

REVIEW OF COMPUTER ENGINEERING STUDIES

 Vol.2, No.3, 2015, pp.1-8
http://dx.doi.org/10.18280/rces.020301

1. INTRODUCTION

There is a report that business revenues affected by
application performance problems account for overall
business revenues by up to 9% when applications suffer from
performance issues such as performance degradation [1].
Even worse, about one third (32 percent) of consumers will
abandon slow sites between one and five seconds and some
of them will go on to tell others about their experience which
will prevent more consumers to visit these sites by [2]. One
second page load delay means that it will decrease 11% page
views, customer satisfaction, and 7% revenue [3].

Several studies [4], [5] have reported that one of the causes
of the performance degradation and unplanned software
outages is the software aging phenomena. Software aging is a
phenomenon observed in software that the long running
software system suffers from abnormal state, performance
degradation, even hang, and failure. The reasons of software
aging are consumption of operating system resources, data
corruption and round error accumulation, which could be
accompanied by memory leaks [6], unterminated threads,
data fragment, unreleased file locks, unreleased database
connections and so on. Software aging problems are not only
observed in telecommunication systems [7], Web servers [8],
enterprise clusters [9], online transaction processing (OLTP)
systems [10], and spacecraft systems [11], but also in military
system [5] which means loss of lives. In order to counteract
these problems, Huang et al. [12] proposed the technique of
software rejuvenation that involves occasionally stopping the
software application, removing the cumulative error
environments and then rebooting the application in a clean
environment. Unlike other technologies, rejuvenation

technology is a proactive manner, which means the
accumulated errors, or defragments can be removed through
this process before occurrence of service degradation and
failure. Unlike downtime caused by unexpected failure, the
downtime by software rejuvenation can be performed at the
discretion of the user or administrator, e.g., at midnight or
idle time.

The key issue for software rejuvenation is how to find an
optimal time, however, the choice of optimal time is
dependent on accuracy of time to failure or prediction
accuracy of resource consumption, which means the more the
accuracy is, the better the rejuvenation is.

In this paper, we compare the effects of linear and
nonlinear methods in the aspect of resource consumption
predicting in a web server that is suffered from software
aging. The resource usage data are collected from a typical
long running software system a web server that is not
subjected to artificial load, but a true load.

The contribution of this work is: the captured data from
running phase are real data, which means workload is not
synthetic; through comparisons between the linear and
nonlinear time series methods in resource consumption, the
most important thing for resource consumption predicting is
how to choose a proper data set for training.

The rest of the paper is organized as follows. In Section 2,
some related work on software aging is briefly reviewed. In
Section 3, we review the ARIMA, ANN, and SVM modeling
approaches. In Section 4, the outputs of models are compared
with each other through some measurement methods. Section
5 contains the concluding remarks and discusses possible
directions for future research.

A PRACTICE GUIDE OF PREDICTING RESOURCE CONSUMPTION IN A WEB
SERVER

Yongquan Yan

*School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.

Email:yongquanyan@aliyun.com

ABSTRACT

Software aging is a phenomenon observed in a software application executing continuously for a long period of time, where
the state of software degrades and leads to performance degradation, hang/crash failures or both. This gives rise to large costs
and requires provisional solutions. Software rejuvenation is a proactive error management technique that involves
terminating an application, cleaning up the system internal state, and restarting it to prevent the future failures. Thus, it is
important to know system states in advance. In order to find software aging in advance, algorithms of time series and
machine learning have been used to forecast resource consumption in various kinds of software systems. In this paper, we use
linear regression to find if there is software aging trend in a web server and compare the differences of linear and nonlinear
methods in the aspect of resource consumption prediction. Through analysis in the experiment, it is a fact that choosing a
proper data set is more important than choosing a method for software resource consumption forecasting.

Keywords: Software aging, Artificial Neural Network, Support vector machine, ARIMA, Web server.

1

2. RELATED WORK

Approaches used for analyzing and solving software aging

problem can be grouped into model-based ones and
measurement-based ones.

