62 (1.89) 

LBP- Blockwise 73.48 (1.81) 74.77 (1.79) 75.76 (1.39) 76.66 (1.78) 79.01 (1.85) 

LDA 82.16 (2.01) 85.66 (1.67) 87.23 (1.39) 91.07 (1.71) 93.13(1.79) 

PCA 59.31 (1.34) 59.21 (1.45) 61.16 (1.23) 64.21 (2.11) 71.11 (1.19) 

LSDA 83.51 (1.59) 85.70 (1.54) 87.44 (1.62) 92.11 (1.38) 93.21 (1.42) 

Table 5. Mean classification accuracy along with standard deviation (Mean (SD)) for extended Yale B database without 

illumination insensitive normalization 

Feature Extraction Tr=4 Ts=60 Tr=9 Ts=55 Tr=14 Ts=50 Tr=19 Ts=45 Tr=24 Ts=40 Tr=29 Ts=35 

LBP 11.13 (1.34) 17.34 (1.23) 19.82 (1.23) 21.10 (1.11) 22.13 (1.34) 23.82 (1.82) 

LBP- Blockwise 67.66 (1.53) 69.67 (1.69) 73.16 (1.46) 74.11 (1.59) 79.11 (1.55) 81.51 (1.25) 

LDA 53.56 (1.61) 76.86 (2.90) 83.23 (1.12) 84.27 (2.10) 85.63 (1.19) 87.01 (1.01) 

PCA 74.90 (1.29) 77.42 (1.46) 79.33 (1.39) 81.71 (2.12) 82.41 (1.50) 85.13 (1.10) 

LSDA 54.38 (1.29) 83.20 (1.89) 84.14 (2.02) 85.39 (1.92) 86.03 (1.72) 87.33 (2.20) 

Table 6. Mean classification accuracy along with standard deviation (Mean (SD)) for extended Yale B database after illumination 

insensitive normalization 

Feature Extraction Tr=4 Ts=60 Tr=9 Ts=55 Tr=14 Ts=50 Tr=19 Ts=45 Tr=24 Ts=40 Tr=29 Ts=35 

LBP 18.98 (1.89) 25.89 (1.66) 30.82 (1.99) 32.30 (1.78) 33.85 (1.58) 34.71 (1.78) 

LBP- Blockwise 75.76 (2.13) 76.47 (1.29) 79.06 (1.73) 80.41 (1.39) 80.23 (1.45) 82.11 (1.55) 

LDA 78.64 (1.62) 96.75 (1.20) 98.13 (1.32) 98.83 (1.11) 99.13 (0.43) 99.37 (0.21) 

PCA 76.40 (1.27) 91.15 (1.49) 96.57 (1.67) 95.77 (1.92) 97.18 (1.39) 98.50 (1.23) 

LSDA 96.71 (1.29) 98.75 (1.49) 98.94 (1.01) 99.39 (0.12) 99.60 (0.33) 99.77 (0.20) 

Results on Yale database are listed in Table 3. Results are 

taken on increasing gallery size starting from 5 images per 

individual to 9 images per individual. Testing is done on the 

remaining images out of 11 images per individual. The results 

on illumination insensitive normalized images of Yale 

database are listed in Table 4. 

The results on extended Yale B database are listed in Table 

5. The results are taken on increasing gallery size starting from

4 images per individual to 29 images per individual with an

interval of 5. The remaining images out of 64 images are used

as probe images. The results after illumination insensitive

normalization are listed in Table 6.

The AR database has a sufficient amount of illumination 

variation. Also, there is a presence of facial expressions and 

occlusions in the database. Overall the AR database is 

challenging. LSDA gives better results as compared to other 

algorithms. After illumination insensitive normalization, there 

is more improvement in the recognition rate. The recognition 

rate approaches up to 99% using LSDA after images being 

illumination insensitive normalized. In the case of small 

gallery size, LBP, LBP blockwise, PCA, and LDA do not give 

a significant recognition rate, whereas LSDA gives a 

reasonable recognition rate at small gallery size also (see Table 

1, Table 2). It can also be justified by giving a glance at the 

graphical representation of mean accuracy versus the number 

of training images in Figure 3. 

