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Pesticide use in agriculture can cause undesirable effects on humans and the natural 

environment. Physicochemical properties of pesticides play an important role in 

determining its distribution and fate in the environment. Chemometric methods can be 

used to describe how the physicochemical properties vary according to the characteristics 

of the molecular structure expressed in terms of appropriate molecular descriptors. 

Quantitative Structure-Property Relationship (QSPR) models can also provide a general 

overview of the molecular structure that influences these properties. Henry’s law constant 

(H) is an important property for predicting the solubility and vapor- liquid equilibrium of

pesticides. Genetic algorithm/ multi- linear hybrid approach was used to model the log H

of 48 pesticides belonging to four chemical classes: ureas, triazines, carbamates and

aryloxyalkanoic acids. The 5 explanatory variables model selected is robust and has good

fitness and good predictive ability. Two influential points which reinforce the model and

an outlier were highlighted. The model can be used to predict the Henry’s law constant of

pesticides falling in the applicability domain of our model.
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1. INTRODUCTION

Use the quantities increasingly important of phytosanitary 

products, especially in agriculture, has led many researchers 

and many managers of the quality of the environment to ask 

questions about the impact that these products could have on 

the quality of surface waters [1].  

Three variables: aqueous solubility, vapor pressure and 

Henry's constant, play an essential role in the behavior of 

pesticides. They can be determinative on how the pesticides 

will migrate, and therefore fits on the consequences of 

contamination. 

Different models predict these important environmental 

parameters. Incremental methods are based on structural 

characteristics such as the type of atom, the type of connection 

and the local structural environment [2]. The Quantitative 

Structure-Property Relationship (QSPR) strategies involve 

physico - chemical properties, such as structural descriptors 

connectivity indices and descriptors reflecting the electronic 

structure [3, 4]. Note in addition to the aqueous solubility and 

Henry's constant, the possibility of using models based on 

molecular structure and quantum solvation models via the 

Gibbs solvation ΔGs. The results of these models show 

substantial differences in the application domains and 

prediction capabilities [2, 4]. 

Although QSPR use in predicting Henry’s law constant of 

pesticides has been rather limited and most of the existing 

models are derived from very limited data sets [5-7]. 

According to the literature search, the majority predict the 

physicochemical properties of a heterogeneous set of 

pesticides. In our work we studied herbicides that are a 

homogeneous whole having the same mode of action. 

In this study, we applied the methodology QSPR in the 

hybrid genetic algorithm / multiple linear regression (GA / 

MLR) approach to predict the Henry constant of 48 pesticides 

distributed in Table 1 according to their chemical classes: 1-

11 (urea), 12-24 (triazines) 25-37 (carbamates), 38-48 

(aryloxyalkanoic acids). 

The data collected in the literature have been previously 

separated randomly (SAMPLE command processing software 

MINITAB data [8]) into a set of calibration for 29 elements 

for the selection of descriptors by genetic algorithm [9] and the 

calculation QSPR model , and a validation set of 19 items used 

for only the external statistical validation. 

The goodness of fit and the robustness of the model and its 

predictive capabilities (internal and external) were examined. 

Finally, the application domain (AD) was discussed with the 

Williams diagram (discussed in detail in the researches [10, 

11]), which represents the prediction residuals standardized to 

values leverages (hi). 

2. METHODOLOGY

2.1 MULTIPLE REGRESSION MODEL 
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Table 1. List of studied compounds: Names, descriptors, observed and prediction values of log H, hi and jackknifed residuals 

(  Training                    o Test) 