In model-based approach, some assumptions such as
distributions for failure, workload and repair time are made.
And based on these assumptions a mathematical model is
built. These models are either analytical or stochastic. Garg et
al. [13] analyzed software aging in a transaction system and
proposed an analytical model to estimate the probability of
losing an arriving transaction and the expected response time
of a transaction. Dohi et al. [14] built semi Markov reward
process models of software aging to solve the same problem.
Xie et al. [15] generalized the semi Markov model presented
in [14] by introducing the possibility of service level
rejuvenation in addition to system level rejuvenation. Wang
et al. [16] analyzed performability of clustered systems with
deterministic and stochastic Petri nets (DSPN) and
homogeneous continuous-time Markov chains (CTMC).
There is a problem in model-based approach that is the
mathematical assumptions cannot be easily validated in
practice and may be not proper for software aging problem in
production phase. Meanwhile, the rejuvenation for model-
based approach is usually based on a regular time interval,
which may be not a good choice for real problems especially
for web service as the most popular service of Internet whose
rejuvenation is sensitive to the time, which means
rejuvenation in this time is proper, but may be not appropriate
in other time.

In measurement-based approach, the aging parameters
(performance parameters or resource consumption
parameters) are monitored through some tools such as Monit
[17], Ganglia [18], Munin [19] or Nagios [20]. Based on
periodically collected data, measurement-based approaches
try to assess current or future state of software system. Garg
et al. [21] analyzed the exhaustion of resources like physical
memory, and swap space in a network of UNIX workstations
and proposed a slope estimation method to quantify the effect
of aging in operating system level. Silva et al. [22] collected
data from the application server and used Hot Standby
technology to implement rejuvenation on a virtualization
(XEN virtualization middleware) layer. Shereshevsky et al.
[23] chose a completely different approach to the analysis of
aging in memory resources. Instead of modeling and
predicting memory utilization directly, they monitored the
Hölder exponent (a measure of the local rate of fractality) of
the system parameters. Their findings indicated that system
crashes were often preceded by the second abrupt increase in
this measure. Chen et al. [24] used non-linear threshold
autoregressive (TAR) model to forecast the resource usage.
Michael Grottke et al. [25] collected data from apache web
server and use autoregressive model to predict system
resources consumption, i.e., free physical memory, and used
swap space. They found that there was a periodical pattern in
used swap space. Machida et al. [26] that aging detection
using the Mann-Kendall test alone was in general unreliable,
or might require long measurement times. Li et al. [27]
presented a method of nonlinear autoregressive models with
exogenous inputs to detect the aging phenomenon of the
software system which is a variant for neural network.
Hoffmann et al. [28] used some predictive algorithms (liner
regression, support vector machines and so on) to predict
resource consumption in an industrial telecommunication

system. Araujo et al. [29] used four kinds of time series
models to forecast resource consumption in Eucalyptus Cloud
Computing Infrastructure. Simeonov and Avresky [30]
presented a framework for detecting anomalies in servers
leading to crash such as memory leaks in aging systems.
However, most of above approaches analyze software aging
phenomenon by using synthetic load data which neglects the
real runtime environment of software system. Meanwhile, the
fault injection method or overload method is used in order to
get aging data as quickly as possible. However, according to
the definition of software aging, the software aging appears
when software system is in long running phase, so the method
of fault injection or overload may be not proper, especially
for the software system in production phase. Although there
are some methods for predicting resource consumption, it
lacks practice guides that which method should be used when
a web server is suffered from software aging.

3. METHOD

There are some different methods for resource
consumption forecast, which can be generally categorized as
traditional statistical models and nonlinear models.
Traditional statistical models including moving average,
exponential smoothing, and autoregressive integrated moving
average are linear in that predictions of future values are
constrained to be linear functions of past observations. The
Second category of models is nonlinear models. Several
nonlinear models have been proposed to overcome the linear
limitation of time series models, which include the threshold
autoregressive (TAR) model, general autoregressive
conditional heteroscedastic (GARCH), the bilinear model,
chaotic dynamics, and artificial neural networks, general
regression neural networks (GRNNs), support vector
machines, and so on. In this section, the basic concepts and
modeling process of autoregressive integrated moving
average, artificial neural networks, and support vector
machines are reviewed.

3.1 ARIMA model

In the 1970s, Box and Jenkins [31] proposed a set of methods
for analysis, prediction and controllable method, called ARIMA or
Box-Jenkins method. ARIMA model [32] is, in theory, the most
general model for forecasting a time series which can be stabilized
by transformations such as differencing. In fact, we can think that
ARIMA model is an adjusted model of random walk and random
trend: the fine adjustment consists of adding lags of the differenced
series and/or lags of the forecast errors for the forecasting formula,
where removing any last traces of autocorrelation from the
forecast errors is needed.

