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1. INTRODUCTION 

There is a report that business revenues affected by 
application performance problems account for overall 
business revenues by up to 9% when applications suffer from 
performance issues such as performance degradation [1]. 
Even worse, about one third (32 percent) of consumers will 
abandon slow sites between one and five seconds and some 
of them will go on to tell others about their experience which 
will prevent more consumers to visit these sites by [2]. One 
second page load delay means that it will decrease 11% page 
views, customer satisfaction, and 7% revenue [3]. 

Several studies [4], [5] have reported that one of the causes 
of the performance degradation and unplanned software 
outages is the software aging phenomena. Software aging is a 
phenomenon observed in software that the long running 
software system suffers from abnormal state, performance 
degradation, even hang, and failure. The reasons of software 
aging are consumption of operating system resources, data 
corruption and round error accumulation, which could be 
accompanied by memory leaks [6], unterminated threads, 
data fragment, unreleased file locks, unreleased database 
connections and so on. Software aging problems are not only 
observed in telecommunication systems [7], Web servers [8], 
enterprise clusters [9], online transaction processing (OLTP) 
systems [10], and spacecraft systems [11], but also in military 
system [5] which means loss of lives. In order to counteract 
these problems, Huang et al. [12] proposed the technique of 
software rejuvenation that involves occasionally stopping the 
software application, removing the cumulative error 
environments and then rebooting the application in a clean 
environment. Unlike other technologies, rejuvenation 
 

 
 

technology is a proactive manner, which means the 
accumulated errors, or defragments can be removed through 
this process before occurrence of service degradation and 
failure. Unlike downtime caused by unexpected failure, the 
downtime by software rejuvenation can be performed at the 
discretion of the user or administrator, e.g., at midnight or 
idle time. 

The key issue for software rejuvenation is how to find an 
optimal time, however, the choice of optimal time is 
dependent on accuracy of time to failure or prediction 
accuracy of resource consumption, which means the more the 
accuracy is, the better the rejuvenation is. 

In this paper, we compare the effects of linear and 
nonlinear methods in the aspect of resource consumption 
predicting in a web server that is suffered from software 
aging. The resource usage data are collected from a typical 
long running software system a web server that is not 
subjected to artificial load, but a true load. 

The contribution of this work is: the captured data from 
running phase are real data, which means workload is not 
synthetic; through comparisons between the linear and 
nonlinear time series methods in resource consumption, the 
most important thing for resource consumption predicting is 
how to choose a proper data set for training. 

The rest of the paper is organized as follows. In Section 2, 
some related work on software aging is briefly reviewed. In 
Section 3, we review the ARIMA, ANN, and SVM modeling 
approaches. In Section 4, the outputs of models are compared 
with each other through some measurement methods. Section 
5 contains the concluding remarks and discusses possible 
directions for future research. 
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ABSTRACT 
 
Software aging is a phenomenon observed in a software application executing continuously for a long period of time, where 
the state of software degrades and leads to performance degradation, hang/crash failures or both. This gives rise to large costs 
and requires provisional solutions. Software rejuvenation is a proactive error management technique that involves 
terminating an application, cleaning up the system internal state, and restarting it to prevent the future failures. Thus, it is 
important to know system states in advance. In order to find software aging in advance, algorithms of time series and 
machine learning have been used to forecast resource consumption in various kinds of software systems. In this paper, we use 
linear regression to find if there is software aging trend in a web server and compare the differences of linear and nonlinear 
methods in the aspect of resource consumption prediction. Through analysis in the experiment, it is a fact that choosing a 
proper data set is more important than choosing a method for software resource consumption forecasting. 
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2. RELATED WORK 
 
Approaches used for analyzing and solving software aging 

problem can be grouped into model-based ones and 
measurement-based ones. 

