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Wire-Electro Discharge Machining is a special thermo machining 

process which is capable of machining parts with varying hardness and 

complex shapes very accurately, also parts with sharp edges that are 

very difficult to machine by the main stream machining processes. 

WEDM is a widely accepted unconventional material removal process 

used to manufacture components which have intricate shapes and pro-

files. The conventional EDM which uses an electrode to initialize the 

sparking process is adapted in WEDM process. To achieve very small 

corner radii, a continuously travelling wire-electrode made of thin cop-

per, brass or tungsten of diameter 0.05 to 0.3 mm is utilized in the 

WEDM process. The wire used in WEDM is kept in tension using a 

mechanical device to produce accurate parts. Also, WEDM does not 

make direct contact between the wire-electrode and the workpiece 

eliminating mechanical stresses and chatter problems during machin-

ing. The material removal mechanisms of EDM and WEDM are identi-

cal whereas, the functional characteristics are different. EDM uses tool-

electrode to machine the workpiece and WEDM uses thin wire (wire-

electrode) which is continuously feed through the workpiece to the 

machine with high accuracy. The microprocessor constantly maintains 

0.025 to 0.05 mm gap between the wire-electrode and the workpiece 

[1-3]. Micro-WEDM has become prominent as the popular microm-

achining processes for fabrication of micro-parts. The predominant 

problems faced in this processes are the poor surface finish and the low 

machining rate. To improve the performance of the micro-WEDM, the 

low-frequency workpiece vibration assistance can be provided to en-

hance the flushing conditions and to reduce the adhesion of the wire-

electrode and the workpiece [4]. To produce micro-parts with WEDM, 

ultra thin wire-electrodes of diameters 20, 25, 30 and 50 µm can be 

used [5]. The residual stress generated on the workpiece during the 

WEDM process should be low as possible to achieve good surface 

integrity and longer service life. However, the residual stress formation 

depends on setting machining parameters and the material to be ma-

chined [6]. The WEDM cut surface of the workpiece have poor surface 

integrity and decreased fatigue life as those compared with the polished 

surface [7]. At the idle voltage, pulse-on time, and the discharge current 

the crater dimensions are not influenced. Crater developed during ma-

chining does not have uniform shape with same machining parameters 

[5]. Deep craters are formed on the machined surface due to more fre-

quent melting explosion caused by high discharge energy [8]. The sur-

face roughness increases with increase in pulse-on time and pulse-peak 

current while machining hot-pressed boron carbide and newly devel-

oped DC53 die steel in WEDM [8-9]. Also, surface roughness has dif-

ferent variations while machining ceramic particulate reinforced Al 

matrix composites in WEDM. The surface roughness decreases in 

Al/SiCp composites as the volume fraction of SiC is increased and in 

Al/Al2O3p the surface roughness increases as the volume fraction of 

alumina increased. Volume fractions, size of ceramic reinforcements, 

coefficient of thermal expansion, heat fusion, thermal diffusivity and 

melting temperature are significant factors on surface finish of particu-

late reinforced Al matrix composites [10]. The workpiece material with 

a low melting temperature and specific heat exhibits high MRR in 

WEDM [11]. In µ-WEDM of gold-coated Si wafer, the MRR can be 

enhanced from 1% to 33% by nanopowder mixed dielectric fluid medi-

um [12]. To facilitate effective machining of Tungsten Carbide, various 

conductive powder particles like graphite and diatomite are mixed sep-

arately with the dielectric fluid medium to increase the micro-hardness 

(µ-H), MRR and to reduce the surface roughness [13-14]. Tungsten 

Carbide is categorized under extremely hard and difficult-to-cut materi-

al used widely in manufacturing because of its high wear, abrasion and 

corrosion resistance. Tungsten Carbide has extreme applications in 

manufacturing carbide dies, cutting tools and forestry tools [15-16]. 

About 50% of all the carbide production is utilized for the machining 

applications and the cemented carbides are being increasingly used for 
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the non-machining applications such as mining, oil and gas drilling, 