In fact, an ARIMA (p, d, q) model uses autoregressive
moving average model (ARMA) to fit time series which is
stationary. A stationary time series means that the series has
no trend in the long run.

Given a set of resource consumption data series (x1, …, xt,
…, xm), where t = 1, …, m, the difference transformation can
be expressed as

(1) ,d d
t t t d tx x x B x    

 (1)

2

Where d is the difference operator, d is the number of
the difference, tx and 1tx  are the actual values of time series

at time t and t-1, B is the backward shift operator..
Supposing xt is the output of a stationary time series,

ARMA (p, q) model which is a stationary ARIMA can be
described by (2)

1 1 1 1...t t p t p t t q t qx x x                (2)

Where t is a white noise which is an uncorrelated random

variable with mean zero and a constant variance 2

 , p is the

order of non-seasonal autoregressive part of the model, q is
the order of non-seasonal moving average part of the model,
 and  are coefficients that satisfy stationary and

invertible conditions, respectively.
Using the backward shift operator B with 1t tBx x  and

1t tB   , we can describe (2) as

2
1 2

2
1 2

() ()
() (1 ...)

() (1 ...).

t t

p
p

q
q

B x B
B B B B

B B B B


  
  





 
    
    

 (3)

When q is equal to zero, the model turns into AR(p) model.

1 1t p t p tx x x      (4)

When p is equal to zero, the model turns into MA(q)

model.

1 1t t t q t qx         (5)

3.2 Artificial neural network

Artificial Neural network (ANN) can be viewed as an
attempt by humans to simulate the human brain function and
be a stretch computing framework for modeling a broad range
of nonlinear problems. The ANNs can process the
information from the data in parallel and approximate a large
class of functions with a high degree of accuracy over
nonlinear data. In the process of model building, there is no
prior assumption required. On the contrary, the trained
network model is largely determined by the features of the
data. Multilayer perceptron (MLP), especially with one
hidden layer is one of the most widely used forms of artificial
neural networks for modeling and forecasting. The model is
characterized by a network of three layers of simple
processing units connected by acyclic links. The relationship
between the output (xt) and the inputs (xt−1, …, xt−P) can be
expressed as

0 0, ,1 1
() ,

q p

t j j i j t i tj i
x w w g w w x e 
     (6)

Where wi,j (i=0, 1, 2, …, p, j=1, 2, …, q) and wj (j=0, 1, 2,

…, q) are model parameters called connection weights; p is
the number of input nodes; and q is the number of hidden
nodes. The sigmoid function is often used as the hidden layer
transfer function, that is

1
() .

1 exp()
sig x

x


 
 (7)

Hence, the ANN model implements a nonlinear functional

mapping from the past observations to the future value xt, i.e.

1(,..., ,) .t t t p tx f x x W e   (8)

Where W is a vector of all parameters and f is a function

determined by the network structure and connection weights.
Therefore, the neural network is equivalent to a nonlinear
autoregressive model. Note that (6) implies one output node
in the output layer, which is typically used for one-step-ahead
forecasting. In practice, simple network structure that has a
small number of hidden nodes often works well in out-of-
sample forecasting. This may be due to the over-fitting effect
typically found in process of neural network modeling. It
occurs when the network has too many free parameters,
which allow the network to fit the training data well, but
typically lead to poor generalization. In addition, it has been
experimentally shown that the generalization ability begins to
deteriorate when the neural network has been trained more
than necessary, that is when it begins to fit the noise of the
training data.

The choice of q is dependent on the characteristic of data,
which has no systematic rule to decide this parameter. Also,
there is no theory that can be used to decide the selection of
p. Hence, experiments are often conducted to select an
appropriate p as well as q.

