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In this paper, one-dimensional advection–diffusion equation for time and space dependent 

contaminant concentration in a homogeneous semi-infinite aquifer is solved numerically 

using Implicit Crank-Nicolson finite difference method. Dispersion and groundwater 

velocity are considered to have any mutually dependency and represented by some possible 

function of time. Initially, geological formation is supposed to be solute free. Input point 

source of continuous or discontinuous function of time is supposed to be acting along the 

flow at one end of the boundary. Flux type boundary condition is considered at infinity. 

The numerical solution is compared with the analytical solutions available in published 

literatures. The obtained result of the problem could be used as a new tool for the 

conception of complex situations in subsurface transport phenomenon which may not be 

solved analytically. The effects of parameters on the concentration dispersion are illustrated 

with the help of respective graphs. 
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1. INTRODUCTION

Study of solute transport phenomena in porous medium 

has been a large area of interest of researchers. Solute 

transport in subsurface is usually described by the Advection-

Dispersion Equation (ADE), which is derived by Fick’s law 

of diffusion and principle of conservation of mass. This 

equation includes various terms which account the physical 

procedure such as hydrodynamic dispersion, decay parameter, 

etc. Solute dispersion is a major phenomenon of solute 

transport in both saturated and unsaturated porous media [1]. 

 In the modeling of groundwater flow and transport, the 

main issue is the hydraulic conductivity of the aquifers, 

which generally occurs at different aspects like porosity, 

permeability, dispersion and adsorption etc. Hydraulic 

conductivity depends on the geometry of aquifers. To predict 

the contaminant transport in the porous medium accurately 

and efficiently, many analytical / numerical solutions have 

been published in literatures for one, two and three-

dimensional finite and semi-infinite porous formation. The 

semi-infinite porous medium usually represents the situation 

when the aquifer is quite large and other end of domain 

remains unaffected with input concentration in the time 

domain of study.   

Solute in groundwater is moved by a variety of physical, 

chemical and biological processes [2]. Pickens and Grisak 

obtained a numerical model based on dispersivity vary 

temporally [3]. Later Jayawardena and Lui obtained a 

numerical solution with a time–dependent dispersion [4]. 

Zhou, Zhou and Selim obtained two methods for 

demonstrating the scale-dependent dispersivity [5, 6]. 

Dehghan developed numerical solution for the one-

dimensional constant coefficient convection-diffusion 

equation [7]. Leij et al. attained solution using the Green’s 

function method with contaminant source as a boundary 

condition [8]. Jaiswal and Kumar presented analytical 

solution including the effect temporally dependent dispersion 

for varying input condition with constant velocity [9]. The 

movement of solute through the porous media is due to 

dispersion and advection phenomena. Dispersion may vary 

with time. Mathematically dependency represented with time 

function. Yadav and Roy proposed analytical solution of two-

stages input source problem for space dependent dispersion 

and velocity [10]. Study of Mazaheri et al. involved several 

point sources with uniform dispersion and groundwater 

velocity in semi-infinite porous medium [11]. Kumar et al. 

also presented the solution for semi-infinite porous media 

along with time-dependent dispersion and velocity [12]. Das 

and Singh obtained solution for temporal dispersion and 

exponentially variable input in semi-infinite study [13]. 

Singh and Chatterjee studied for three dimensional flow with 

plane input source in a homogeneous semi-infinite porous 

media [14]. Study also dealt with two sub cases namely line 

and point source.   

In order to deal the situations which may not be addressed 

with an analytical solution, numerical solution is sought for 

such problems. Numerical solutions are more flexible in 

comparison to analytical solutions. Wang H.F., Anderson 

M.P., and Woessner W.W. obtained analytical and numerical

solutions with temporally dependent boundary conditions [15,

16]. Alam studied the influence of Dufour and Soret effects

on free convection mass transfer over an inclined permeable

stretching sheet in porous media and obtained numerical

solution by using Rungu-kutte method with Nachtsheim-

Swigert shooting iteration technique [17]. Numerical

solutions are helpful in verifying analytical solutions. Jha and

Yasuf obtained semi-analytical solution for time dependent

flow in an annulus with partially filled porous material

accounting due to sudden application of constant pressure

gradient and verified it with implicit finite difference scheme
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[18].  

