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 In soliton theory, nonlinear mathematical models and their solutions have great 

importance due to their geometrical behavior. The major focus of this article is to 

discover solutions of the traveling wave for the equation of foam drainage and NLEEs 

of 4th order. The (G'/G)-expansion approach is used on these nonlinear differential 

equations. With the proper utilization of complex transform these nonlinear PDEs are 

converted into an ODE. It is noticed that (G'/G)-expansion technique is a sophisticated 

and accessible tool in engineering, optics, and mathematical physics to find solutions 

for NLEEs. The method proposed is very efficient and responsible.  
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1. INTRODUCTION 

 

We have observed extraordinary progress in the theory of 

soliton over the past few years. In mathematical physics, a 

soliton is a self-strengthening solitary wave packet that 

preserves its shape when it propagates at a continuous speed. 

Solitons were studied for their application in physical 

phenomena by mathematicians, physicists and engineers. 

Soliton waves were first observed by an engineer John Scott 

Russell. In nature, a number of scientific and physical 

problems are demonstrated by differential equations which are 

of great significance. Exact traveling wave solutions of 

differential equations are one of the important tools for 

understanding of these nonlinear phenomena as well as 

applications. To find out the different techniques for solitary 

wave solutions of partial differential equations is the great 

success of mathematicians. Exact solutions essentially 

contribute in nonlinear physical sciences, resultantly, we are 

able to study physical conduct and discuss further 

characteristics of the problem that provide track to further 

applications. 

A good approach given by Wang et al that is known as 

(G'/G)-expansion method, provides the exact traveling wave 

solutions of nonlinear evolution equations (NLEEs). In this 

method, a linear ordinary differential equation of 2nd order G'' 

(η) +σG' (η) +φG (η)=0 is used as the auxiliary equation. 

(G /́G)-expansion method [1-8] is used for solving numerous 

types of the nonlinear evolution equations. Duranda and 

Langevin [9] investigated theoretically the effect of surface 

viscoelasticity on the drainage of an aqueous foam and 

presented numericall some solitry wave solutions of drainge 

equation for intermediate values of new control parameter. A 

new modification was proposed by Naher et al. [10] in (G /́G)-

expansion method to study the higher dimensional modified 

KdV-Zakharov-Kuznetsev equation. Later, the new extended 

(G /́G)-expansion method purposed by Roshid has been 

applied on the (3 + 1)-dimensional potential-YTSF equation 

[11]. Method of Multiple (G'/G)-expansion was used by Chen 

and Li [12] in the current year for NLEEs. Wang et al. [13] 

applied multiple (G'/G)-expansion method to discover Broer-

Kaup's traveling wave solutions and approximate long water 

wave equations. Aslan and Oz ̈is [14] used (G'/G)-expansion 

method to find out the traveling wave solutions of NLEEs. The 

solutions are expressed in the proposed method in terms of 

rational trigonometric, hyperbolic and rational functions. The 

suggested approach is an important instrument and much user-

friendly for obtaining exact solutions of NLEEs. For exact 

solutions, Yang [15] proposed a new integral transform to find 

the analytical solution of heat diffusion problem and also Yang 

[16] introduced a technology as new integral transform method 

to find the solution for the differential equation in the steady 

heat transfer Problem. Furthermore, Yang et al. [17] presented 

an original study on exact travelling wave solutions of non-

differentiable type of local fractional Korteweg-de Vries 

equation and Yang et al. [18] examined the exact travelling 

wave solutions via e local fractional Riccati differential 

equation method using travelling wave transformation of the 

non-differentiable type problems.   