3.3 Support vector machine

In a time series, data set can be divided into training set
and testing set. A set of training data (x1, y1), …, (xm, ym) are
given, where xi Rn, i = 1, …, m, and yi R. Each yi is the
target value for the input vector xi and yi also comes from the
same time series as xi comes. Generally, a time series
function f(x) can be written as

() , ,f x w x b  (9)

Where w and b are, respectively, the weight vector and

intercept of the model for the optimal regression. Also, , 

means the inner product of the involved arguments.
Support vector regression (SVR) is one of SVM models,

which is an application of SVMs in time series problem. SVR
method tries to locate a low-dimensional hyperplane with
small risk in high-dimensional feature space based on
nonlinear kernel regression method. Among numerous of
support vector regression methods, the most commonly used
method is  -SVR which finds a nonlinear hyperplane with
an  -insensitive band [33], [34]. In order to make the method
more robust, the mapping from the input data to the target
data does not need to lie rigorously inside or on the  -
insensitive band. The mappings outside the  -insensitive
band are punished and slack variables are imported for the
mappings. For convenience, in the following, the term SVR is
used to present  -SVR. The objective function with
constraints for SVR is as follows

3

*

, 1

*

*

1
, ()

2

subject to (, ()) ,

(, ()) ,

, 0,

min
m

i i
w b i

i i i

i i i

i i

w w C

w x b y

y w x b

 

  

  

 



 

   

   





 (10)

Where i=1, …, m, m is the number of training set, C is a

parameter which gives a trade-off between model training

error and complexity, i and *
i are slack variables which

are used when the predictable value is above or below the
target value more than  .

One thing to note is that ()x is a nonlinear mapping

function from the input space to a feature space. Therefore,
we can rewrite the general function (9) into the derived
hyperplane which is

() , () .f x w x b  (11)

To solve (10), one can introduce the Lagrangian

multipliers, take partial derivatives regard to the primal
variables and set the results to be zero, and turn the
Lagrangian into the following Wolfe dual form

*

* *

,
1 1

* *

1 1 1

*

1

*

max () ()

1
() () (,),

2

subject to () 0,

0 , ,

m m

i i i i i
i i

m m m

i i i j j i j
i j i

m

i i
i

i i

y

y K x x

C

 
    

    

 

 

 

  



  

   

 

 

 

 



 (12)

where i is equal to 1, …, m, i and *

i are Lagrange

multipliers. (,)i jK x x is a kernel function which represents

the inner product of (), ()i jx x  .

If *0 ,i i C   , the corresponding training sample is a

free support vector.

If *,i i C   , the corresponding training sample is a

boundary support vector.

If *, 0i i   , the corresponding training sample is a non-

support vector, which doesn’t affect the classification or
regression result.

Free support vectors and boundary support vectors are
called support vectors.

A widely adopted kernel function also used in this paper is
the radial basis function (RBF) which is defined as follows

2

(,) (), () exp(),i j i j i jk x x x x x x     
 (13)

Where  is the width parameter of the RBF kernel. Now,

equation (12) can be solved by Sequential Minimal
Optimization (SMO) algorithm [35]. Suppose ˆ

i and *ˆ
i are

the optimal values by computation, the hyperplane for the
time series problem can be shown as

*

1

ˆˆ ˆ() () (,) .
m

i i i
i

f x K x x b 


   (14)

4. RESULT AND DISCUSSION

In this section, we describe the setup of data acquisition
environment used in this work. The environment is an actual
running web environment, which is composed of a web
application server and a database server.

The web application server is Internet Information Services
6.0 (IIS) developed by Microsoft and SQL Server 2005 as
database.

In web server aging analysis, most of studies focused at
aging of Apache web server that is a popular web server for
web application. However, the aging problem for IIS, which
is as the second web server software [36], is neglected by
most of scholars. In this paper, we want to find whether the
IIS has aging phenomenon, and how to more accurately
predict resource consumption when web application suffers
aging problem. The applications on the IIS web server are
composed of a set of health care applications which contain
hospital websites, health government websites and some
applications about health care such as online registration
system. The application system does not use a hot standby
system that means the only way to handle the performance
degradation or failure is to reboot IIS or operating system.

There are many tools for capturing parameters from
application system such as Nagios, but we use built-in
windows counter which can get operating system parameters
and other parameters such as IIS parameters or database
parameters in running phase without disturbing the running
system. The collected data that are between two reboots due
to performance or failure problem contains: web service,
process, .net common language runtime memory, etc. But in
this work, we only use available memory and .net common
language runtime memory in all heaps (heap memory, for
short) as well as Java heap memory in Apache web server,
because of their representation for system level (operating
system level) and application level (web service level
provided by IIS web server).

The resource consumption data are collected every 1
minute. In this work, the data collection time between two
reboots is more than 13,000 minutes, which means that the
number of the data is more than 13,000. Before using the
collected data set to train these models, preprocessing need to
be done. For example, the gathered data through windows
counter contain some empty values that need to be removed
before using data to train model.

