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Human factors are the main cause of mine accidents. With the aid of the Apriori algorithm, 

this paper establishes a new correlation analysis model for human factors in mine 

accidents. The model can predict the failure probability of human factors. Next, an 

evaluation index system for human reliability of mine operators was constructed. On this 

basis, fuzzy comprehensive evaluation (FCE) and analytic hierarchy process (AHP) were 

combined with neural network (NN) to evaluate human reliability of mine operators with 

stable performance. Meanwhile, principal component analysis (PCA) was combined with 

NN to evaluate human reliability of mine operators with unstable performance. Compared 

with the traditional evaluation methods, the proposed model reduces the dimension of 

input vector set, tolerates incomplete data samples, and achieves a high prediction 

accuracy. 
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1. INTRODUCTION

Mining has a much higher occurrence of serious and fatal 

accidents than other industries. Most mine accidents arise from 

unsafe behaviors of operators and unsafe state of objects. In 

recent years, the unsafe state of objects has been effectively 

eliminated, thanks to the great progress in mine safety 

management. The progress is the result of multiple factors: the 

modernization of mining equipment, the safety improvement 

of production system, and the advancement in various 

technologies (ventilation, safety monitoring, fire control, dust 

control, etc.). However, the progress on the control of unsafe 

behaviors is relatively slow. 

Human behaviors are a direct cause of accidents, and an 

influencer of the unsafe state of objects. In general, 70%-90% 

of all accidents are directly or indirectly induced by human 

error; the ratio is even higher in the mining industry [1, 2]. In 

the last three decades, 96.5% of mine accidents in China were 

resulted from human error [3]. Suffice it to say that human 

error is the leading hazard of mine safety. To reduce human 

error, it is necessary to accurately evaluate human reliability. 

Despite drawing much attention, human reliability has not 

been evaluated with sufficient data or perfect models. There is 

not yet a report that quantifies human reliability in mine 

systems, which features heavy hazard sources, highly complex 

operations, harsh working conditions, various types of work, 

and low quality of operators. This calls for in-depth analysis 

on human factors in mine accidents, correct identification of 

unsafe behaviors of operators, and accurate evaluation of 

human reliability in mine system. 

The mine is a complex system involving the interaction 

between operators, equipment, and environment. Besides 

equipment reliability and environmental impact, the human 

reliability of operators has a nonnegligible influence on mine 

safety. By evaluating the human reliability, it is possible to 

find the behavior patterns of operators and detect their 

psychological problems in time. Then, new countermeasures 

could be put forward to prevent and control mine accidents. 

In this paper, a new correlation analysis model is created 

based on Apriori algorithm to predict the failure probability of 

human factors in mine accidents, and an evaluation index 

system was set up for reliability of mine operators. Next, the 

human reliabilities of mine operators with stable performance 

and with unstable performance were evaluated by fuzzy 

comprehensive evaluation (FCE) + analytic hierarchy process 

(AHP) + neural network (NN) and principal component 

analysis (PCA) + neutral network (NN), respectively. The 

superiority of our model was proved through example analysis. 

2. LITERATURE REVIEW

Human reliability refers to the probability that operators 

complete a task within the specified time in any stage of 

system operation [4]. As an emerging subject, the evaluation 

of human reliability aims to quantify and qualify the reliability 

of operators, making it possible to analyze, predict and reduce 

human error [5]. As stated by Kirwan [6], human reliability 

evaluation mainly derives the probability of accidents induced 

by human error, and finds the way to minimize human error. 

The development of human reliability evaluation can be 

divided into two stages. In the first stage, the evaluation 

models for human reliability are grounded on the theory of 

human behaviors. These models are static in nature, because 

they treat human behaviors like machine actions [7, 8]. In the 

second stage, the evaluation models focus on the dynamic 

cognitive process of human in specific scenarios, and tackle 

the mechanism of human error in the event of accidents. 