metal forming and forestry tools [17]. Even though Tungsten Carbide 

has extreme wear and thermal properties, at relatively moderate tem-

perature they are susceptible to oxidation [18] and by the diffusion 

impregnation with silicon, this material can be rendered oxidation re-

sistant [19]. The RSM is the collection of mathematical and statistical 

procedures for empirical modeling approach to examine the relation-

ship between various process parameters and their responses with the 

various desired criteria and identifying the significance of these pro-

cesses on the coupled responses [20]. The primary influencing factors 

like pulse peak current, pulse duration, pulse-off period, wire feed, wire 

tension and flushing pressure have effect on the productivity and on the 

surface quality of machined components. Optimal machining condi-

tions can be obtained for maximization of both the Material Removal 

Rate and the surface finish by developing models using the non-linear 

regression method [21]. By increasing the average gap voltage, the 

cutting speed will decrease and the kerf width will increase on the other 

hand by increasing the pulse-on time, both the cutting speed and kerf 

width will increase [22]. By employing Grey relational analysis, the 

response characteristics such as Material Removal Rate, surface rough-

ness, and gap current can be improved with 6% error [23]. Among 

other parameters, the pulse-on time has an imperative effect on Materi-

al Removal Rate and surface roughness [24]. From the literature sur-

vey, it is evident that in the WEDM process the pulse-on time is signifi-

cant parameter among others. Also no researchers have attempted to 

machine the Tungsten Carbide with copper wire-electrode of diameter 

0.25 mm using diatomite power mixed dielectric fluid medium in 

WEDM and hence an attempt is made to find the increased MRR and 

decreased Ra. 

The workpiece material used in this work was Tungsten Carbide of 

cylindrical shape with the dimensions 23 mm diameter and 87 mm 

length. The properties of Tungsten Carbide material is elucidated in 

Table 1. The wire-electrode used in this work was copper wire of diam-

eter 0.25 mm and the dielectric fluid used in this work was diatomite 

powder-mixed deionised water. The diatomite powder is used because 

it is gently abrasive and insoluble in water and also the cost of diato-

mite powder is lower to that of other metal powders. The diatomite 

powder-mixed dielectric fluid produces increased MRR [25]. 

In this work, ELECTRONICA SPRINTCUT ELPLUS 40A DLX 

series machine was used to carry out experiments as shown in Fig. 1. 

The following steps are carried out to machine the workpiece. 

• The workpiece is set in the vice, using dial gauge its straightness is 

checked and the co-ordinates of the machine are set to zero. 

• The combinations of input parameters are feed into the machine as 

per the DOE. 

• The high pressure flushing setup is then switched ON. 

• After machining, the machine automatically alarms indicating com-

pletion. 

• Then the MRR is calculated by using the formulae. 

• This procedure is repeated for remaining trials. 

The Tungsten Carbide workpiece before machining and after ma-

chining are shown in Fig. 2 and Fig. 3 respectively. 

The DOE is a systematic approach to determine the relationship be-

tween factors affecting the process and the response of that process. It 

enables to obtain useful information about the process by conducting a 

very minimal number of experiments [26]. As per the DOE, the experi-

 

Fig. 3. Tungsten Carbide workpiece after machining 

 

 

 

Fig. 2. Tungsten Carbide workpiece before machining 

 

 

Fig. 1. ELECTRONICA SPRINTCUT ELPLUS 40A DLX WEDM 

machine 

 

 

Table 1. Properties of Tungsten Carbide 

Essential Properties Description 
Chemical Formula WC 

Density 15.80 g/cm3 
Melting Point 2870 °C 
Boiling Point 6000 °C 

Electrical Resistivity 2×107 (Ωm) 
Young's  Modulus (E) 550 Gpa 
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ments were conducted with three factors varied at three levels as shown 

in Table 2. The table design consisting of 18 experiments based on 

Box-Behnken design method was generated using DESIGN EXPERT 

7.0.0 statistical software. The experimental results for Material Remov-

al Rate and surface roughness are shown in Table 3. 

Experiments were conducted to optimize the WEDM parameters for 

Tungsten Carbide workpiece. In the present work, three major factors 

like voltage, pulse-on time and wire tension were considered as critical 

parameters and varied at three levels. 

From the Table 4, it is found that when the pulse-on time and voltage 

are maximum i.e., 130 µs and 230 V respectively and minimum wire 

tension of 2 gms, the MMR was found to be 4.99408 mm3/min and it is 

the most significant value as compared to other values. Fig. 4 indicates 

the impact on MRR by other parameters. It is observed that when the 

pulse-on time increases gradually, MRR also increases gradually. 

From the Table 4, it is found that when the pulse-on time and voltage 

are maximum i.e., 130 µs and 230 V respectively and minimum wire 

tension of 2 gms, the surface roughness was found to be 1.0290 mm 

and it is the most significant value as compared to other values. Fig. 5 

indicates the impact on surface roughness by other parameters. It is 

observed that when the pulse-on time increases, the surface roughness 

also increases at starting stage but, to a certain extent it decreases. 

The parameters affecting the Wire-Electro Discharge Machining of 

Tungsten Carbide were studied. The optimum parameter combinations 

for maximizing the Material Removal Rate and minimizing the surface 

roughness were identified. The parameters like voltage, pulse-on time 

and wire tension have the significant effect on the MRR and Ra. It is 

identified that among all parameters, the pulse-on time is the most sig-

nificant parameter. 

In this study, the maximum MRR is obtained for pulse-on time - 130 

µs, voltage - 230 V and wire tension - 6 gms and the minimum the 

surface roughness is obtained for pulse-on time - 110 µs, voltage - 170 

V and wire tension - 6 gms. 
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