 
N° Composés log P masse ESpm15d HATS4v R7p+ Yobs Ypréd hi eiStd 

1 Siduron o 2.86 232.33 19.106 0.108 0.011 -3.9665 -4.38 0.084 -0.37 

2 Chloroxuron  3.06 290.75 19.559 0.102 0.012 -5.7986 -4.87 0.068 0.89 

3 Tebuthiuron o 2.76 228.31 20.042 0.115 0.008 -6.1636 -4.72 0.17 1.36 

4 methabenzthiazuron  1.89 221.28 19.65 0.075 0.011 -7.1958 -5.13 0.149 2.27 

5 monolinuron  1.81 214.65 22.128 0.274 0.028 -2.8013 -2.47 0.373 0.57 

6 fluometuron  2 232.21 22.479 0.109 0.011 -3.068 -4.13 0.164 -1.2 

7 diuron  2.15 233.1 19.658 0.129 0.02 -4.2676 -3.6 0.059 0.63 

8 difenoxuron  2.29 286.33 19.547 0.085 0.006 -6.8927 -7.27 0.095 -0.38 

9 Linuron o 2.33 249.1 22.141 0.109 0.022 -2.9318 -1.66 0.089 1.15 

10 methazol  2.94 261.06 22.835 0.141 0.019 -1.5301 -1.57 0.081 -0.04 

11 rimsulfuron  1 431.44 25.109 0.088 0.007 -10.6595 -9.89 0.504 1.9 

12 Metamitron o 0.67 202.22 20.01 0.154 0.013 -6.2269 -7.18 0.482  -1.15 

13 Metribuzino 1.33 214.29 22.599 0.164 0.016 -6.7375 -4.39 0.284 2.4 

14 Prometryn  2.37 241.35 21.989 0.055 0.015 -2.163 -2.38 0.099 0.66 

15 atrazine  2.06 215.69 16.975 0.097 0.019 -3.3439 -4.59 0.161 -1.4 

16 ametryn  1.96 227.33 21.988 0.05 0.017 -3.1586 -3.95 0.149 0.99 

17 Propazine o 2.47 229.71 17.058 0.099 0.02 -3.2204 -2.26 0.149 -0.68 

18 Simazine o 1.65 201.66 16.885 0.062 0.018 -3.4672 -4.81 0.272 -1.36 

19 Terbuthylazine o 2.14 229.71 22.003 0.06 0.016 -3.2204 -2.34 0.107 0.8 

20 prometon  2.03 225.29 16.849 0.055 0.016 -3.3585 -5.08 0.217 -2.15 

21 terbutryn  2.04 241.35 19.201 0.229 0.034 -3.0357 -2.34 0.3 1.03 

22 hexazinone  2.37 252.32 20.975 0.115 0.009 -7.3809 -5.27 0.124 2.22 

23 Dipropetryn o 2.72 255.38 22.242 0.046 0.01 -2.91 -2.97 0.095 -0.05 

24 desmetryn  1.62 213.3 21.988 0.057 0.017 -3.2814 -2.61 0.178 0.77 

25 desmedipham  3.02 300.31 20.184 0.064 0.009 -5.1567 -5.04 0.09 0.11 

26 Carbetamide o 1.32 236.27 20.394 0.098 0.01 -4.8356 -5.94 0.153 -1.04 

27 chlorpropham  2.79 213.66 19.555 0.144 0.016 -2.5391 -3.14 0.092 -0.6 

28 Phenmedipham o 3.14 300.31 20.173 0.076 0.008 -5.2365 -5.21 0.085 0.02 

29 Pebulate o 2.79 203.34 23.186 0.055 0.01 0.3159 -1.22 0.182 -1.47 

30 prosulfocarb  3.83 251.39 23.235 0.064 0.007 -1.0231 -13.28 0.186 -0.31 

31 EPTC o 2.39 189.32 23.18 0.051 0.014 0.1931 -0.65 0.189 -0.81 

32 cycloate  2.7 215.35 23.193 0.106 0.011 0.0863 -2.07 0.175 -2.49 

33 butylate  3.2 217.37 23.181 0.07 0.015 0.4393 0.1 0.112 -0.35 

34 vernolate  2.86 203.34 22.113 0.217 0.027 0.3159 0.13 0.181 -0.21 

35 thiobencarb  3.41 257.78 23.519 0.068 0.017 -1.4001 0.17 0.164 1.77 

36 tri allate  3.16 304.66 23.272 0.066 0.015 -0.2418 -1.95 0.196 -2.04 

37 vinclozolin  3.4 286.11 23.486 0.152 0.016 -0.6216 -1.82 0.168 -1.36 

38 2,4-D  2.37 221.04 19.556 0.168 0.022 -3.0301 -3.02 0.081 0.01 

39 2,4-DB o 2.8 249.09 19.456 0.145 0.022 -3.6345 -0.69 0.084 0.85 

40 2,4-D-dimethylammonium  4.61 294.18 9.785 0.106 0 -10.8326 -10.11 0.666  3.23 

41 2,4,5-T  2.89 255.48 19.737 0.181 0.022 -3.16 -2.98 0.105 0.18 

42 Dichlorprop o 2.91 235.07 20.063 0.206 0.026 -2.91 -1.7 0.147 1.13 

43 triclopyr triethylammonium  2.98 357.66 17.285 0.079 0.003 -9.26 -9.54 0.196 -0.34 