Moreover, the evaluation fully considers the operation 

experience of industrial system, as well as the measured or 

International Journal of Safety and Security Engineering 
Vol. 10, No. 3, June, 2020, pp. 409-415 

Journal homepage: http://iieta.org/journals/ijsse 

409

https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.100314&domain=pdf


 

simulated information [9]. In recent years, the emphasis of 

human reliability evaluation shifts to the application of 

existing methods in various fields. To lower the possibility of 

human error, De Felice et al. [10] highlighted the importance 

of monitoring human reliability in railway transport, and 

evaluated the human reliability in railway operations with a 

knowledge-based system. Akyuz and Celik [11] integrated the 

AHP to the human error assessment and reduction technique 

(HEART), calculated the impact of human error by adjusting 

the weight ratio of human factors, analyzed the human 

reliability in chemical cleaning of oil tanks, enhancing the 

shipping reliability of hazardous chemicals. Kim and Kim [12] 

pointed out that traditional probabilistic safety analyses often 

view the probability of human-induced events as part of the 

probability of triggering events, and determined the human-

induced events that trigger low power consumption and 

shutdown of nuclear power plants. Considering the features of 

various analysis methods, Sun and Bin [13] examined the 

factors affecting human reliability in software testing, and 

proposed feasible solutions that enhance human reliability in 

software testing. Using Bayesian network, Liao et al. [14] 

quantified the probability of unsafe behaviors caused by 

design failure, and designed an economic and effective way to 

improve system safety: preventing accidents through design. 

Many scholars have evaluated human reliability in mine 

operations. Xu et al. [15] conducted an empirical analysis with 

cognitive reliability and error analysis method (CREAM), put 

the failure probability of underground driving and drilling at 

0.025, and suggested enhancing human reliability in mine 

excavation by reducing the probability of the most possible 

failure mode of drilling. Wang et al. [16] proposed a method 

to predict and evaluate human error in mine operations, and 

applied the method to assess the reliability of operators in the 

mine. Drawing on grey correlation theory, Li et al. [17] 

quantified the CREAM control mode, and modelled the 

relationship between probability of human error (HEP) and 

degree of grey correlation. Wang et al. [16] established a 

human error risk analysis framework for emergency 

evacuation in mines, which includes scenario and task analysis, 

risk assessment, and risk reduction; human safety barriers 

were divided into organization, group and personal levels. 

 

 

3. MODEL CONSTRUCTION 

 

Quantitative evaluation of human reliability or HEP can 

find out the fundamental cause of human error. In this section, 

the CREAM method of human reliability analysis method is 

used to trace and analyze the occurred accidents, and to 

explore the unobservable human factors which caused the 

accidents. A new human reliability analysis model is 

established by combining the HEP prediction technology with 

the error analysis method by using Apriori algorithm. 

 

3.1 Selection of evaluation method 

 

Each human reliability evaluation method has its merits and 

defects. There is no evaluation method that applies to human 

reliability in all systems. In many systems, it is necessary to 

combined two or more evaluation methods. Technique for 

human error rate prediction (THERP) [18] decomposes each 

human task into several subtasks, sets up an event tree with the 

task as the trunk, assigns the failure probability of each 

subtasks on each branch by looking up the table, and computes 

the failure probability of the task by weighting those of all 

branches. This approach can accurately depict the operation 

features of every task, yet fails to reflect the effect of human 

cognition on accidents. To makes matters worse, the weighted 

calculation is easy to accumulate error, and the failure 

probability table of THERP is not suitable for all kinds of tasks. 

CREAM [19] builds up an effective and reasonable failure 

probability model, which identifies the cognitive control mode 

of the cognitive behavior in each branch, assigns the failure 

probability to the identified cognitive control mode by looking 

up the table, and adjusts the probability based on the 

performance factors that reflect the features of situational 

environment (because the situation environment might affect 

human cognitive behavior). The failure probability evaluation 

model is well known for its reliability and accuracy in data 

quantification. As a result, the CREAM has been widely 

adopted to evaluate human reliability. 

The combination of THERP and CREAM can give full play 

to their merits, and avoid their defects: the task decomposition 

and event tree construction are realized by THERP, while the 

failure probability is estimated in the light of the basic failure 

probability and the performance factors given by CREAM. In 

this way, the failure probability estimation will be more 

practical, and the human reliability evaluation will be more 

accurate. 