Singh et al. presented numerical solution using explicit 

finite difference method [19]. Solution obtained by explicit 

finite difference methods depends upon stability factor. It 

may be observed concentration varies with selection grid size. 

Singh et al. and Jaiswal et al. obtained the solution for 

time-dependent dispersion and groundwater velocity [19, 20]. 

The analytical solution is solved for dispersion directly 

proportional to groundwater velocity. Thus it is difficult to 

obtain analytical solution when the dependency is 

represented by 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 ∝ 𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝜉  

[21], where 1 ≤ 𝜉 ≤ 2  and also the situations when input 

vary with large rate exponentially [19]. Moreover, Jaiswal et 

al. obtained analytical solution of periodic input and 

dispersion problem which is difficult or impossible to solve 

analytically for asymptotic or algebraic sigmoid or for any 

other temporal dispersion [20]. In the present paper, the 

governing partial differential equation for one-dimensional 

advection-dispersion equation is solved numerically by using 

Implicit Crank-Nicolson method which is unconditionally 

stable. The aquifer medium is assumed homogeneous, 

adsorbing and semi-infinite long. Dispersion and 

groundwater velocity are assumed to be either temporally 

dependent or constant and may have any feasible relationship 

and time dependency i.e. dispersion and groundwater 

velocity are generalized. This paper also deals with arbitrary 

input concentration of continuous/ discontinuous function of 

time. Hence generalization of temporal dispersion and 

groundwater velocity along with input source has broadened 

the application of this paper. Numerical solution has also 

been compared with published analytical solutions. 

 

 

2. MATHEMATICAL DESCRIPTION OF THE 

PROBLEM 
 

We considered the solute transport through a 

homogeneous semi-infinite aquifer. Initially, the domain is 

assumed to be free from solute, it means that domain contains 

no contamination. Solute movement is considered along the 

flow in the medium and dispersion coefficient, groundwater 

velocity is either constant or any bounded function of time in 

the time domain [0,∞). The contaminant is injected along the 

flow through left boundary i.e. 𝑥 = 0 . Input concentration 

may be any continuous or discontinuous and pulse type 

function of time. The inlet conditions of the flow system are 

assumed temporally dependent. The one-dimensional 

advection–dispersion equation which is a parabolic second 

order partial differential equation derived from Darcy’s law 

and conservation of mass [22].
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𝑐′[𝑀𝐿−3] is the solute concentration of the pollutant,𝑥′[𝐿] 
and time 𝑡′[𝑇] . 𝐷[𝐿2𝑇−1]

 
and 𝑢[𝐿𝑇−1]  are the longitudinal 

dispersion and groundwater velocity respectively. 𝑅 is 

retardation factor which is a dimensionless quantity. First 

term on the left and the right-hand side the Eq. (1) describes 

change in concentration with time in liquid phase and the 

influence of the dispersion on the concentration distribution 

in longitudinal direction respectively while second term on 

the right-hand side represents the change of concentration 

due to advective transport in longitudinal direction. In reality, 

hydraulic gradient accounts for changes in velocity and 

dispersion coefficient in the aquifer. The present article is 

compatible with all the possible relation in dispersion and 

groundwater velocity. Some of those are described as: 

(a) The coefficient of dispersion is considered directly or 

squarely to groundwater velocity proportional i.e. 

D u  [23, 24]. 

(b)  The coefficient of dispersion is considered directly 

proportional to some power of   groundwater 

velocity i.e. 𝐷𝛼 𝑢𝜉 ,1 ≤ 𝜉 ≤ 2, [21].   

(c)  The coefficient of dispersion and groundwater 

velocity are steady.  

(d) The ground water is steady but dispersion is temporal. 