4.1 Software aging trend test

In order to investigate software aging problem of IIS web
server, we first need to analyze the collected data to find
whether software aging trend exists, which is indicated by
degradation in performance of the web server and/or
exhaustion of resources.

We use a linear regression model to fit the monitored
resource data to find if there is an aging trend in IIS web
server system.

y at g  (15)

4

Where y denotes the consumed resource, t is the time from
beginning of start of the operating system and IIS web server,
a denotes the degradation rate and g is the constant bias.

To obtain appropriate values of a and g , the least

squares method is adopted to minimize the summed square of
errors.

The summed square of errors is given by

2

1
ˆ() ,

m

t tt
y yE


  (16)

Where ty denotes observed value at time t, ˆty is the

estimated value at time t and m is the number of training data
set.

Figure 1 gives curves of observed data and linear
regression. In Figure 1, it is easy to look down the slope of
this trend, so the slope of linear regression model is negative,
which means that the available memory gradually decreases
as time goes on.

0 2000 4000 6000 8000 10000 12000 14000
6400

6600

6800

7000

7200

7400

7600

Time(minute)

A
va

ila
bl

e
m

em
or

y(
M

B
)

Available memory

Fitted available memory

Figure 1. Available memory estimation

Figure 1 shows aging trend in operating system level, also
we want to know whether application level as same as web
service provided by web server is subjected to aging or not.
Therefore, we train linear regression model of heap memory
in the collected data. In Figure 2, we can see that the line

shows an upward tendency. Therefore, the slope of linear
regression model is positive, which indicates that the
consumption by web server will increase over time and aging
phenomenon does exist in application level.

0 2000 4000 6000 8000 10000 12000 14000
0

50

100

150

200

250

300

350

Time(minute)

H
ea

p
m

em
or

y(
M

B
)

Heap memory

Fitted heap memory

Figure 2. Heap memory estimation

4.2 Available memory forecasting

In order to find which of three models is appropriate in
predicting available memory based on different situations, we

split the collected data set into two parts: training set and
testing set. In this paper, we use 5%, 10%, 50%, 70% of the
whole data set as training data set and the remainder data set
is used as testing set.

5

The MAE (Mean Absolute Error) which is computed from
the following equation is employed as performance indicator
to measure forecasting performance.

1

1
ˆ| |.

n

t tt
MAE y y

n 
 

 (17)

In Table 1, the training results of different models for

available memory prediction are given.

Table 1. Comparison of the performance of different
models in training set (available memory)

Rate of the

training set
5% 10% 50% 70%

ARIMA 27.362 28.334 24.632 24.915

ANN 27.782 29.365 25.56 25.742

SVM 26.566 28.889 24.082 24.167

In Table 2, the testing results of different models for

available memory prediction are given.

Table 2. Comparison of the performance of different
models in testing set (available memory)

Rate of

the testing
set

95% 80% 50% 30%

ARIMA 25.329 24.794 25.198 24.913

ANN 42.547 45.501 25.897 25.562

SVM 63.624 52.084 24.963 23.734

In the testing phase of available memory, ARIMA has a

steady performance in predicting available memory. ANN
and SVM have weak performances in the testing set of 95%,
80%, and SVM has worse results than ANN’s. In Table 3, we
find that the linear correlations of the training and testing
phases have bigger differences in the rate of 5% and 10%
than others through comparisons of linear correlations
between collected data and fitted data by SVM. Therefore, it
is difficult to fit the collected data of the testing phase, when
the model of training phase can hardly fit the testing phase.

Table 3. Linear correlation between collected data and

fitted data by SVM (available memory)

Rate of the
training set

5% 10% 50% 70%

Linear
correlation in
the training
phase

0.959 0.94
4

0.94
6

0.941

Linear
correlation in
the testing
phase

0.748 0.75
2

0.89
7

0.902

Through the analysis for ARIMA, ANN, and SVM, we can

see that nonlinear methods such as ANN and SVM do not do

better than linear method in available memory predicting. The
reason may be that the gap of the linear correlation between
the training data and testing data is large in small data set and
for SVM and ANN, the initial 5% and 10% data as training
data have a large linear correlation.

4.3 Heap memory forecasting

In Table 4, the training results of different models for heap
memory prediction are given.