The THERP-based quantification of failure probability 

consists of four stages: system familiarization, qualitative 

analysis, quantitative analysis, and result application. During 

qualitative analysis, the action types, action objects, and 

potential human errors of a task are analyzed in details, and the 

possible wrong actions and their types are identified. On this 

basis, the task is decomposed into a series of subtasks, and 

depicted with an event tree of human reliability evaluation.  

After task decomposition, the subtasks have two logic 

relations: series and parallel. If the subtasks are connected in 

series, then task can succeed only if all subtasks are successful; 

if the subtasks are in parallel, then the task can succeed if any 

subtask is successfully. The success and failure probabilities 

of the task with series subtasks and the task with parallel 

subtasks can be quantified respectively by: 

 

{
𝑃(𝑆) = 𝑢(𝑣|𝑢)

𝑃(𝐹) = 1 − 𝑢(𝑣|𝑢) = 𝑢(𝑉|𝑢) + 𝑈(𝑣|𝑈) + 𝑈(𝑉|𝑈)
 (1) 

 

{
𝑃(𝑆) = 𝑈(𝑉|𝑈) = 𝑢(𝑣|𝑢) + 𝑢(𝑉|𝑢) + 𝑈(𝑣|𝑈)

𝑃(𝐹) = 𝑈(𝑉|𝑈)
 (2) 

 

where, S and F are the success and failure of the task, 

respectively; U and V are two subtasks; 𝑢 and 𝑣 are success 

and success probability of a subtask, respectively. 

In the event tree of human reliability evaluation, HEP is 

affected by operator quality, current state of individuals, 

hardware reliability, management mechanism, and 

environmental conditions. The actual HEP of each subtask 

must be modified based on performance factors. Since the 

HEP is a conditional probability, it is necessary to consider the 

correlation between subtasks and operators in the system. 

Otherwise, the predicted HEP will be seriously distorted. 

Suppose a task can be logically divided into subtask U and 

subtask V in time order, that is, subtas U occurs before subtask 

V. If subtask U k fails, then the failure probability of V falls in 

one of the five levels according to the correlation between U 

and V: 

Full correlation: 
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𝑃(𝑉|𝑈) = 1 (3) 

 

High correlation: 

 
𝑃(𝑉|𝑈) = (1 + 𝑃(𝑉)) 2⁄  (4) 

 

Medium correlation: 

 
𝑃(𝑉|𝑈) = (1 + 6𝑃(𝑉)) 7⁄  (5) 

 

Low correlation: 

 
𝑃(𝑉|𝑈) = (1 + 19𝑃(𝑉)) 20⁄  (6) 

 

Zero correlation: 

 
𝑃(𝑉|𝑈) = 𝑃(𝑉) (7) 

 

3.2 Improved evaluation model 

 

CREAM holds that human error arises from incorrect 

cognition of the situation and wrong decision induced by the 

environment, in addition to wrong actions. There are four 

kinds of cognitive control modes in CREAM: scrambled, 

opportunistic, tactical and strategic [19]. The error probability 

interval of each mode is given in Table 1. 

 

Table 1. Error probability interval of each mode 

 
Cognitive control mode  Error probability interval 

Scrambled 0.1 < P <1.0 

Opportunistic 0.01 < P <0.5 

Tactical 0.001 < P <0.1 

Strategic 0.00005 < P <0.01 

 

CREAM classifies the factors affecting cognitive control 

mode and cognition effect into nine categories, which are 

collectively referred to as common performance conditions 

(CPCs). Each factor is called a CPC factor. The correlation 

between CPC factors can be analyzed by the Apriori algorithm 

[20], a common mining technique for data association rules. 

Apriori algorithm looks for the frequent item sets in the 

target dataset by two metrics, namely, support and confidence. 

Support is the number of occurrences of each member item. 

The support of the pair of frequent items X and Y can be 

defined as: 

 
Support(X, Y) = P(XY) = 𝑁𝑢𝑚(𝑋𝑌) 𝑁𝑢𝑚(𝐴𝑙𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑠)⁄  (8) 

 

In general, an item with a high support or a too low support 

does not belong to the frequent item set. 