        

Since dispersion and seepage velocity are assumed to be 

either constant or time dependent. Let 𝐷(𝑥, 𝑡) = 𝐷0𝑓1(𝑛′𝑡′) 
and ( ) ( )0 2, ' 'u x t u f n t= , where 𝐷0[𝐿

2𝑇−1] , 𝑢0[𝐿𝑇
−1]  are 

constants and 𝑓1(𝑛′𝑡′)(≥ 0), 𝑓2(𝑛′𝑡′)(≥ 0)  are any function 

time that provide feasible relation between dispersion and 

groundwater velocity and 𝑛′[𝑇−1]  is a unsteady parameter 

and we have chosen 𝑓1(𝑛′𝑡′) 
 and 𝑓2(𝑛′𝑡′) such that these are 

never unbounded and discontinuous for a finite time and 

represent dispersion and groundwater velocity. It is obvious 

that if 𝑓1(𝑛′𝑡′) = 1 and 𝑓2(𝑛′𝑡′) = 1 then dispersion and flow 

velocity reduce to constant. The Eq. (1) may be written as: 
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Initially i.e. at time 𝑡′ = 0, it is assumed that there is no 

concentration present in the domain. At one end of the 

domain slolute is injected along the flow that may be 

represented mathematically by some function of time. In 

present paper the input may be any continuous/discontinuous 

bounded function of time. Concentration gradient is assumed 

zero at infinity that is another end of the semi-infinite domain. 

Mathematically initial and boundary condition may be 

written as: 

 

( )' ', ' 0; ' 0, ' 0c x t t x= =                                                   (3)   
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where, 𝑐0[𝑀𝐿−3] is the reference concentration and 
 
𝑚′[𝑇−1] 

is an unsteady parameter. 𝑓(𝑚′𝑡′) represents any continuous 

or discontinuous function of time. The Analytical solution of 

advection-dispersion equation (2) with generalize input 

source boundary conditions (3-5) along with generalize 

temporal dispersion and groundwater velocity is almost 

impossible to solve analytically. 

 

 

3. METHOD OF SOLUTION 
 

The implicit Crank-Nicolson finite difference method is 

used to obtain the solution. Using following parameters in 

non-dimensional form [19];   

36



 

0

'c
c

c
= ; 0

0

'x u
x

D
= ;

2

0

0

't u
t

D
= ; 0

2

0

'm D
m

u
= ; 0

2

0

'n D
n

u
=             (6) 

 

Using equation (6), Eq. (2) and Eqns. (3-5) reduced into 

non-dimensional form as: 
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Applying Crank-Nicolson implicit finite difference method 

on Eqns. (7-10) may be expressed [25]  
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Corresponding initial and boundary conditions may be 

written as: 
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where, index 𝑖  refers to 𝑥  and 𝑗  refers to 𝑡 , 𝛥𝑥 = 𝑥𝑖+1 − 𝑥𝑖  
and 𝛥𝑡 = 𝑡𝑖+1 − 𝑡𝑖 . If the value concentration at time t  is 

known then value of the concentration at time t t+  may be 

evaluated. We substitute 𝑖 = 1,2,3, . . . . , 𝑁 − 1  where N

corresponds to ∞ . Eq. (11) gives tri-diagonal system of 

equation with initial and boundary conditions.  Eqns. (11-14), 

which is solved with help of Thomas algorithm [26]. Implicit 

Crank-Nicolson Method finite difference method is a second 

order method (𝑜(𝛥𝑡2)) in time and proposes no restrictions 

in space and time and which is unconditionally stable. In 

order to compute the space and time steps are taken as 𝛥𝑥 =
0.01 and 𝛥𝑡 = 0.0001 
 

 

4. RESULT AND DISCUSSION 

 

The present article is flexible to deal any relation between 

dispersion and groundwater velocity and any temporal nature 

point input source acting along the flow in a homogeneous 

porous media. Utility of this article can be understood with 

help of three following numerical examples named. The 

numerical solutions for the present problem are computed for 

the given set of input as; 𝑐0 = 1.0 ,
 
𝑐𝑖 = 0.0

 
and 𝑅 = 1.15. 

The graphical representations are anticipated in the finite 

length of the domain 0 ≤ 𝑥′(𝑘𝑚) ≤ 5  along longitudinal 

flow direction for different input source contaminants. The 

geological formation is supposed to be homogeneous. The 

values for groundwater velocity and dispersion coefficient 

are taken respectively 𝑢0(𝑘𝑚 𝑦𝑒𝑎𝑟−1) = 0.01 and 

𝐷0(𝑘𝑚
2𝑦𝑒𝑎𝑟−1) = 0.1 . The numerical solutions are 

obtained through Implicit Crank Nickolsan method described 

above and the particular cases are discussed and illustrated 

for a set chosen set of data either taken from published 

literatures or empirical relationship. For example, the range 

of groundwater velocity, keeping in view the different types 

of soils of aquifer lies between 2 m/day to 2 m/year [27].  