44 Fluroxypyr meptyl o 4.41 367.25 20.176 0.104 0.011 -4.97 -4.23 0.482  0.89 

45 dichlorprop p o 2.91 235.07 20.063 0.206 0.026 -2.91 -1.7 0.147 1.13 

46 2,4-D-methyl  2.4 235.07 19.798 0.144 0.031 -0.52 -0.85 0.281 -0.46 

47 Triclopyr o 2.65 256.47 19.971 0.096 0.014 -3.28 -4.04 0.039 -0.67 

48 2,4,5-T-trolamine  -0.46 404.67 15.607 0.127 0.007 -16.44 -17.34 0.589  -2.91 

A multiple regression model between explained variable y 

and p explicative variables x1, …, xp is written for all i = 1, ..., 

n: 

 

0  == +  +p

i j 1 j i iy  x  (1) 

 

where, yi, xi1, xi2, ..., xip are given respectively on variables y, 

x1, ..., xp. 

βj coefficients are calculated using the method of ordinary 

least squares. Random variables εi represent the unobservable 

error terms of the model. These errors can be estimated by 

ordinary residuals ei, differences between the observed 

variables yi and the estimated values ŷi. 

 

2.2 Genetic algorithm  

 
The modeling the genetic process has initiated the 

development of genetic algorithms, which can be exploited in 

a variety of optimization problems [12]. In this case, a 

potential solution is considered as an individual in a population. 

The value of the cost function associated with a measurement 

solution "adaptation" of the individual associated with its 

environment. A genetic algorithm simulates the evolution, 

over several generations, an initial population whose 

individuals are poorly adapted using genetic operators of 

reproduction and mutation. After a number of generations, the 

population consists of well adapted individuals, i.e. the 

supposed "good" solutions to the optimization problem. 
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2.3 Calculation and selection of molecular descriptors 

 

We used molecular modeling software Hyperchem 6.03 [13] 

to represent the molecules and then, using the semi-empirical 

AM1 method [14] to obtain the final geometry. All 

calculations were carried out under the RHF formalism [15] 

without configuration interaction. Molecular structures were 

optimized using the Polak - Ribiere algorithm for criterion 

with a root mean square gradient of 0.001 kcal / mol. And 

optimized geometries were transferred to the Dragon computer 

software Version 5.3 [16] to calculate 1201 descriptors 

belonging to different classes. Using the corresponding 

options DRAGON software, we first eliminated descriptors 

constant values (standard deviations less than 0.0001), which 

provide no information, and then those who are highly 

correlated (R ≥ 0.95) that convey redundant information. For 

each pair of correlated descriptors is eliminated automatically 

the one with the highest cross-correlation with other 

descriptors. 

By operating on the calibration data, the sub- descriptor sets 

were selected by genetic algorithm in the MOBYDIGS release 

of Todischini [17] maximizing the prediction coefficient
2

LOOQ . 

To avoid models with collinearity problems, and no real 

predictive power, we applied the rule QUIK [18] based on the 

multivariate index K [19] correlation, this rule is derived from 

the assumption that the correlation total in the group consisting 

of model predictive X plus Y response (Kxy) should always be 

greater than that measured in only the set of predictors (Kx). 

The size of the model finally selected is determined by the 

optimal value of the FIT function Kubinyi [20] for comparing 

models built on n data with different numbers of variables. 

 

2.4 Development and validation of the model 

 

The multilinear regression analysis was performed with the 

software MOBY DIGS [17]. 

Acceptable models are only those with a global correlation 

of [X + y] block (KXY) greater than the global correlation of the 

X block (KXX) variable, X being the molecular descriptors and 

y the response variable. Therefore, when there were models of 

similar performance, those with higher ∆K (KXY – KXX) were 

selected and further verified. 