Yale database contains moderate illumination variation, 

expression variation, and pose variation. Yale database is a 

tough database; near 100% recognition is difficult. All the 

algorithms give slight improvements in recognition rate after 

illumination insensitive normalization, but LSDA outperforms 

others. Even LDA gives quite similar results to LSDA. The 

graphical representation of mean accuracy versus the number 

of training images is given in Figure 4 for the Yale database. 
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(a) Without illumination insensitive normalization

(b) After illumination insensitive normalization

Figure 3. Mean classification accuracy for AR database 

(a) Without illumination insensitive normalization

(b) After illumination insensitive normalization

Figure 4. Mean classification accuracy for Yale database 

Extended Yale database B is severely affected by 

illumination variation. Experiments are conducted for single 

pose and 64 illumination conditions to investigate the real 

output of the proposed illumination insensitive normalization 

approach. There is a significant improvement in the 

recognition rate after illumination insensitive normalization 

using each algorithm tested. Results obtained by LDA are 

close to LSDA. Still, LSDA outperforms LDA. The 

recognition result without illumination insensitive 

normalization approaches up to 90%, whereas after 

illumination insensitive normalization, the recognition rate 

approaches up to 100%. So there is an improvement of up to 

10%. It can also be justified by giving a glance at the graphical 

representation of mean accuracy versus the number of training 

images in Figure 5. 

(a) Without illumination insensitive normalization

(b) After illumination insensitive normalization

Figure 5. Mean classification accuracy for extended Yale B 

database  

For comparison, we also tested our preprocessing approach 

to make the images illumination insensitive, with existing 

illumination normalization methods provided by Wang et al. 

[7] and Tan et al. [22]. For experimentation, half of the images

per individual, in each dataset have been treated as training

images and rest half of the images as test images. All the

results for mean accuracies with three datasets are given in

Table 7.

Table 7. Comparison of illumination insensitive techniques 

Dataset 
Weberfaces 

[7] 

Processed 

faces [22] 

Proposed 

approach 

AR 90.15% 91.97% 96.00% 

Yale 80.25% 81.33% 85.70% 

Extended YaleB 92.75% 99.84% 99.94% 

4.2 Statistical analysis 

A detailed statistical analysis has been performed to analyse 

the performance of the results obtained with the proposed 

algorithm. This analysis shows that LSDA is significantly 

better than other algorithms for illumination insensitive 

normalized images. To carry out statistical analysis, two tailed 

F-test and two tailed t-test have been performed. The values of

mean accuracy and standard deviation, used for these tests are

listed in Table 2, Table 4 and Table 6.
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4.2.1 F-test 

Two tailed F-test with equal variances has been performed 

at 5% level of significance for testing the equality of variances 

of the results with the two pairs of algorithms. The calculated 

value of F-statistics has been given in the Table 8, Table 9 and 

Table 10 for the datasets AR, Yale and extended Yale B 

respectively. It has been observed that the hypothesis of equal 

variances is accepted for all the datasets as all the calculated F 

values are in the range of two tailed F critical values except for 

few cases in AR and extended Yale B database. The 

hypothesis of equal variances is rejected in these cases as 

variance of LSDA is comparatively less as compare to LDA 

and PCA. 

Table 8. Statistical analysis (F-test) for the proposed 

algorithm and other algorithms for AR database 

Tr 

Comparison of LSDA and 

LDA 

Comparison of LSDA and 

PCA 

H F-statistic DOF H F-ststistic DOF 

2 0 1.0133 (49,49) 0 1.5271 (49,49) 

4 0 0.6666 (49,49) 0 1.1951 (49,49) 

6 0 0.9018 (49,49) 0 0.7347 (49,49) 

8 0 0.6034 (49,49) 0 0.6371 (49,49) 

10 0 0.5713 (49,49) 1 0.3690 (49,49) 

12 0 0.5946 (49,49) 1 0.3787 (49,49) 

F-critical=(0.5674,1.7622)

Table 9. Statistical analysis (F-test) for the proposed 

algorithm and other algorithms for Yale database 

Tr 

Comparison of LSDA and 

LDA 

Comparison of LSDA and 

PCA 

H F-statistic DOF H F-ststistic DOF 

5 0 0.6258 (49,49) 0 1.7717 (49,49) 

6 0 0.8504 (49,49) 0 0.7402 (49,49) 

7 0 1.3583 (49,49) 0 1.3583 (49,49) 

8 0 0.6513 (49,49) 0 0.6011 (49,49) 

9 0 0.6293 (49,49) 0 0.5892 (49,49) 

F-critical=(0.5674,1.7622)

Table 10. Statistical analysis (F-test) for the proposed 

algorithm and other algorithms for Extended Yale B database 

Tr 

Comparison of LSDA and 

LDA 

Comparison of LSDA and 

PCA 

H F-statistic DOF H F-ststistic DOF 

4 0 0.6341 (49,49) 0 1.0317 (49,49) 