 

 

2. ANALYSIS OF (G'/G)-EXPANSION METHOD 
 

The nonlinear PDE in the general form can be expressed as 
   

�̅� (
ℎ̅, ℎ̅𝑡, ℎ̅𝑥 , ℎ̅𝑦 , ℎ̅𝑧, ℎ̅𝑡𝑡 , ℎ̅𝑥𝑥, ℎ̅𝑦𝑦, ℎ̅𝑥𝑥, ℎ̅𝑥𝑡 ,

ℎ̅𝑦𝑡 , ℎ̅𝑧𝑡 , ℎ̅𝑥𝑦 , ℎ̅𝑥𝑧 , ℎ̅𝑦𝑧, …
) = 0. (1) 

 

Here �̅�  is polynomial in �̅�(x, t). The method of (G /́G)-

expansion is as follows: 

Step 1: Reduce Eq. (1) into ordinary differential equation by 

assuming the wave transformation 

 

ℎ̅(𝑥, 𝑡) =  ℎ̅(𝜉̅), 𝜉̅ = 𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧 + 𝜔𝑡. (2) 

 

and Eq. (1) change into the ODE. 

 

𝑄(ℎ̅, ℎ̅′, ℎ̅′′, ℎ̅′′′, … ) = 0. (3) 
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where, superscripts represent the derivative of ℎ̅ w.r.t. ξ̅ and ω 

represents constant. 

Step 2: It is possible to obtain constant of integration (s) by 

integrating Eq. (3) sequentially, if feasible, one or more times. 

The constant of integration (s) may be fixed to 0 for 

minimalism. 

Step 3: Suppose that the wave solution can be written as 

follows, according to the proposed algorithm. 

 

ℎ̅(𝜉) = 𝑎0 +∑𝑎𝑛 (
𝐺′

𝐺
)

𝑛𝑀

𝑛=1

. (4) 

 

where, G is the solution of first order nonlinear equation in the 

following form: 

 

𝐺′′ + 𝜎𝐺′ + 𝜑𝐺 = 0. (5) 

 

Unknown constants are σ and φ. General solution is used in 

Eq. (4), we get 

 

𝐺′(𝜉)̅

𝐺(𝜉)̅
=

{
 
 
 
 
 

 
 
 
 
 √𝜎2 − 4𝜑

2
(
𝑐1 𝑠𝑖𝑛ℎ (

1
2
√𝜎2 − 4𝜑𝜉̅) + 𝑐2 𝑐𝑜𝑠ℎ (

1
2
√𝜎2 − 4𝜑𝜉̅)

𝑐1 𝑐𝑜𝑠ℎ (
1
2√

𝜎2 − 4𝜑) + 𝑐2 𝑠𝑖𝑛ℎ (
1
2
√𝜎2 − 4𝜑𝜉)̅

) −
𝜎

2
,

𝜎2 − 4𝜑 > 0.

√−𝜎2 + 4𝜑

2
(
−𝑐1 𝑠𝑖𝑛 (

1
2
√−𝜎2 + 4𝜑𝜉)̅ + 𝑐2𝑐𝑜𝑠 (

1
2
√−𝜎2 + 4𝜑�̅�)

𝑐1 𝑐𝑜𝑠 (
1
2
√−𝜎2 + 4𝜑𝜉)̅ + 𝑐2 𝑠𝑖𝑛 (

1
2
√−𝜎2 + 4𝜑𝜉)̅

) −
𝜎

2
,

 𝜎2 − 4𝜑 < 0.
2𝑐1

𝑐1 + 𝑐2𝜉̅
−
𝜎

2
, 𝜎2 − 4𝜑 = 0.

 (6) 

 

where, c1, c2 are unknown constants and, we have 

 

(
𝐺′(𝜉̅)

𝐺(𝜉̅)
)

′

= − [(
𝐺′

𝐺
)

2

+ 𝜎 (
𝐺′

𝐺
) + 𝜑]. 

(
𝐺′(𝜉̅)

𝐺(𝜉̅)
)

′′

= [2(
𝐺′

𝐺
)

3

+ 3𝜎 (
𝐺′

𝐺
)

2

+ (𝜎2 + 2𝜑) (
𝐺′

𝐺
) + 𝜑𝜆], 

 

where, the derivatives w.r.t 𝜉 ̅ have defined the primes. We 

follow these four steps to find out ℎ̅ explicitly. 