In general [21], we reject models that do not satisfy the 

relation:  

 

( ) 0,05xy xxD K K K= −   (2) 

 

The quality of the model was evaluated by different 

statistics (R2, R2
ajusté, Fischer parameter, F, standard error, s), 

and the standard deviation calculated for all calibration SDEC 

[22]. 

Adjusted R2
adj, which is calculated using the following 

formula: 

 

( )2 2-1
1- 1-

- -1
adj

n
R R

n m

  
=   

  
 (3) 

 

n is the number of objects of the set of calibration and m is 

the number of features of the model. Adjusted R2 is a better 

measure of the proportion of variance explained in the data. 

The F ratio is defined as the ratio of the sum of squares of 

the model and residual sum of squares, which is a comparison 

of the variance explained by the model and the residual 

variance: high values of the ratio F indicate a reliable model. 

The cross-validation techniques were used for evaluation of 

the internal prediction (Q
2 

LMO; bootstrap), and robustness (Q
2 

LOO; 

Y-scrambling) [22] of the model. 

Cross-validation by leave-one -out [23] is to recalculate the 

model (n-1) objects, and use the resulting model to predict the 

value of the dependent variable spread compound. The process 

is repeated for each of the set of n objects calibration. The sum 

of squares of prediction errors (designated by the acronym for 

PRESS "Predictive Residual Sum of Squares") is a measure of 

the estimated dispersion. It is used to define the prediction 

coefficient (Q
2 

LOO), and the standard deviation of prediction 

SDEP. 

A value > 0.5 is generally regarded as satisfactory, and a 

value > 0.9 is excellent [10]. 

In fact, if a high value of Q2 is a necessary condition for a 

possible high predictive ability of a model, this condition alone 

is not sufficient. To avoid an overestimation of the predictive 

ability of the model we also applied the procedure leave- 

many- out (LMO), excluding 20% of the objects in each stage. 

The QSPR, models because (often) their complexity and 

sophistication of the tools used chemometrics can be a source 

of accidental correlations. In order to establish that the model 

is not due to chance, we applied the randomization test of Y 

(Y- scrambling) [24]. The test consists in generating a vector 

of the property studied by random permutation of the 

components of the real vector. We then calculate the vector 

obtained a QSPR model, as usual. This process is repeated 100 

times in this study. 

In the bootstrap validation technique simulating new 

samples of size (n) by random draws with replacement. In this 

way the calibration assembly, which retains its initial size (n), 

consists in general of objects repeated, collecting all the 

evaluation excluded [25, 26] objects. The model is calculated 

for all of the calibration and predicted responses for all 

evaluation. All the squares of differences between predicted 

and actual values of the set of objects are collected in the 

evaluation PRESS. This construction procedure sets 

calibration and evaluation is repeated many thousands of times 

(8000 in this study), the PRESS is added, and a calculated 

average predictive ability [25]. 

Application of the model, calculated on the whole 

calibration of the 19 compounds of the validation set, used to 

check reliably predictive ability of the model obtained. With 

R2, and the parameters are then useful SDEPext index (ext) in 

relation to the objects of the set of external validation or those 

of the overall evaluation obtained by bootstrapping. 

The predictive power of the regression model developed on 

the selected training set is estimated on the predicted values of 

prediction set chemicals, by the external Q2 that is defined [27] 

as: 

 

( )

( )

2

/
2 1

2

1

ˆ - /

1-

- /

ext

tr

n

i i i EXT

i
EXT n

i Tr Tr

i

y y n

Q

y y n

=

=

=



 (4) 

 

where, yi and �̂�i/i are, respectively, the measured and predicted 

(over the prediction set) values of the dependent variable, and 
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�̅� Tr the averaged value of the dependent variable for the 

training set. ntr and next are the number of training set objects 

and the number of objects in the external set, respectively. 