Confidence is the probability that if an item occurs, then 

another item will also occur. The confidence of X on Y can be 

defined as: 

 
Confidence(X ⇐ Y) = P(X|Y) = 𝑃(𝑋𝑌) 𝑃(𝑌)⁄  (9) 

 

Here, Apriori algorithm is introduced to analyze the 

correlation between human factors. Then, the weighting of 

cognitive control mode in CREAM was modified based on the 

historical data on human-induced mine accidents. Based on the 

mined association rules, six factors were found to have great 

impact on the occurrence of cognitive error: underground 

monitoring system, underground personnel positioning system, 

underground emergency shelter system, underground 

compressed air self-rescue system, underground water supply 

rescue system, and underground communication system. 

Therefore, the six factors were taken as the CPC factors in the 

mine system. 

According to its degree of impact on operator performance, 

each CPC factor was divided into three levels: improved, 

reduced and insignificant. Then, the probability of cognitive 

error leading to human-induced mine accidents was predicted 

by an improved method: the probability of cognitive failure 

was calculated based on the reduced and improved of CPC 

factors: 

 
𝜂 = Σ𝑟𝑒𝑑𝑢𝑐𝑒𝑑 − Σ𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑  (10) 

 

where,  is the context influence index; reduced and improved 

are the number of CPC factors whose level is reduced or 

improved, respectively. 

If there is no context impact, the context influence index 𝜂 

is zero. At this time, the probability of cognitive failure is the 

basic failure probability 𝐶𝐹𝑃0 . The relationship between 

cognitive failure probability 𝐶𝐹𝑃 , basic failure probability 

𝐶𝐹𝑃0 and context influence index 𝜂 can be expressed as: 

 
lg(𝐶𝐹𝑃 𝐶𝐹𝑃0⁄ ) = 𝑘𝜂 (11) 

 

The basic failure probability 𝐶𝐹𝑃0  depends on 𝐶𝐹𝑃  and 

𝜂𝑚𝑎𝑥, and 𝜂𝑚𝑖𝑛: 

 
𝜂𝑚𝑎𝑥 = lg⁡ (𝐶𝐹𝑃𝑚𝑎𝑥 𝐶𝐹𝑃0⁄ ) 𝑘⁄  (12) 

 
𝜂𝑚𝑖𝑛 = lg⁡ (𝐶𝐹𝑃𝑚𝑖𝑛 𝐶𝐹𝑃0⁄ ) 𝑘⁄  (13) 

 

Thus, 𝑘 and 𝐶𝐹𝑃0 can be respectively expressed as: 

 
𝑘 = lg(𝐶𝐹𝑃𝑚𝑎𝑥 𝐶𝐹𝑃𝑚𝑖𝑛⁄ ) = (𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛) (14) 

 
𝐶𝐹𝑃0 = 𝐶𝐹𝑃𝑚𝑎𝑥 10𝑘𝜂𝑚𝑎𝑥⁄  (15) 

 

Then, the cognitive failure probability 𝐶𝐹𝑃  can be 

calculated by: 

 

CFP = 𝐶𝐹𝑃0 × 10
𝜂
4 (16) 

 

The improved evaluation model for human factors in mine 

accidents involves the following steps: 

Step 1. For the subtasks on each branch of the event tree, 

analyze the cognitive activities in human-induced accident, 

and determine the cognitive control mode of these activities. 

Step 2. Find the basic cognitive failure probability 𝐶𝐹𝑃0. 

Step 3. Under the context of cognitive activities, determine 

the level of each CPC factor, quantify the effect of each factor, 

and adjust the weight of the cognitive control mode, using 

Apriori algorithm. 

Step 4. Compute the context influence index, and calculate 

the cognitive failure probability of each subtask by (16). 

Step 5. According to the logic relation of subtasks in event 

tree, weight or multiply the cognitive failure probabilities of 

the member subtasks to obtain the cognitive failure probability 

of each branch. 