Step 4: Using Eq. (4) and (5) into Eq. (3) get all values 

together with the identical order of (G'/G), the left-hand side 

of the Eq. (1) is changed into a polynomial in (G'/G). After this 

by putting each coefficient of this polynomial equal to 0 gives 

a system of algebraic equations by using MAPLE 18 for k, l, 

m, w, ԑ and an, n=0.1, …, M. 

Step 5: Then solve the obtained set of the algebraic 

equations for k, l, m, ω, ԑ and an, n=0.1, …, M with the help of 

Maple 18. 

Step 6: Use these obtained results from the preceding steps 

to get a series of fundamental solutions ℎ(̅̅ ̅𝜉̅) of equation (3) 

which is depending on (G′/G). Since the solutions of Eq. (4) 

will be known for us, and then we can be able to attain the 

exact solutions of Eq. (5). 

 

 

3. NUMERICAL APPLICATIONS 

 

To demonstrate the method of (G′/G) expansion method we 

solve the following two problems. 

 

3.1 Equation of foam drainage 

 

Assume the equation of Foam drainage [9] 

 

𝜕𝜂

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜂2 −

√𝜂

2

𝜕𝜂

𝜕𝑥
) = 0. (7) 

 

Here time coordinates (t) and scaled position (x) express the 

channel formed of a cross-section at the intersection spot from 

three films, mostly referred to as the border of the plateau 

(Channels filled with liquid). We concentrate on measurable 

detail of coupling of drainage. Foam effluent is the movement 

of fluid from the boundaries of the Plateau and the point 

wherever four channels satisfy among the gravity bubbles and 

capillarity. Drainage of foam stability plays a vital part in foam 

balance. In case, the structure of foam becomes fragile, when 

the foam become dry.  

Considering the wave transformation as 𝜂 = 𝜙(𝜉)̅, 𝜉̅ =

𝛾(𝑥 + 𝜔𝑡),  here unknown constants are ω and γ, the given 

partial differential Eq. (7) is being changed to 

 

𝛾𝜔
𝜕𝜙

𝜕𝜉
+ 𝛾

𝜕

𝜕𝜉
(𝜙2 −

𝛾

2
√𝜙

𝜕𝜙

𝜕𝜉
) = 0. (8) 

 

Integrate Eq. (8) w.r.t. η and putting integration of constant 

equal to 0, we have   

 

𝛾𝜔𝜙 + 𝛾 (𝜙2 −
𝛾

2
√𝜙

𝜕𝜙

𝜕𝜉
) = 0. (9) 

 

By substituting 𝜙(𝜉̅) = ℎ2(𝜉)̅, we have 

 

𝛾𝜔ℎ2 + 𝛾 (ℎ4 −
𝛾

2
ℎ. 2ℎℎ′) = 0. (10) 

 

Or equivalently 
 

𝜔 + ℎ2 − 𝛾ℎ′ 
 

With the help of homogenous balancing principle for h′ and 

h2, we obtain 

 

𝑀 + 1 = 2𝑀,𝑀 = 1. 
 

We suppose the solution of Eq. (10) according to the value 

of M as 
 

ℎ = 𝑎0 + 𝑎1 (
G′

G
) , 𝑎1 ≠ 0. (11) 
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where, the unknown constants are a0 and a1 to be find later. 