9 0 1.5417 (49,49) 0 1 (49,49) 

14 0 0.5855 (49,49) 1 0.3658 (49,49) 

19 1 0.0117 (49,49) 1 0.0039 (49,49) 

24 0 0.5890 (49,49) 1 0.0564 (49,49) 

29 0 0.9070 (49,49) 1 0.0264 (49,49) 

F-critical=(0.5674,1.7622)

4.2.2 t-test 

Two tailed t-test with equal means has been performed at 

5% level of significance for testing the equality of means of 

the results with the two pairs of algorithms. Those two 

algorithms are chosen whose mean accuracy is somewhat 

close to the mean accuracy of LSDA as seen by the graphs in 

Figure 3 (b), Figure 4 (b) and Figure 5 (b). Here we assume 

equal variances of the results with two considered algorithms, 

so pooled variance is calculated to find the value of t-statistic. 

The calculated values oft-statistics have been given in the 

Table 11, Table 12 and Table 13 for the datasets AR, Yale, 

extended Yale B respectively. It has been observed that the 

hypothesis of equal means is rejected for all the datasets as all 

the calculated t values are greater than t-critical value except 

in few cases for Yale database. So we can say that both LSDA 

and LDA are comparable algorithms for Yale database, 

whereas LSDA outperforms LBP-blockwise for the same 

database. It has been concluded from t-test that mean accuracy 

is improved using LSDA for AR and extended Yale B 

database. 

Table 11. Statistical analysis (t-test) for the proposed 

algorithm and other algorithms for AR database 

Tr 

Comparison of LSDA and 

LDA 

Comparison of LSDA and 

PCA 

H t-statistic 𝑠𝑝
2 H t-ststistic 𝑠𝑝

2

2 1 73.1679 2.2952 1 137.1305 1.9116 

4 1 20.8000 2.0803 1 108.7990 1.5283 

6 1 9.2958 1.8373 1 58.4636 2.0570 

8 1 11.6172 1.0056 1 51.5132 0.9725 

10 1 15.5457 0.5810 1 28.2400 0.7837 

12 1 10.1874 0.5493 1 24.6676 0.7456 

Degrees of freedom (DOF) = 98; 𝑠𝑝
2=pooled variance;

t-critical=1.9845

Table 12. Statistical analysis (t-test) for the proposed 

algorithm and other algorithms for Yale database 

Tr 

Comparison of LSDA and 

LDA 

Comparison of LSDA and 

PCA 

H t-statistic 𝑠𝑝
2 H t-ststistic 𝑠𝑝

2

5 1 3.7247 3.2841 1 29.4384 2.9021 

6 0 0.1245 2.5802 1 32.7307 2.7879 

7 0 0.6959 2.2783 1 38.6912 2.2783 

8 1 3.3467 2.4142 1 48.5053 2.5364 

9 0 0.2476 2.6103 1 43.0544 2.7195 

Degrees of freedom (DOF) = 98; 𝑠𝑝
2=pooled variance;

t-critical=1.9845

Table 13. Statistical analysis (t-test) for the proposed 

algorithm and other algorithms for extended Yale B database 

Tr 

Comparison of LSDA and 

LDA 

Comparison of LSDA and 

PCA 

H t-statistic 𝑠𝑝
2 H t-ststistic 𝑠𝑝

2

4 1 61.7008 2.1443 1 79.3335 1.6385 

9 1 7.3921 1.8301 1 25.5034 2.2010 

14 1 3.4460 1.3812 1 8.5867 1.9045 

19 1 3.5467 0.6233 1 13.3059 1.8504 

24 1 6.1314 0.1469 1 11.9778 1.0205 

29 1 9.7532 0.0421 1 7.2064 0.7764 

Degrees of freedom (DOF) = 98; 𝑠𝑝
2=pooled variance;

t-critical=1.9845

5. CONCLUSIONS

A technique using a gradient data of the image has been 

proposed to obtain an insensitive illumination representation 

of the image. The application of insensitive illumination 

representation has been investigated in the context of face 

recognition and found very useful. The proposed algorithm is 

validated on various databases containing slightest to severe 

illumination variation and is found very effective on databases 

containing severe illumination variation. Five algorithms are 

tested, LBP, LBP-blockwise, PCA, LDA and LSDA. Even 

though all algorithms give slight improvement but LDA and 
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LSDA are found more promising with illumination insensitive 

normalization. Besides the nearest neighborhood classifier, the 

other classification approaches such as SVM, random forest, 

etc. may be used in the future work. 
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