Table 2 lists the type of cognitive function, cognitive control 

mode, and basic failure probability of each branch in the event 

tree, which are obtained by our model.  
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Table 2. Cognitive function type, cognitive control mode and basic failure probability of each branch 

 
Code  Human error Cognitive 

function 

Cognitive control  

mode 

Basic failure 

probability 

P1 The operator manually turns off the sensor. Planning Inappropriate plan 0.02 

P2 The alarm is ignored. Observation Failure to respond to observation 0.008 

P3 The hazard is not noticed by monitoring personnel. Observation Failure to respond to observation 0.008 

P4 The instruction is incorrect. Explanation Wrong decision 0.01 

P5 The instruction is not executed correctly. Execution Wrong action 0.03 

P6 The incorrect instruction is executed. Execution Wrong target 0.005 

 

 

4. HUMAN RELIABILITY EVALUATION 

 

 

 
 

Figure 1. Evaluation index system of human reliability for mine operators 
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4.1 Evaluation index system  

 

Many studies [21, 22] have shown that the safety 

management of mines and unsafe behaviors of operators are 

greatly affected by internal factors like personality and 

physiology and external factors like work conditions, 

production conditions, and organizational management. Based 

on abundant survey data and relevant findings, this paper sets 

up an evaluation index system of human reliability for mine 

operators. 

As shown in Figure 1 above, the evaluation index system 

contains nine indices, namely, personal characteristics, 

personality characteristics, physiological characteristics, life 

pressure, production skills, safety skills, production conditions, 

work conditions, and organizational management. Each index 

was decomposed into a number of sub-indices. 

The index weight reflects the importance of an index to the 

object of evaluation. To weight the indices reasonably, the 

AHP was introduced to determine the fuzzy weight vector of 

each index in the FCE model. This is because the AHP is good 

at solving complex decision-making problems with multiple 

influencing factors. 

The weighted average operator was adopted in the FCE 

model. Firstly, the sub-indices were synthetized by fuzzy 

method. Then, the calculated results were combined into the 

FCE matrix of the factor layer. Finally, the weight vectors and 

FCE matrix were integrated into the result vector of the FCE. 

The above method mainly aims at operators with stable 

performance. These operators have relatively complete file 

data and safety data, making it easy to extract the index data. 

It is suitable to implement FCE to evaluate the human factors 

of such operators. However, there are also operators with 

unstable performance, due to the limited experience. Another 

evaluation method is designed for them in the following 

subsection. 

 

4.2 NN-based multi-index comprehensive evaluation 

 

Considering the advantages of NN in self-learning, 

adaptability and fault tolerance, an NN-based comprehensive 

evaluation model was established, mimicking the human 

thinking pattern. The model combines qualitative and 

quantitative evaluations, eliminating the subjectivity and 

uncertainty of manually assigned weights and correlation 

coefficients. The input parameters were obtained by analyzing 

various factors affecting human reliability. Then, the NN was 

applied to evaluate the human reliability of mine operators 

with unstable performance.  

The NN of our model was extended from radial basis 

function (RBF) NN, a feedforward NN capable of global 

search and nonlinear learning. Featuring simple structure and 

fast convergence, the RBFNN has been widely used in pattern 

recognition, information classification, and function 

approximation. Compared with the backpropagation neural 

network (BPNN), the RBFNN boasts an efficient iterative 

process and avoids the local optimum trap by adopting the 

local activation function.  

 

 
 

Figure 2. Structure of the RBFNN 

 

As shown in Figure 2, the RBFNN has many more neurons 

in the hidden layer than the standard BPNN. The hidden layer 

mainly responds to the input signal. More neurons in this layer 

mean a larger output from the center of the basis function. 

Therefore, the RBFNN enjoys good local approximation 

ability. 

The structural complexity and prediction accuracy of 

RBFNN directly hinge on the number of input variables. If the 

input variables are too many and strongly corelated, the 

RBFNN will have a complex structure, consume lots of time 

in training, and face large errors in prediction. To mitigate 

these risks, the RBFNN was coupled with the PCA to reduce 

the dimension of evaluation indices. 

In the PCA-RBFNN model, the original variable set was 

modelled by the PCA to eliminate the correlation between 

original variables. Then, the variables whose cumulative 

contribution is above 85% were treated as the new input 

sample of RBFNN simulation. Prior to the PCA, the raw data 

were normalized, including but not limited to quantification of 

qualitative indies, forward processing of reverse indices, 

removal of extremums [23]. 

As for the RBFNN parameters, the center and variance of 

hidden layer basis function were learned through self-

organization, while the weight between the hidden layer and 

the output layer was determined through supervised learning.  