𝐺 = 𝐺(𝜉̅)  satisfy the linear ordinary differential equation of 

2nd order of the form 

 

𝐺″(𝜉)̅ + 𝜆G′(𝜉̅) + 𝜇𝐺(𝜉)̅ = 0. (12) 

 

Constants are λ and μ, from Eq. (12), we have 

 
𝐺′

𝐺

=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
√𝜆2 − 4𝜇

2

(

 
 
𝑘1𝑠𝑖𝑛ℎ (

√𝜆2 − 4𝜇𝜉̅

2
) + 𝑘2𝑐𝑜𝑠ℎ (

√𝜆2 − 4𝜇𝜉̅

2
)

𝑘1𝑐𝑜𝑠ℎ (
√𝜆2 − 4𝜇𝜉̅

2
) + 𝑘2𝑠𝑖𝑛ℎ (

√𝜆2 − 4𝜇𝜉̅

2
)
)

 
 

−
𝜆

2
, 𝜆2 − 4𝜇 > 0.

√4𝜇 − 𝜆2

2

(

 
 
−𝑘1𝑠𝑖𝑛ℎ (

√4𝜇 − 𝜆2𝜉̅

2
) + 𝑘2𝑐𝑜𝑠ℎ (

√4𝜇 − 𝜆2𝜉̅

2
)

𝑘1𝑐𝑜𝑠ℎ (
√4𝜇 − 𝜆2𝜉̅

2
) + 𝑘2𝑠𝑖𝑛ℎ (

√4𝜇 − 𝜆2𝜉̅

2
)
)

 
 

−
𝜆

2
, 𝜆2 − 4𝜇 < 0.

2𝑘1

𝑘1 + 𝑘2𝜉̅
−
𝜆

2
, 𝜆2 − 4𝜇 = 0.

 

 

Using the Eq. (11) in Eq. (10) and by equating coefficients 

of the identical order of (
𝐺′

𝐺
) , we obtain a collection of 

algebraic equations for ω a0 and a1 as follows 

 

(
G′

G
)

0

: ω + 𝑎0
2 + 𝑎1𝜆𝜇 = 0, 

(
G′

G
)

1

: 2𝑎0𝑎1 + 𝑎1𝜆
2 = 0, 

(
G′

G
)

2

: 𝑎1
2 + 𝑎1𝜆 = 0. 

 

Constants ω a0 and a1 can be obtained with the help of 

MAPLE 18, we have one of the solution set 

 

𝑎0 = −
1

2
𝜆2, 𝑎1 = −𝜆,𝜔 = −

1

4
𝜆4 + 𝜆2𝜇. (13) 

 

By using values of the constants a0 a1 and a2 into Eq. (11), 

we obtain 

 

ℎ = −𝜆 (
G′

G
) −

1

2
𝜆2, 𝜔 = −

1

4
𝜆4 + 𝜆2𝜇. (14) 

 

Case I: When λ2-4μ>0, 

 
ℎ1

= −
𝜆√𝜆2 − 4𝜇

2

(

 
 
𝑘1𝑠𝑖𝑛ℎ (

√𝜆2 − 4𝜇𝜉̅

2 ) + 𝑘2𝑐𝑜𝑠ℎ(
√𝜆2 − 4𝜇𝜉̅

2 )

𝑘1𝑐𝑜𝑠ℎ (
√𝜆2 − 4𝜇𝜉̅

2 ) + 𝑘2𝑠𝑖𝑛ℎ (
√𝜆2 − 4𝜇𝜉̅

2 )
)

 
 
. (15) 

 

here, k1 and k2 are constants. 

If k1=0, then obtained solution (15) can be expressed as 

 

ℎ2 = −
𝜆√𝜆2 − 4𝜇

2
𝑐𝑜𝑡ℎ (

√𝜆2 − 4𝜇𝜉̅

2
) (16) 

If k2=0, then obtained solution (15) can be expressed as: 

 

ℎ3 = −
𝜆√𝜆2 − 4𝜇

2
𝑡𝑎𝑛ℎ (

√𝜆2 − 4𝜇𝜉̅

2
) (17) 

 

Case II: When λ2-4μ<0, 

 
ℎ4

= −
𝜆√4𝜇 − 𝜆2

2

(

 
 