An additional external validation according to the research 

[28] is applied solely to the test set. According to the 

recommended criteria of Tropsha et al. [29], a predictive 

QSPR model, must attend the following conditions: 

 
2  0.5EXTQ   (5) 

 
2 0.6R   (6) 

 
2 2

0( )/ 0.1 and 0.85 k 1.15R R−     (7) 

 
2 2

0( )/ 0.1 and 0.85 k 1.15R R −     (8) 

 

where, 

 

( )( )

( ) ( )
22

- -

- -

i i

i i

y y y y
R

y y y y

=


 
 

(9) 

 

( )
( )

0
2

2

0 2

-
1-

-

r

i i

i

y y
R

y y
=




 (10) 

 

( )

( )

0
2

2

0 2

-
1-

-

r

i i

i

y y
R

y y
 =




 (11) 

 

and 

 

( )

( )
i i

2

i

y y
k =

y




 (12) 

 

( )

( )
i i

2

i

y y
k =

y




 (13) 

 

where, R is the correlation coefficient between the calculated 

and experimental values in the test set; R
2 

0  (calculated versus 

observed values) and R
'2 

0  (observed versus calculated values) 

are the coefficients of determination; k and k' are slopes of 

regression lines through the origin of calculated versus 

observed and observed versus calculated, respectively; 0r

iy  

and 0r

iy  are defined as 0   
r

iy k y=  and 0   
r

iy k y= , 

respectively; and the summations are over all samples in the 

test set. 

The reason to use R
2 

0  and require k values that are close to 1 

is that when actual versus predicted properties are compared, 

an exact fit is required, not just a correlation. 

 

2.5 Applicability domain 

 

The applicability domain was discussed with Williams 

diagram representing external studentized residuals (eistd) and 

hi leverage which are the diagonal elements of the matrix ( )H  

crossing observed quantities (vectors y) the quantities 

estimated (vectors). 

External studentized residuals are obtained from the 

relationship: 

 

*

* 2

- -1

- - ( )
istd i

i

n p
e e

n p e
=  (14) 

 

where, 
*

ie ,(internal studentized residue) is the ratio: 

 

*

1-

i
i

ii

e
e

s h
=  (15) 

 

s is the standard deviation: 

 

( )
2

ˆ-

-

i iy y
s

n p
=


 (16) 

 

n is the number of objects of the set of calibration and p is 

the number of the model parameters (equal to 6 in this work). 

Eq. (17) defines the leverage of a compound in the original 

space of the independent variables (xi): 

 

-1 ( )  T T

i i ih x X X x=   (i = 1, 2, ..., n) (17) 

 

where, ix  is the row vector of the descriptors of component i, 

and iX  the matrix of the model derived from the values of the 

descriptors of all calibration, the exponent T designates the 

vector ( or matrix ) transposed (e). 

The critical value of leverage (h*) is fixed at 3p / n (0.6 in 

this work). If hi < h*, the probability of agreement between 

measured and predicted values of component i, is as high as 

that of the compounds of calibration. Compounds with hi >h* 

positively influence the model when they belong to the 

calibration set, but will, in the contrary case, the predicted 

values doubtful without necessarily be aberrant, the residues 

can be low. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Experimental data 

 

The data were collected from literature [29], the Henry’s 

law constant values (H), mainly estimated as Vapor pressure x 

Molecular weight / Water solubility, and were compiled in the 

units of Pa m3/mol. The values presented as the logarithm of 

H.  

The data set was randomly divided into training set of 29 

compounds and a test set of 19 compounds. 

 

3.2 Model 

 

The genetic algorithm optimization leads to many models 

of different sizes. The variation of the function FIT shows that 

among the descriptors can be connected with log H, a subset 

of five descriptors will probably best suited for modeling MLR. 
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The five best descriptors are: octanol -water partition (log P), 

molecular mass (M), the spectral moment of order 15 of the 

edge adjacency matrix weighted by dipole moment d 

(ESpm15d), autocorrelation of the topological distance (that is 

to say the number of links of the shortest path between two 

atoms ) equal to 4 by the weighted lever atomic van der Waals 

volume of v (HATS4v), the maximum radius of 

autocorrelation topological distance 7 weighted by 

polarizability p ( R7p +). Are found by Todeschini et al. [30] 

relations possible definition for the calculation of the 

descriptors. 

These five descriptors have some collinearity (Kx = 28.97). 

However, what is most important is that the difference in the 

correlation block variables X plus the response Y (kxy) and that 

of the block X (Kx) is large enough (Δ = kxy - Kx ~ 13) (Table 

2). 

The model based on these descriptors is for equation: 

 

log H = - 13,2 (±2,292) + 1,644(±0,2109) log P – 0,026 

(±0,004) mass + 0,491 (±0,077) ESpm15d –12,094(±5,10) 

HATS4v +207,77 (±42,39) R7p+(18) 

 

Diagnostic statistics collected in Table 2 allow making 

comparisons and drawing several conclusions. 