 

4.1 Numerical examples 1  

 

The contamination introduction into one end of water body 

is supposed to be of two stages and it is assumed that 

contaminant is some sinusoidal in nature in first stage and 

then starts decreasing exponentially from there [20]. It can be 

related to real life situation by supposing that the industrial 

contaminant injection remains sinusoidal in nature up to 

some year and then starts decreasing from there under some 

rehabilitation process. Groundwater velocity is asymptotic 

function of time and dispersion is some exponent 𝜉  to 

groundwater velocity i.e. 𝐷 ∝ 𝑢𝜉  i.e., dispersion, 

groundwater velocity and input may be represented as: 
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Figure 1. Schematic diagram of input source with time 

injected at x=0 (km) 

 

The figure 1 represents the graphical representation of the 

input concentration with time. In figure 2 the concentration 

fluctuation at 𝑥′(𝑘𝑚) = 0 is due to sinusoidal input in the 

first stage. It may be noticed that concentration distributes 

along the domain. Figure 3 is drawn for second stage input in 

which concentration reduces exponentially with time. At 

𝑥′(𝑘𝑚) = 0  concentration is dropping gradually is due to 

decreasing input concentration. At 𝑥′(𝑘𝑚) = 5 concentration 

increases it suggests concentration moving away from the 

source.  
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Figure 2. Concentration distribution in first stage input for 

various times 

 

 
 

Figure 3. Concentration distribution in second stage input for 

various times  

 

4.2 Numerical example 2  

 

Solute transport depends upon the flow, nature of the 

solute, geometry of the medium and time duration. But at a 

point of an aquifer the pollutants reach due to percolation 

from a point source taking place on the surface. It means if 

source stops functioning at sudden, the contaminant remains 

present in domain and spreads in it. Such input is termed as 

pulse type. 

Groundwater velocity is sinusoidal function of time [19] 

and dispersion is some exponent to groundwater velocity i.e. 

𝐷 ∝ 𝑢𝜉  i.e., dispersion, groundwater velocity and input may 

be represented as: 

 

( ) 0 1 sin ' 'u u k m t= −  and ( ) 0 1 sin ' 'D D k m t


= −
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

 

 
 

Figure 4. Schematic diagram of input source with time 

injected at x=0 (km) 

 

 
 

Figure 5. Concentration distribution in presence of input for 

various times  

 

 
 

Figure 6. Concentration distributions in absence of input for 

various times 

 

The figure 4 demonstrates graphical representation of the 

input concentration with time that concentration is 

exponentially decreasing in first stage and suddenly injected 

concentration is absent in second stage. In figure 5 the 

concentration decreases with time at 𝑥′(𝑘𝑚) = 0 . This 

because exponentially decreasing input in the first stage. It 

38



 

may be noticed that concentration propagates along the 

domain due to advection and also disperses in the domain. 

Figure 6 is drawn for second stage input in which no 

concentration in injected i.e. source concentration is assumed 

absent at 𝑥′(𝑘𝑚) = 0 . Due to absence of source, the 

concentration at 𝑥′(𝑘𝑚) = 0 is zero and already injected 

concentration gradually disperses and travels with the flow.  

 

4.3 Numerical example 3  

 

In this application, the contamination injection is supposed 

to be of three stages it assumed that contaminant release is 

exponential in nature in first stage and zero in second stage 

then constant from there in third stage. Groundwater velocity 

is algebraic sigmoid function of time [19] and dispersion is 

some exponent to groundwater velocity i.e. 𝐷 ∝ 𝑢𝜉  i.e., 

dispersion and groundwater velocity and input may be 

represented as: 

 

𝑢 = 𝑢0 {𝑚′𝑡′/√(𝑚′𝑡′)2 + 𝑘2}  and 𝐷 = 𝐷0 {𝑚′𝑡′/

√(𝑚′𝑡′)2 + 𝑘2}
𝜉

 