 

4.3 Example of human reliability prediction 

 

A total of 20 mine operators were trained as the subjects. 

Two test courses were randomly selected from 19 common 

working procedures of driving posts. The evaluation of human 

reliability aims to measure the post adaptability and safety of 

these operators. By the nature of task, human reliability falls 

into operational reliability, monitoring reliability, and 

management reliability. The human reliability of operators 

engaging in driving operation is mainly operational reliability. 

Table 3 provides the scale of human reliability evaluation. 

The human reliability in the example is influenced by 143 

factors in four categories: human factors, equipment and 

operation factors, management factors, and environmental 

factors. Many indices in terms of physiology, safety 

management, and family information are not available. The 

data on equipment and operation factors are relatively 

complete. Therefore, these factors were normalized as Table 4 

before going through the PCA. 

Table 3. Human reliability scale 

 

Unsafe behavior   5 6-9 10-12 13-15 ≥ 𝟏𝟔 

Reliability levels Strongly reliable Slightly reliable Neutral Slightly unreliable Strongly unreliable 

Post test results Excellent Good Qualified Retraining Laid off 

Network output 10000 01000 00100 00010 00001 

Initial value of reliability 0.85 0.70 0.60 0.50 0.40 
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Table 4. Normalization of equipment and operation factors 

 
 A11 A12 A13 A14 A15 

W1 -0.9752 -0.8705 -0.8219 0.6728 0.1844 

W2 -0.9752 -0.8705 -1.4290 0.6728 1.3665 

W3 -0.9752 0.0529 -2.5174 -1.2764 1.3665 

W4 0.2276 0.0529 0.4194 -1.2764 -0.4098 

W5 0.2276 0.0529 0.4194 1.3856 1.3665 

W6 0.2276 0.0529 0.4194 -0.2951 0.1844 

W7 -3.1876 -2.1372 -2.5174 -1.2764 0.1844 

W8 0.2276 0.0529 0.4194 0.6728 0.1844 

W9 0.2276 0.0529 0.4194 0.6728 -2.3817 

W10 0.2276 0.0529 1.2258 0.6728 0.1844 

W11 0.2276 -0.8705 -0.5328 -0.2951 0.1844 

W12 1.1739 0.0529 0.4194 0.6728 0.1844 

W13 0.2276 0.0529 0.4194 0.6728 -0.4098 

W14 0.2276 1.2833 0.4194 1.3856 0.1844 

W15 0.2276 -0.8705 0.4194 -1.2764 1.3665 

W16 -0.9752 1.2833 -1.4290 -1.2764 1.3665 

W17 0.2276 1.2833 0.4194 -0.2951 0.1844 

W18 1.1739 0.0529 0.4194 1.3856 0.1844 

W19 0.2276 0.0529 0.4194 0.6728 -0.4098 

W20 0.2276 -0.8705 1.2258 -0.2951 1.3665 

 

Taking the normalized values as inputs, the correlation 

matrix was obtained, and then the common factor variance was 

calculated, reflecting the proportion of information extracted 

from each index in our evaluation index system. Finally, the 

total variance explained was derived (Table 5). 

 

Table 5. Variance explained 

 
Unsafe 

behavior  

Initial  

eigenvalue 

 Total Variance Cumulative Eigenvalue 

1 3.163 42.87 42.87 1.782 

2 2.115 25.31 69.18 1.892 

3 1.227 15.93 84.11 1.272 

4 0.385 4.82 88.93 0.952 

5 0.276 4.19 93.12 0.738 

6 0.257 3.08 96.20 0.731 

7 0.187 2.59 98.79 0.598 

8 0.083 1.21 100 0.483 

 

As shown in Table 5, three eigenvalues were greater than 1, 

whose cumulative variance reached 84.11%. The three 

principal components can restore 84.11% of the original 

information, surpassing the required level of 80%. 

Then, the normalized data on these principal components 

were obtained by the PCA, and inputted to the RBFNN. From 

20 groups of effective samples, 16 groups were randomly 

selected as training samples, and the remaining 4 as test 

samples. The RBFNN outputs for the four test samples are 

listed in Table 6. 