In model-based approach, some assumptions such as 
distributions for failure, workload and repair time are made. 
And based on these assumptions a mathematical model is 
built. These models are either analytical or stochastic. Garg et 
al. [13] analyzed software aging in a transaction system and 
proposed an analytical model to estimate the probability of 
losing an arriving transaction and the expected response time 
of a transaction. Dohi et al. [14] built semi Markov reward 
process models of software aging to solve the same problem. 
Xie et al. [15] generalized the semi Markov model presented 
in [14] by introducing the possibility of service level 
rejuvenation in addition to system level rejuvenation. Wang 
et al. [16] analyzed performability of clustered systems with 
deterministic and stochastic Petri nets (DSPN) and 
homogeneous continuous-time Markov chains (CTMC). 
There is a problem in model-based approach that is the 
mathematical assumptions cannot be easily validated in 
practice and may be not proper for software aging problem in 
production phase. Meanwhile, the rejuvenation for model-
based approach is usually based on a regular time interval, 
which may be not a good choice for real problems especially 
for web service as the most popular service of Internet whose 
rejuvenation is sensitive to the time, which means 
rejuvenation in this time is proper, but may be not appropriate 
in other time. 

In measurement-based approach, the aging parameters 
(performance parameters or resource consumption 
parameters) are monitored through some tools such as Monit 
[17], Ganglia [18], Munin [19] or Nagios [20]. Based on 
periodically collected data, measurement-based approaches 
try to assess current or future state of software system. Garg 
et al. [21] analyzed the exhaustion of resources like physical 
memory, and swap space in a network of UNIX workstations 
and proposed a slope estimation method to quantify the effect 
of aging in operating system level. Silva et al. [22] collected 
data from the application server and used Hot Standby 
technology to implement rejuvenation on a virtualization 
(XEN virtualization middleware) layer. Shereshevsky et al. 
[23] chose a completely different approach to the analysis of 
aging in memory resources. Instead of modeling and 
predicting memory utilization directly, they monitored the 
Hölder exponent (a measure of the local rate of fractality) of 
the system parameters. Their findings indicated that system 
crashes were often preceded by the second abrupt increase in 
this measure. Chen et al. [24] used non-linear threshold 
autoregressive (TAR) model to forecast the resource usage. 
Michael Grottke et al. [25] collected data from apache web 
server and use autoregressive model to predict system 
resources consumption, i.e., free physical memory, and used 
swap space. They found that there was a periodical pattern in 
used swap space. Machida et al. [26] that aging detection 
using the Mann-Kendall test alone was in general unreliable, 
or might require long measurement times. Li et al. [27] 
presented a method of nonlinear autoregressive models with 
exogenous inputs to detect the aging phenomenon of the 
software system which is a variant for neural network. 
Hoffmann et al. [28] used some predictive algorithms (liner 
regression, support vector machines and so on) to predict 
resource consumption in an industrial telecommunication 

system. Araujo et al. [29] used four kinds of time series 
models to forecast resource consumption in Eucalyptus Cloud 
Computing Infrastructure. Simeonov and Avresky [30] 
presented a framework for detecting anomalies in servers 
leading to crash such as memory leaks in aging systems. 
However, most of above approaches analyze software aging 
phenomenon by using synthetic load data which neglects the 
real runtime environment of software system. Meanwhile, the 
fault injection method or overload method is used in order to 
get aging data as quickly as possible. However, according to 
the definition of software aging, the software aging appears 
when software system is in long running phase, so the method 
of fault injection or overload may be not proper, especially 
for the software system in production phase. Although there 
are some methods for predicting resource consumption, it 
lacks practice guides that which method should be used when 
a web server is suffered from software aging. 

3. METHOD 

There are some different methods for resource 
consumption forecast, which can be generally categorized as 
traditional statistical models and nonlinear models. 
Traditional statistical models including moving average, 
exponential smoothing, and autoregressive integrated moving 
average are linear in that predictions of future values are 
constrained to be linear functions of past observations. The 
Second category of models is nonlinear models. Several 
nonlinear models have been proposed to overcome the linear 
limitation of time series models, which include the threshold 
autoregressive (TAR) model, general autoregressive 
conditional heteroscedastic (GARCH), the bilinear model, 
chaotic dynamics, and artificial neural networks, general 
regression neural networks (GRNNs), support vector 
machines, and so on. In this section, the basic concepts and 
modeling process of autoregressive integrated moving 
average, artificial neural networks, and support vector 
machines are reviewed. 