The values of R2 and R2
adj show the goodness of fit, while 

the small difference between R2 and Q2
LOOinformation about 

the robustness of the model is further highly significant (high 

value of the statistic Fisher F). The close values of SDEC and 

SDEP mean that the ability of the internal prediction of model 

is not too dissimilar to his adjustment power. 

The small difference between Q2
LOO and Q2

LMO/20 shows 

good stability in the internal validation, and validation by 

bootstrap (Q2
boot) confirms at once good internal predictive 

ability and stability of the model. 

External statistical validation (Q2
ext; EQMPext) attests to 

the good predictive ability of the compounds did not 

participate in the calculation model. 

 

Table 2. Diagnostic statistical model (ntr=29, ntest= 19) 

 
Parameters Values 

R2 92,89 

𝑄𝐿𝑂𝑂
2  87,89 

𝑄𝐿𝑀𝑂/20%
2  86,74 

𝑄𝑏𝑜𝑜𝑡
2  82,91 

𝑄𝑒𝑥𝑡
2  90,86 

R2
adj 91,35 

EQMP 1,304 

EQMC 0,999 

EQMPext 1,133 

Kx 28,97 

Kxy 41,65 

F 60,12 

S 1,122 

 

The high absolute t-values shown in Table 3 express that the 

regression coefficients of the descriptors involved in the MLR 

model are significantly larger than the standard deviation. The 

t- probability of a descriptor can describe the statistical 

significance when combined together within an overall 

collective QSPR model (i.e. descriptors interactions). 

Descriptors with t- probability values below 0.05 (95 percent 

confidence) are usually considered statistically significant in a 

particular model, which means that their influence on the 

response variable is not merely by chance [31]. The smaller t- 

probability suggests the more significant descriptor. The t- 

probability values of three descriptors are very small, 

indicating that all of them are highly significant descriptors. 

Models would not be accepted if they contain descriptors with 

VIFs above a value of five [32].  

 

Table 3. Characteristics of the selected descriptors in MLR 

model 

 

Descriptor Dx x t- value t- probability VIF 

Constant 2.292 -13.242 -5.78 0.000  

log P 0.210 1.644 7.79 0.000 1.0 

mass 0.004 -0.026 -6.19 0.000 1.5 

ESpm15d 0.077 0.491 6.34 0.000 1.2 

HATS4v 5.100 -12.094 -2.37 0.026 1.8 

R7p+ 42.39 207.77 4.90 0.000 2.6 

 
Correlation matrix as shown in Table 4 suggests that these 

descriptors are weakly correlated with each other. Thus, the 

model can be regarded as an optimal regression equation. 

 
Table 4. Correlation matrix 

 
 log cte H log P mass ESpm15d HATS4v 

log P 0.390     
 0.036     

mass -0.712 -0.039    
 0.000 0.839    

ESpm15d 0.538 -0.140 -0.203   
 0.003 0.468 0.292   

HATS4v 0.158 -0.127 -0.258 0.024  
 0.412 0.511 0.177 0.903  

R7p+ 0.637 -0.088 -0.556 0.308 0.630 
 0.000 0.649 0.002 0.104 0.000 

 
The statistical parameters obtained for the test set [33], 

demonstrate the power of the predictivity of the models, as 

shown in Table 5. 

 

Table 5. Test set goodness metrics 

 

  Method  MLR 
  R2 92.89% 

Training set n= 29 Q2 87.89% 

  Q2
ext 90.86% 

  RMSE 1.122 

  r2 65.70% 

Validation set n= 19 R2
CVext 75.75% 

   (R2-R2
0)/ R2<0.1 -0.517 

   (R2-R’20)/ R2<0.1 -0.493 
 0.85 < k< 1.15 0.9763 
 0.85< k’< 1.15 0.9284 

 

According to the Figure 1 it was clear that the calculated log 

cte H values were very similar to the experimental values. 