Table 4. Comparison of the performance of different

models in training set (heap memory)

Rate of the
training set

5% 10% 50% 70%

ARIMA 27.815 28.186 26.14
9

26.00
2

ANN 29.497 28.993 26.56
4

26.26
5

SVM 27.476 26.88 23.55
6

23.41
9

In Table 4, the entire models do well in fitting original data

in the training set of 5%, 10%, 50%, 70%, especially for
SVM.

In table 5, the testing results of different models for heap
memory prediction are given.

Table 5. Comparison of the performance of different

models in testing set (heap memory)

Rate of the
testing set

5% 10% 50% 70%

ARIMA 26.505 26.165 26.54
3

27.11
8

ANN 28.721 27.962 27.77
8

27.07
4

SVM 26.465 25.623 24.79
6

25.10
3

Through the analysis for ARIMA, ANN, and SVM, we can

see that SVM as one of nonlinear methods does better than
the other two methods in heap memory prediction. Table 6
gives linear correlation for SVM.

Table 6. Linear correlation between collected data and

fitted data by SVM (heap memory)

Rate of the
training set

5% 10% 50% 70%

Linear
correlation in the

training phase

0.64 0.673 0.659 0.69

Linear
correlation in the

testing phase

0.655 0.689 0.73 0.72
9

6

In Table 6, the differences of linear correlations in the
training and testing phases are small no matter for small
training data set or large training data set.

Through analysis of linear correlations in predictions of
available memory and heap memory, we find that finding a
proper data set to train and test is more important than to find
a model.

6. CONCLUSIONS

Software aging analysis and forecasting is an active
research area over the last few decades. In this paper, we
compare the performances of three models in resource
consumption forecasting of a web server. In section 4, we
first identify whether the system has degradation trend by
using linear regression model. After that, we use the collected
data to train three models and use the remainder data to test
effect of the models. Through the results of available memory
and heap memory prediction, it is shown that nonlinear
methods do not better than linear method in some situations.
Through two kinds of resource consumption, we believe that
choosing a proper data set for training is more important than
choosing a linear or nonlinear method.

There are some topics for future research. The relationships
between different resource parameters or performance
parameters need to be analyzed and new systems, such as
platform of Cloud Computing, are also need be considered,
when subjected to software aging.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
detailed reviews and constructive comments, which have
helped improve the quality of this paper. This work is
supported by the grants from Natural Science Foundation of
China (Project No. 61375045) and Beijing Natural Science
Foundation (4142030).

REFERENCES

1. Web Performance Impacts,
http://www.webperformancetoday.com/2010/06/15/every
thing-you-wanted-to-know-about-web-performance/.

2. Website Response Times,
http://www.nngroup.com/articles/website-response-
times/.

3. Benchmark, http://www.aberdeen.com/Aberdeen-
Library/5136/RA-performance-web-application.aspx

4. T. Dohi, K. GoHeva-Popstojanov, K.S. Trivedi, Analysis
of Software Cost Models with Rejuvenation, Proc. Fifth
IEEE Symp, High Assurance Systems Engineering,
pp.25-34, 2000.

5. M. Grottke, R. M. Jr, K. S.Trivedi, The Fundamentals of
Software Aging, Proc. Workshop Software Reliability
Engineering, pp.1-6, 2008.

6. Z. Dai, X. G. Mao, Light-Weight Resource Leak Testing
Based On Finalisers, IET Software, vol.7. pp.308- 316,
2013.

7. Avritzer, E. Weyuker, Monitoring Smoothly Degrading
Systems for Increased Dependability, Empirical Software
Eng. J., vol. 2. pp.59-77, 1997.

8. Apache, http://httpd.apache.org/docs/.
9. V. Castelli, R. Harper, P. Heidelberg, Proactive

Management of Software Aging, IBM J. Research and
Development, vol. 45. pp.311-322, 2001.

10. K. Cassidy, K. Gross, A. Malekpour, Advanced Pattern
Recognition for Detection of Complex Software Aging
Phenomena in Online Transaction Processing Servers,
Proc. 2002 Int’l Conf. Dependable Systems and
Networks, pp.478-482, 2002.