 
3.1 ARIMA model 

In the 1970s, Box and Jenkins [31] proposed a set of methods 
for analysis, prediction and controllable method, called ARIMA or 
Box-Jenkins method. ARIMA model [32] is, in theory, the most 
general model for forecasting a time series which can be stabilized 
by transformations such as differencing. In fact, we can think that 
ARIMA model is an adjusted model of random walk and random 
trend: the fine adjustment consists of adding lags of the differenced 
series and/or lags of the forecast errors for the forecasting formula, 
where removing any last traces of autocorrelation from the 
forecast errors is needed. 

In fact, an ARIMA (p, d, q) model uses autoregressive 
moving average model (ARMA) to fit time series which is 
stationary. A stationary time series means that the series has 
no trend in the long run. 

Given a set of resource consumption data series (x1, …, xt, 
…, xm), where t = 1, …, m, the difference transformation can 
be expressed as 

 

(1 ) ,d d
t t t d tx x x B x    

           (1) 
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Where d  is the difference operator, d is the number of 
the difference, tx and 1tx   are the actual values of time series 

at time t and t-1, B is the backward shift operator.. 
Supposing xt is the output of a stationary time series, 

ARMA (p, q) model which is a stationary ARIMA can be 
described by (2) 

 

1 1 1 1... ... ...t t p t p t t q t qx x x                    (2) 

 
Where t is a white noise which is an uncorrelated random 

variable with mean zero and a constant variance 2

 , p is the 

order of non-seasonal autoregressive part of the model, q is 
the order of non-seasonal moving average part of the model, 
  and   are coefficients that satisfy stationary and 

invertible conditions, respectively. 
Using the backward shift operator B with 1t tBx x   and 

1t tB   , we can describe (2) as 
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When q is equal to zero, the model turns into AR(p) model. 
 

1 1 ....t p t p tx x x                                            (4) 

 
When p is equal to zero, the model turns into MA(q) 

model. 
 

1 1 ....t t t q t qx                                               (5) 

3.2 Artificial neural network 

Artificial Neural network (ANN) can be viewed as an 
attempt by humans to simulate the human brain function and 
be a stretch computing framework for modeling a broad range 
of nonlinear problems. The ANNs can process the 
information from the data in parallel and approximate a large 
class of functions with a high degree of accuracy over 
nonlinear data. In the process of model building, there is no 
prior assumption required. On the contrary, the trained 
network model is largely determined by the features of the 
data. Multilayer perceptron (MLP), especially with one 
hidden layer is one of the most widely used forms of artificial 
neural networks for modeling and forecasting. The model is 
characterized by a network of three layers of simple 
processing units connected by acyclic links. The relationship 
between the output (xt) and the inputs (xt−1, …, xt−P) can be 
expressed as 

 

0 0, ,1 1
( ) ,

q p

t j j i j t i tj i
x w w g w w x e 
               (6) 

 
Where wi,j (i=0, 1, 2, …, p, j=1, 2, …, q) and wj (j=0, 1, 2, 

…, q) are model parameters called connection weights; p is 
the number of input nodes; and q is the number of hidden 
nodes. The sigmoid function is often used as the hidden layer 
transfer function, that is 

 

1
( ) .

1 exp( )
sig x

x


 
                                                       (7) 

 
Hence, the ANN model implements a nonlinear functional 

mapping from the past observations to the future value xt, i.e. 
 

1( ,..., , ) .t t t p tx f x x W e                                                 (8) 

 
Where W is a vector of all parameters and f is a function 

determined by the network structure and connection weights. 
Therefore, the neural network is equivalent to a nonlinear 
autoregressive model. Note that (6) implies one output node 
in the output layer, which is typically used for one-step-ahead 
forecasting. In practice, simple network structure that has a 
small number of hidden nodes often works well in out-of-
sample forecasting. This may be due to the over-fitting effect 
typically found in process of neural network modeling. It 
occurs when the network has too many free parameters, 
which allow the network to fit the training data well, but 
typically lead to poor generalization. In addition, it has been 
experimentally shown that the generalization ability begins to 
deteriorate when the neural network has been trained more 
than necessary, that is when it begins to fit the noise of the 
training data. 