𝑓(𝑚′𝑡′) = {
𝑒𝑥𝑝(−√𝑚′𝑡′) ; 0 < 𝑡′ ≤ 𝑡′0
0; 𝑡′0 < 𝑡 ≤ 𝑡′1
1; 𝑡′ > 𝑡′1

 

 

 
Figure 7. Schematic diagram of input source with time 

injected at x=0 (km) 

 

 
 

Figure 8. Concentration distribution at first stage input for 

various times 

 
 

Figure 9. Concentration distribution at second stage input for 

various times 

 

 
 

Figure 10. Concentration distribution at third stage input for 

various times 

 

The Figure 7 is a schematic representation of input nature. 

The three stages source, namely exponential decreasing in 

first, absent of source in second and lastly a constant input.  

Figure 8 indicates that the concentration decreases with time 

at 𝑥′(𝑘𝑚) = 0. The input concentrations, at the origin, are 

different at each time. It attenuates with position and time. 

Figure 9 illustrates the concentration profiles once the source 

of the pollution is eliminated, i.e., the input concentration 

remains zero in the time domain. The concentration at origin 

i.e. at 𝑥′(𝑘𝑚) = 0 is zero because source is eliminated but 

already existing contaminant spreads away in the region. The 

solute concentration behaviour of constant input 

concentration of the third stage is shown in figure 10. This 

figure reveals that concentration value at 𝑥′(𝑘𝑚) = 0  is 

constant. Concentration at some point space is due to input of 

concentration at all three stages. It recorded that 

concentration near the source first decreases exponentially 

then reduces to minimal at absence of source and then 

increases in last stage. 

All these three examples those represent three solute 

transport problem may be difficult or impossible to   solve 

analytically.   
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5. VERIFICATION OF THE SOLUTION 

 

The present numerical solution is verified with the two 

existing analytical solution. These follows as; 

 

5.1 Verification 1 

 

The numerical solution is verified by available literature 

[19]. For this purpose, the first order decay, zero order 

production and initial concentration are assumed to be zero in 

article [19] .The data set that was used for this validation is 

same as the one used for conducting this present article with 

𝑓(𝑚′𝑡′) = 𝑐0 𝑒𝑥𝑝(−𝑚′𝑡′). The value of the parameters are 

considered as, dispersion coefficient ( )2 1

0 0.1D km year− = ; 

Seepage velocity 𝑢0(𝑘𝑚 𝑦𝑒𝑎𝑟−1) = 0.01 ; 𝑚′(𝑦𝑒𝑎𝑟−1) =

0.001 ; Reference concentrations 𝑐0 = 1.0 ,
 
𝑐𝑖 = 0.0 . The 

retardation factor is 1.29722 using 𝑅 = 1 +
𝜌

𝐾𝑑
(
1−𝑛𝑝

𝑛𝑝
)  [19] 

where for clay 𝑛𝑝 = 0.55;  density 999 =  and 𝐾𝑑 =
𝐾1

𝐾2
 

with 
1 0.000004K = and 

2 0.02K = . In Singh et al., the 

dispersion is directly proportional to groundwater velocity 

and groundwater velocity is time dependent [19]. Therefore, 

in present article 𝐷(𝑥, 𝑡) ∝ 𝑢(𝑥, 𝑡)  i.e. 
 
𝑓1(𝑛′𝑡′) = 𝑓2(𝑛′𝑡′)  . 

The concentration pattern is obtained for different temporal 

functions of velocity Singh et al. (2015) namely 

exponentially decreasing function, asymptotic function, 

sinusoidal function and algebraic function [19]. The 

comparison between present article numerical solution and 

analytical solution [19] is done in following figures (11-14) 

for above mentioned temporal velocities. In following 

Figures the ‘Analytical Solution’ and ‘Numerical Solution’ 

refers for Singh et al. and present article, respectively [19].  

 

 
Figure 11. Comparison of contaminant concentration for 

numerical and analytical solution at different times for 

velocity defined as exponential decreasing function of time 

 

Figure 11, 12, 13 and 14 illustrates the comparison of the 

results obtained from the present numerical model with that 

obtained by Singh et al. [19]. All the figures exhibit excellent 

agreement between analytical solution and numerical 

solution of present article solution. A perfect agreement may 

be observed between the results obtained by Singh et al. [19]. 