11. E. Marshall, Fatal Error: How Patriot Overlooked a Scud,
Science, vol. 255. pp.1344-1347, 1992.

12. Y. Huang, C. Kintala, N. Kolettis, et al., Software
Rejuvenation: Analysis, Module and Applications, Proc.
Twenty-Fifth Symp., Fault-Tolerant Computing, pp.381-
390, 1995.

13. S. Garg, A. Puliafito, M. Telek, et al., Analysis of
Software Rejuvenation Using Markov Regenerative
Stochastic Petri Net, Proc. Sixth IEEE Symp. Software
Reliability Engineering, pp.180-187, 1995.

14. T. Dohi, K. Goševa-Popstojanova, K. Trivedi, Estimating
Software Rejuvenation Schedules in High-assurance
Systems, The Computer Journal, vol. 44. pp.473-485,
2001.

15. W. Xie, Y. Hong, K. Trivedi, Analysis of a Two-level
Software Rejuvenation Policy, Reliability Engineering
and System Safety, vol. 87. pp.13-22, 2005.

16. D. Wang, W. Xie, K. S. Trivedi, Performability Analysis
of Clustered Systems with Rejuvenation under Varying
WorkLoad, Performance Evaluation, vol. 64. pp.247-265,
2007.

17. Monit, http://mmonit.com/monit/
18. Ganglia, http://ganglia.sourceforge.net/
19. Munin, http://munin-monitoring.org/
20. Nagios, http://www.nagios.org/
21. S. Garg, A. van Moorsel, K. Vaidyanathan Trivedi, et al.,

A Methodology for Detection and Estimation of
Software Aging, Proc. Ninth Int’l Conf. Software
Reliability Engineering, pp.283-292, 1998.

22. L. M. Silva, J. Alonso, J. Torres, Using Virtualization to
Improve Software Rejuvenation, Proc. Sixth IEEE Symp.
Network Computing and Applications, pp.33-44, 2007.

23. M. Shereshevsky, J. Crowell, B. Cukic, et al., Software
Aging and Multifractality of Memory Resources, Proc.
2003 Int’l Conf. Dependable Systems and Networks,
pp.721-730, 2003.

24. X. E. Chen, Q. Quan, Y. F. Jia, et al., A Threshold
Autoregressive Model for Software Aging, Proc.
Workshop Ser-vice-Oriented System Engineering, pp.34-
40, 2006.

25. M. Grottke, L. Li, K. Vaidyanathan, et al., Analysis of
Software Aging in a Web Server, IEEE Transactions on
Re-liability, vol. 55. pp.411-420, 2006.

26. F. Machida, A. Andrzejak, R. Matias, et al., On the
effectiveness of Mann-Kendall test for detection of
software aging, IEEE International Symposium on
Software Reliability Engineering Workshops, pp.269-274,
2013.

27. S. Li, Q. Yong, Software Aging Detection Based on
NARX Model, Proc. 2012 Conf. Web Information
Systems and Applications, pp.105-110, 2012.

28. G. A. Hoffmann, K. S. Trivedi, M. Malek, A Best
Practice Guide to Resource Forecasting for Computing
Systems, IEEE Transactions on Reliability, vol. 56.
pp.615-628, 2007.

7

29. J. Araujo, R. Matos, P. Maciel, et al., Software
Rejuvenation in Eucalyptus Cloud Computing
Infrastructure: A Method Based on Time Series
Forecasting and Multiple Thresholds, Third Int’l
Workshop Software Aging and Rejuvenation, pp.38-
43,2011.

30. V. D. Simeono, D. R. Avresky, Proactive Software
Rejuvenation Based on Machine Learning Techniques,
Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol. 34, pp.186-200,
2010.

31. G. E. P. BOX, G. M. JENKINS, G. C. REINSEL, Time
Series Analysis, Forecasting and Control, 2011.

32. Introduction to ARIMA: Nonseasonal Models,
http://people.duke.edu/~rnau/411arim.htm

33. N. Cristianini, J. Shawe-Taylor, An Introduction to
Support Vector Machines and Other Kernel-Based
Learning Methods, Cambridge University Press, 2000.

34. V. Vapnik, The Nature of Statistical Learning Theory,
Springer-Verlag, 1995.

35. J. C. Platt, Fast Training of Support Vector Machines
Using Sequential Minimal Optimization, MIT Press,
1999.

36. Netcraft,http://news.netcraft.com/archives/2013/04/02/ap
ril-2013-web-server-survey.html.

.

8