The choice of q is dependent on the characteristic of data, 
which has no systematic rule to decide this parameter. Also, 
there is no theory that can be used to decide the selection of 
p. Hence, experiments are often conducted to select an 
appropriate p as well as q. 

3.3 Support vector machine 

In a time series, data set can be divided into training set 
and testing set. A set of training data (x1, y1), …, (xm, ym) are 
given, where xi  Rn, i = 1, …, m, and yi R. Each yi is the 
target value for the input vector xi and yi also comes from the 
same time series as xi comes. Generally, a time series 
function f(x) can be written as 

 
( ) , ,f x w x b               (9) 

 
Where w and b are, respectively, the weight vector and 

intercept of the model for the optimal regression. Also, ,   

means the inner product of the involved arguments. 
Support vector regression (SVR) is one of SVM models, 

which is an application of SVMs in time series problem. SVR 
method tries to locate a low-dimensional hyperplane with 
small risk in high-dimensional feature space based on 
nonlinear kernel regression method. Among numerous of 
support vector regression methods, the most commonly used 
method is  -SVR which finds a nonlinear hyperplane with 
an  -insensitive band [33], [34]. In order to make the method 
more robust, the mapping from the input data to the target 
data does not need to lie rigorously inside or on the  -
insensitive band. The mappings outside the  -insensitive 
band are punished and slack variables are imported for the 
mappings. For convenience, in the following, the term SVR is 
used to present  -SVR. The objective function with 
constraints for SVR is as follows 
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Where i=1, …, m, m is the number of training set, C is a 

parameter which gives a trade-off between model training 

error and complexity, i  and *
i  are slack variables which 

are used when the predictable value is above or below the 
target value more than  . 

One thing to note is that ( )x  is a nonlinear mapping 

function from the input space to a feature space. Therefore, 
we can rewrite the general function (9) into the derived 
hyperplane which is 

 
( ) , ( ) .f x w x b             (11) 

 
To solve (10), one can introduce the Lagrangian 

multipliers, take partial derivatives regard to the primal 
variables and set the results to be zero, and turn the 
Lagrangian into the following Wolfe dual form 
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            (12) 

 
where i is equal to 1, …, m, i  and *

i  are Lagrange 

multipliers. ( , )i jK x x  is a kernel function which represents 

the inner product of ( ), ( )i jx x  . 

If *0 ,i i C   , the corresponding training sample is a 

free support vector. 

If *,i i C   , the corresponding training sample is a 

boundary support vector. 

If *, 0i i   , the corresponding training sample is a non-

support vector, which doesn’t affect the classification or 
regression result. 

Free support vectors and boundary support vectors are 
called support vectors. 

A widely adopted kernel function also used in this paper is 
the radial basis function (RBF) which is defined as follows 

 
2

( , ) ( ), ( ) exp( ),i j i j i jk x x x x x x     
  (13) 

 
Where   is the width parameter of the RBF kernel. Now, 

equation (12) can be solved by Sequential Minimal 
Optimization (SMO) algorithm [35]. Suppose ˆ

i  and *ˆ
i  are 

the optimal values by computation, the hyperplane for the 
time series problem can be shown as 

*

1

ˆˆ ˆ( ) ( ) ( , ) .
m

i i i
i

f x K x x b 


                                       (14) 

4. RESULT AND DISCUSSION 

In this section, we describe the setup of data acquisition 
environment used in this work. The environment is an actual 
running web environment, which is composed of a web 
application server and a database server. 

The web application server is Internet Information Services 
6.0 (IIS) developed by Microsoft and SQL Server 2005 as 
database. 