 
Figure 12. Comparison of contaminant concentration for 

numerical and analytical solution at different times for 

velocity defined as sinusoidal function of time 

 
Figure 13. Comparison of contaminant concentration for 

numerical and analytical solution at different times for 

velocity defined as algebraic sigmoid function of time 

 
Figure 14. Comparison of contaminant concentration for 

numerical and analytical solution at different times for 

velocity defined as asymptotic function of time 
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5.2 Verification 2 

 

Numerical solution obtained for uniform pulse type input 

is compared with analytical solution obtained by Kumar et al. 

[12]. Input data are takes as follows:
  

 

                   0 0;0c t t 
 

( )' 'f m t =
 

0x =
 

                   
00;t t  

 

The value of the parameters are considered as, dispersion 

coefficient 𝐷0(𝑘𝑚
2𝑦𝑒𝑎𝑟−1) = 0.1 ; groundwater velocity 

𝑢0(𝑘𝑚 𝑦𝑒𝑎𝑟−1) = 0.01; concentrations 𝑐0 = 1.0,
 
𝑐𝑖 = 0.0 

(kumar et al. [12]); The retardation factor R=1.15; n'=0.04; 

with zero first order decay and zero order production in 

kumar et al. [12]. The dispersion is directly proportional to 

groundwater velocity and groundwater velocity is time 

dependent i.e. 𝐷′(𝑥, 𝑡) ∝ 𝑢′(𝑥, 𝑡) and  
 
𝑓1(𝑛′𝑡′) = 𝑓2(𝑛′𝑡′) =

𝑒𝑥𝑝( − 𝑛′𝑡). The time of elimination of source is 𝑡0(𝑦𝑒𝑎𝑟) =
10. The following figure 15 shows the comparison between 

the numerical and analytical solution.  

 

 
 

Figure 15. Comparison between analytical and numerical 

solution for different times 

 

Figure 15 shows a good agreement in analytical solution 

and numerical results. From a remediation perspective, the 

numerical solution is a more convenient tool for providing 

better and useful information in designing risk assessments 

and clean-up systems in subsurface water table. 

 

 

6. CONCLUSION 

 

This paper presents numerical solution for one-

dimensional advection dispersion equation with a constant 

and time dependent dispersion coefficient for conservative 

solute transport in semi-infinite domain. The dispersion 

coefficient is assumed either constant or temporally 

dependent. The dispersion is taken as an exponent seepage 

velocity. The input source concentration is assumed any 

generalized function of time. Effect of dispersion coefficient, 

retardation factor and seepage velocity on solute 

concentration profiles has been discussed and demonstrated 

graphically. Majority analytical solutions fail to furnish 

satisfactory results in the case of complex boundary 

conditions for homogeneous porous formations. In such cases, 

numerical solutions will furnish a better substitute to the 

modelling of contaminant transport through aquifer. The 

derived model results have been verified by comparing these 

to the published analytical solutions and were found to be in 

good agreement with available analytical solutions. 
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NOMENCLATURE 

 

'c                    concentration of the solute, kg m-3  

c                     dimensionless concentration of solute 

D                    longitudinal dispersion coefficient, m2s-1 

u                     unsteady groundwater velocity, ms-1 

0D                   initial dispersion coefficient dispersion, m2s-1 

0u                    initial groundwater velocity, ms-1 

0c                    reference / source concentration 

'x                    distance measured origin, m  

x                     dimensionless distance measured origin 

't                    time, s 

t                      dimensionless time 

'm                   unsteady parameter regulates input, s-1 

m                    dimensionless unsteady parameter 

'n                    unsteady parameter regulates dispersion, s-1 

n                     dimensionless unsteady parameter 

'                   unsteady parameter regulates input, s-1 

R                    dimensionless retardation factor 

                     dimensionless parameter establishes relation  

                        between dispersion and groundwater  

x                   grid size of space variable 

t                    grid size of time variable 

pn                    porosity of geological formation 

k                     dimensionless constant 

dK                   distribution coefficient 

1K                    adsorbing coefficient in solid 

2K                   adsorbing coefficient in liquid 

 

 

 

 

 

 

 

42