 

Table 6. Human reliability ratings 

 
Sample  Expected output Actual output Reliability 

𝑾1′ 00100 00100 Neutral 

𝑾2′ 01000 01000 Slightly reliable 

𝑾3′ 10000 10000 Strongly reliable 

𝑾4′ 00100 00100 Neutral 

 

As shown in Table 6, the output vectors of the test samples 

agreed well with the expected outputs, and conformed to the 

result of human reliability evaluation. Moreover, the initial 

value of reliability was given reasonable credibility. 

 

5. CONCLUSIONS 

 

Human factors play an important role in mine accidents. It 

is an urgent need to evaluate the human reliability of mine 

operators and reduce human-induced accidents. This paper 

fully integrates the ideas and methods of multiple disciplines 

(e.g. system engineering, safety engineering, and safety 

psychology) to analyze and evaluate human reliability in mine 

operation, and obtains some exploratory results.  

Specifically, a novel correlation analysis model was 

established to predict the failure probability of human factors 

in mine system, which is grounded on Apriori algorithm, 

THERP, and CREAM. On this basis, an evaluation index 

system was established for human reliability of mine operators. 

Next, the human reliabilities of mine operators with stable 

performance and with unstable performance were evaluated by 

FCE+AHP+NN and PCA+NN, respectively. 

During the evaluation, the input vector set of RBFNN was 

reduced through the PCA, and the principal components were 

obtained based on the contribution rate, creating the original 

sample space. In this way, the dimensionality of the input 

vector set was reduced, and the correlations between input 

vectors were eliminated, without sacrificing the main 

information of the original vector set. Hence, the evaluation 

problem was simplified, while the RBFNN became faster in 

evaluation, and acquired stronger generalization ability. 

 

 

REFERENCES 

 
[1] Rukšėnas, R., Curzon, P., Blandford, A., Back, J. (2014). 

Combining human error verification and timing analysis: 

a case study on an infusion pump. Formal Aspects of 

Computing, 26(5): 1033-1076. 

https://doi.org/10.1007/s00165-013-0288-1 

[2] Anu, V., Hu, W., Carver, J.C., Walia, G.S., Bradshaw, G. 

(2018). Development of a human error taxonomy for 

software requirements: A systematic literature review. 

Information and Software Technology, 103: 112-124. 

https://doi.org/10.1016/j.infsof.2018.06.011 

[3] Liu, R., Cheng, W., Yu, Y., Xu, Q. (2018). Human 

factors analysis of major coal mine accidents in China 

based on the HFACS-CM model and AHP method. 

International Journal of Industrial Ergonomics, 68: 270-

279. https://doi.org/10.1016/j.ergon.2018.08.009 

[4] Dhillon, B.S. (2013). Human Reliability: With Human 

Factors. Elsevier. 

[5] Martorell, P., Martón, I., Sánchez, A.I., Martorell, S., 

Sanchez-Saez, F., Saiz, M. (2018). Evaluation of risk 

impact of completion time changes combining PSA and 

DSA model insight and human reliability analysis. 

Reliability Engineering & System Safety, 178: 97-107. 

https://doi.org/10.1016/j.ress.2018.05.008 

[6] Kirwan, B. (1992). Human error identification in human 

reliability assessment. Part 2: Detailed comparison of 

techniques. Applied Ergonomics, 23(6): 371-381. 

https://doi.org/10.1016/0003-6870(92)90368-6 

[7] Mosleh, A., Chang, Y.H. (2004). Model-based human 

reliability analysis: Prospects and requirements. 

Reliability Engineering & System Safety, 83(2): 241-253. 

https://doi.org/10.1016/j.ress.2003.09.014 

[8] Abdellaoui, M., Douik, A. (2020). Human action 

recognition in video sequences using deep belief 

networks. Traitement du Signal, 37(1): 37-44. 

414



 

https://doi.org/10.18280/ts.370105  

[9] Podofillini, L., Dang, V.N. (2013). A Bayesian approach 

to treat expert-elicited probabilities in human reliability 

analysis model construction. Reliability Engineering & 

System Safety, 117: 52-64. 

https://doi.org/10.1016/j.ress.2013.03.015 

[10] De Felice, F., Petrillo, A. (2011). Methodological 

approach for performing human reliability and error 

analysis in railway transportation system. International 

Journal of Engineering and Technology, 3(5): 341-353.  