In web server aging analysis, most of studies focused at 
aging of Apache web server that is a popular web server for 
web application. However, the aging problem for IIS, which 
is as the second web server software [36], is neglected by 
most of scholars. In this paper, we want to find whether the 
IIS has aging phenomenon, and how to more accurately 
predict resource consumption when web application suffers 
aging problem. The applications on the IIS web server are 
composed of a set of health care applications which contain 
hospital websites, health government websites and some 
applications about health care such as online registration 
system. The application system does not use a hot standby 
system that means the only way to handle the performance 
degradation or failure is to reboot IIS or operating system. 

There are many tools for capturing parameters from 
application system such as Nagios, but we use built-in 
windows counter which can get operating system parameters 
and other parameters such as IIS parameters or database 
parameters in running phase without disturbing the running 
system.  The collected data that are between two reboots due 
to performance or failure problem contains: web service, 
process, .net common language runtime memory, etc. But in 
this work, we only use available memory and .net common 
language runtime memory in all heaps (heap memory, for 
short) as well as Java heap memory in Apache web server, 
because of their representation for system level (operating 
system level) and application level (web service level  
provided by IIS web server). 

The resource consumption data are collected every 1 
minute. In this work, the data collection time between two 
reboots is more than 13,000 minutes, which means that the 
number of the data is more than 13,000. Before using the 
collected data set to train these models, preprocessing need to 
be done. For example, the gathered data through windows 
counter contain some empty values that need to be removed 
before using data to train model. 

 
4.1 Software aging trend test 

In order to investigate software aging problem of IIS web 
server, we first need to analyze the collected data to find 
whether software aging trend exists, which is indicated by 
degradation in performance of the web server and/or 
exhaustion of resources. 

We use a linear regression model to fit the monitored 
resource data to find if there is an aging trend in IIS web 
server system. 

 
y at g              (15) 
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Where y denotes the consumed resource, t is the time from 
beginning of start of the operating system and IIS web server, 
a  denotes the degradation rate and g  is the constant bias. 

To obtain appropriate values of a  and g , the least 

squares method is adopted to minimize the summed square of 
errors. 

The summed square of errors is given by 
 

2

1
ˆ( ) ,

m

t tt
y yE


             (16) 

 

Where ty  denotes observed value at time t, ˆty is the 

estimated value  at time t and m is the number of training data 
set. 

Figure 1 gives curves of observed data and linear 
regression. In Figure 1, it is easy to look down the slope of 
this trend, so the slope of linear regression model is negative, 
which means that the available memory gradually decreases 
as time goes on. 
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Figure 1. Available memory estimation 
 

Figure 1 shows aging trend in operating system level, also 
we want to know whether application level as same as web 
service provided by web server is subjected to aging or not. 
Therefore, we train linear regression model of heap memory 
in the collected data. In Figure 2, we can see that the line 

shows an upward tendency. Therefore, the slope of linear 
regression model is positive, which indicates that the 
consumption by web server will increase over time and aging 
phenomenon does exist in application level. 
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Figure 2. Heap memory estimation 

4.2 Available memory forecasting 

In order to find which of three models is appropriate in 
predicting available memory based on different situations, we 
 

 
split the collected data set into two parts: training set and 
testing set. In this paper, we use 5%, 10%, 50%, 70% of the 
whole data set as training data set and the remainder data set 
is used as testing set. 
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The MAE (Mean Absolute Error) which is computed from 
the following equation is employed as performance indicator 
to measure forecasting performance. 

 

1

1
ˆ| |.

n

t tt
MAE y y

n 
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                       (17) 
 
In Table 1, the training results of different models for 

available memory prediction are given. 
 

Table 1. Comparison of the performance of different 
models in training set (available memory) 

 
Rate of the 

training set 
5% 10%  50% 70% 

ARIMA 27.362 28.334 24.632 24.915 

ANN 27.782 29.365 25.56 25.742 

SVM 26.566 28.889 24.082 24.167 

 
In Table 2, the testing results of different models for 

available memory prediction are given. 
 