Figure 2 represents the diagram of statistics coefficients 

Q2
LOO and R2 used to compare the results for the randomized 

models (Circles) in the starting model (star) is the procedure Y 

- Scrambling. It is clear that the statistics obtained for the 

modified vectors of the Henry constant (log H) are smaller 

than those of the actual models; Q2 are lower than 0.10, and 

most of it even gets Q2 < 0. This ensures that the model 

established a real basis, and is not due to chance. 
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Figure 1. Predicted values vs. experimental values for the 

training, validation sets 

 

 
Figure 2. Randomization test associated to previous QSPR 

model. Circles represent the randomly ordered Henry 

constant, and star corresponds to the real Henry constant 

 

 
Figure 3. Williams plot of the MLR model for the entire 

dataset 

 

3.3 Applicability domain 

 

As can be seen from the Williams diagram (Figure 3), 2,4-

D- diméthylammonium, has a significant leverage (hi> hi * = 

0.62), and it is influential, it reinforces the model.  

Additionally, 2,4-D-dimethylammonium having a 

prediction residual standardized eistd great than 3 standard 

deviation units is aberrant. 

3.4 Interpretation of the model 

 

Henry's constant is a measure of the relative affinity of a 

compound for the vapor phase and water, and gaseous state 

being close to the ideal state, H depends primarily on 

interactions in the aqueous phase. 

The values of the coefficients R7p + (207.77), log P (1.644) 

and ESpm15d (0.491) in equation (18) indicate the order of the 

positive contribution of these descriptors to the value of H. 

The maximum autocorrelation topological distance R, 

belongs to the class of GETAWAY descriptors [34, 35] 

R7p+described, to some extent, the size and shape of 

molecules that with symmetry, play, as we known, a key role 

in the process of distribution between the two phases. At the 

same time this descriptor points to the role of dispersion 

interactions, through the polarizability p. 

The partition coefficient n- octanol / water calculated log P 

(belongs to the class descriptors "Molecular properties") [36], 

is a mixed solvation descriptor. It reflects both the overall 

solute interactions with the mass of the surrounding liquid 

(non- specific effects or macroscopic solvent), and specific 

binding (usually hydrogen bonds) between the solute and 

individual solvent molecules (solvent effects specific or 

microscopic). 

The spectral moments of the adjacency matrix of edges 

(belongs to the class Edegadjency indices) [37, 38] are used to 

connect the physical (and biological) molecules, directly to 

their structural components. In addition, by weighting the 

dipole moment descriptor ESpm15d emphasizes the role of 

specific interactions in the control of the air / water distribution. 

The molecular weight (belongs to the class descriptors 

constitutional descriptors) is a non-specific structural 

parameter, easily calculable, which provides information on 

the size effect of solute molecules. The size of the cavity to be 

created in the water for receiving the solute molecule, and 

consequently the energy expended to break the hydrogen 

bonds necessary for this design, with the increasing size of the 

molecule. At the same time, this increased size results in 

increased strength of the forces of interaction and other 

dispersion [3] capacity. Thus, the overall effect of the mass of 

the molecules may be minimal or negligible. In our case, the 

sign of the coefficient of the mass in Eq. (18) indicates that the 

energy gain due to Coulomb interactions and dispersion 

outweighs the energy penalty associated with the formation of 

cavities. Also, with all calibration selected, H varies in 

opposition to the mass. 

HATS4v is another descriptor GETAWAY still emphasizes 

the role of the size of the molecules, via atomic van der Waals 

volume, v. 

 

 

4. CONCLUSION 

 

The Henry's Law constants (log H) of 48 pesticides 

belonging to 4 different chemical classes but having the same 

mode of action in contrary of other works were randomly 

separated into two disjoint subsets of elements 29 and 19 

respectively. The first was used for the selection, by genetic 

algorithm, the theoretical molecular descriptors derived from 

the structure of the molecules (DRAGON software), then the 

construction of the model, the second set was used for testing. 

The multilinear model with five variables presented is 

robust, with good internal and external predictive capabilities, 

and a good quality of fit. The 2,4 -D- dimethylammonium, is 
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influential and reinforces the model. Only the 2,4- D- 

dimethylammonium is aberrant. 

With the size, shape and structural component of molecules, 

the effects of macroscopic and microscopic solvent governing 

air / water distribution for heterogeneous set of pesticides 

considered. 

The practical utility of the developed QSPR model is to 

remedy the lack of information on herbicides provided that 

they belong to the same defined field of application. 
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