[11] Akyuz, E., Celik, M. (2015). A methodological extension 

to human reliability analysis for cargo tank cleaning 

operation on board chemical tanker ships. Safety Science, 

75: 146-155. https://doi.org/10.1016/j.ssci.2015.02.008 

[12] Kim, Y., Kim, J. (2015). Identification of human-induced 

initiating events in the low power and shutdown 

operation using the Commission Error Search and 

Assessment method. Nuclear Engineering and 

Technology, 47(2): 187-195. 

https://doi.org/10.1016/j.net.2014.12.006 

[13] Sun, G., Bin, S. (2018). A new opinion leaders detecting 

algorithm in multi-relationship online social networks. 

Multimedia Tools and Applications, 77(4): 4295-4307. 

https://doi.org/10.1007/s11042-017-4766-y 

[14] Liao, P.C., Luo, X., Wang, T., Su, Y. (2016). The 

mechanism of how design failures cause unsafe behavior: 

the cognitive reliability and error analysis method 

(CREAM). Procedia Engineering, 145(6): 715-722. 

https://doi.org/10.1016/j.proeng.2016.04.088 

[15] Xu, Y., Wu, K., Li, L., Zhou, D., Hu, Z. (2019). Ground 

cracks development and characteristics of strata 

movement under fast excavation: a case study at Bulianta 

coal mine, China. Bulletin of Engineering Geology and 

the Environment, 78(1): 325-340. 

https://doi.org/10.1007/s10064-017-1047-y 

[16] Wang, L., Wang, Y., Cao, Q., Li, X., Li, J., Wu, X. 

(2014). A framework for human error risk analysis of 

coal mine emergency evacuation in China. Journal of 

Loss Prevention in the Process Industries, 30: 113-123. 

https://doi.org/10.1016/j.jlp.2014.05.007 

[17] Li, H., Chen, D., Arzaghi, E., Abbassi, R., Xu, B., Patelli, 

E., Tolo, S. (2018). Safety assessment of hydro-

generating units using experiments and grey-entropy 

correlation analysis. Energy, 165: 222-234. 

https://doi.org/10.1016/j.energy.2018.09.079 

[18] Shirley, R.B., Smidts, C., Li, M., Gupta, A. (2015). 

Validating THERP: Assessing the scope of a full-scale 

validation of the Technique for Human Error Rate 

Prediction. Annals of Nuclear Energy, 77: 194-211. 

https://doi.org/10.1016/j.anucene.2014.10.017 

[19] Friesen, B.V. (1963). Experiences with Delfen Cream as 

contraceptive method. Acta Obstetricia et Gynecologica 

Scandinavica, 42(s6): 71-73. 

https://doi.org/10.3109/00016346309158253 

[20] Borghini, F., Garzia, F., Lombardi, M., Mete, M., 

Perruzza, R., Tartaglia, R. (2018). Human factor analysis 

inside a peculiar job environment at the Gran Sasso 

mountain underground laboratory of Italian National 

Institute for Nuclear Physics. International Journal of 

Safety and Security Engineering, 8(3): 390-405. 

https://doi.org/10.2495/SAFE-V8-N3-390-405  

[21] Lin, C.J., Yenn, T.C., Jou, Y.T., Hsieh, T.L., Yang, C.W. 

(2013). Analyzing the staffing and workload in the main 

control room of the advanced nuclear power plant from 

the human information processing perspective. Safety 

Science, 57: 161-168. 

https://doi.org/10.1016/j.ssci.2013.02.004 

[22] Kosmowski, K.T. (2011). Functional Safety Analysis 

including Human Factors. International Journal of 

Performability Engineering, 7(1): 61-76. 

[23] Wang, L., Wang, S.G., Wu, D.L., Liu, H.H., Wang, J. 

(2019). An evaluation method for harmonic emission 

level based on principal component regression. European 

Journal of Electrical Engineering, 21(5): 415-420. 

https://doi.org/10.18280/ejee.210503 

 

415