Table 2. Comparison of the performance of different 
models in testing set (available memory) 

 
Rate of 

the testing 
set 

95% 80%  50% 30% 

ARIMA 25.329 24.794 25.198 24.913 

ANN 42.547 45.501 25.897 25.562 

SVM 63.624 52.084 24.963 23.734 

 
In the testing phase of available memory, ARIMA has a 

steady performance in predicting available memory. ANN 
and SVM have weak performances in the testing set of 95%, 
80%, and SVM has worse results than ANN’s. In Table 3, we 
find that the linear correlations of the training and testing 
phases have bigger differences in the rate of 5% and 10% 
than others through comparisons of linear correlations 
between collected data and fitted data by SVM. Therefore, it 
is difficult to fit the collected data of the testing phase, when 
the model of training phase can hardly fit the testing phase. 

 
Table 3. Linear correlation between collected data and 

fitted data by SVM (available memory) 
 

Rate of the 
training set 

5% 10%  50% 70% 

Linear 
correlation in 
the training 
phase 

0.959 0.94
4 

0.94
6 

0.941 

Linear 
correlation in 
the testing 
phase 

0.748 0.75
2 

0.89
7 

0.902 

 
Through the analysis for ARIMA, ANN, and SVM, we can 

see that nonlinear methods such as ANN and SVM do not do 

better than linear method in available memory predicting. The 
reason may be that the gap of the linear correlation between 
the training data and testing data is large in small data set and 
for SVM and ANN, the initial 5% and 10% data as training 
data have a large linear correlation. 

 
4.3 Heap memory forecasting 

In Table 4, the training results of different models for heap 
memory prediction are given. 

 
Table 4. Comparison of the performance of different 

models in training set (heap memory) 
 

Rate of the 
training set 

5% 10% 50% 70% 

ARIMA 27.815 28.186 26.14
9 

26.00
2 

ANN 29.497 28.993 26.56
4 

26.26
5 

SVM 27.476 26.88 23.55
6 

23.41
9 

 
In Table 4, the entire models do well in fitting original data 

in the training set of 5%, 10%, 50%, 70%, especially for 
SVM. 

In table 5, the testing results of different models for heap 
memory prediction are given. 

 
Table 5. Comparison of the performance of different 

models in testing set (heap memory) 
 

Rate of the 
testing set 

5% 10% 50% 70% 

ARIMA 26.505 26.165 26.54
3 

27.11
8 

ANN 28.721 27.962 27.77
8 

27.07
4 

SVM 26.465 25.623 24.79
6 

25.10
3 

 
Through the analysis for ARIMA, ANN, and SVM, we can 

see that SVM as one of nonlinear methods does better than 
the other two methods in heap memory prediction. Table 6 
gives linear correlation for SVM. 

 
Table 6. Linear correlation between collected data and 

fitted data by SVM (heap memory) 
 

Rate of the 
training set 

5% 10% 50% 70% 

Linear 
correlation in the 

training phase 

0.64 0.673 0.659 0.69 

Linear 
correlation in the 

testing phase 

0.655 0.689 0.73 0.72
9 

6



In Table 6, the differences of linear correlations in the 
training and testing phases are small no matter for small 
training data set or large training data set. 

Through analysis of linear correlations in predictions of 
available memory and heap memory, we find that finding a 
proper data set to train and test is more important than to find 
a model. 

 
 

6. CONCLUSIONS 
 

Software aging analysis and forecasting is an active 
research area over the last few decades. In this paper, we 
compare the performances of three models in resource 
consumption forecasting of a web server. In section 4, we 
first identify whether the system has degradation trend by 
using linear regression model. After that, we use the collected 
data to train three models and use the remainder data to test 
effect of the models. Through the results of available memory 
and heap memory prediction, it is shown that nonlinear 
methods do not better than linear method in some situations. 
Through two kinds of resource consumption, we believe that 
choosing a proper data set for training is more important than 
choosing a linear or nonlinear method. 

There are some topics for future research. The relationships 
between different resource parameters or performance 
parameters need to be analyzed and new systems, such as 
platform of Cloud Computing, are also need be considered, 
when subjected to software aging. 
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