−𝑘1𝑠𝑖𝑛ℎ(

√4𝜇 − 𝜆2𝜉̅

2
) + 𝑘2𝑐𝑜𝑠ℎ(

√4𝜇 − 𝜆2𝜉̅

2
)

𝑘1𝑐𝑜𝑠ℎ(
√4𝜇 − 𝜆2𝜉̅

2
) + 𝑘2𝑠𝑖𝑛ℎ(

√4𝜇 − 𝜆2𝜉̅

2
)
)

 
 
. (18) 

 

If k1=0, then obtained solution (18) can be expressed as: 

 

ℎ5 = −
𝜆√4𝜇 − 𝜆2

2
𝑐𝑜𝑡ℎ (

√4𝜇 − 𝜆2𝜉̅

2
). (19) 

 

If k2=0, then obtained solution (18) can be expressed as: 

 

ℎ6 =
𝜆√4𝜇 − 𝜆2

2
𝑡𝑎𝑛ℎ (

√4𝜇 − 𝜆2𝜉̅

2
). (20) 

 

Case III: When λ2-4μ=0. 

 

ℎ7 = −
2𝜆𝑘1

𝑘1 + 𝑘2𝜉̅
. (21) 

 

Here in all above cases 

 

𝜉̅ = 𝛾 (𝑥 + (−
1

4
𝜆4 + 𝜆2𝜇) 𝑡). 

  

3.2 4th order nonlinear evolution equation 

 

Consider the fourth order NLEE [14] 

 

ηtt − aηxtηxx + bηxxxt = 0. (22) 

 

In above equation a and b are arbitrary constants. NLEE of 

4th order is one of the good mathematical model for studying 

non-linear waves of water which Dysthe first pointed out in 

1979. Within the presence of air flowing and a fundamental 

current sheer, he gained through gravity waves producing at 

the interface of two superposed fluids of immeasurable depth 

over water. 

By mean of applying of the transformation as 𝜉 ̅=x-ωt, the 

given partial differential Eq. (22) is being changed to ordinary 

differential equation  
 

𝜔𝜂″ − 𝑎(𝜂″)2 − 𝑏𝜂(𝑖𝑣) = 0. (23) 

 

By putting m=η″, we have 
 

𝜔𝑚 − 𝑎𝑚2 − 𝑏𝑚″ = 0. (24) 
 

With the help of homogenous principle, we balance the 

𝑚″and 𝑚2, we obtain 

 

2M = 𝑀 + 2,𝑀 = 2. 
 

Now, we consider solution of Eq. (24) as  
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𝑚 = 𝑎0 + 𝑎1 (
G′

G
) + 𝑎2 (

G′

G
)

2

, 𝑎2 ≠ 0. (25) 

 

where, the unknown constants are a0, a1 and a2 to be find later.  

G=G(𝜉)̅ satisfy the linear ordinary differential equation of 

2𝑛𝑑 order of the form 

 

𝐺″(𝜉)̅ + 𝜆G′(𝜉̅) + 𝜇𝐺(𝜉)̅ = 0. (26) 

 

μ and λ are constants, from Eq. (26), we get 

 

G′

G
=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
√𝜆2 − 4𝜇

2

(

 
 
𝑘1𝑠𝑖𝑛ℎ (

√𝜆2 − 4𝜇𝜉̅

2 ) + 𝑘2𝑐𝑜𝑠ℎ(
√𝜆2 − 4𝜇𝜉̅

2 )

𝑘1𝑐𝑜𝑠ℎ (
√𝜆2 − 4𝜇𝜉̅

2 ) + 𝑘2𝑠𝑖𝑛ℎ (
√𝜆2 − 4𝜇𝜉̅

2 )
)

 
 

−
𝜆

2
, 𝜆2 − 4𝜇 > 0.

√4𝜇 − 𝜆2

2

(

 
 
−𝑘1𝑠𝑖𝑛ℎ (

√4𝜇 − 𝜆2𝜉̅

2 ) + 𝑘2𝑐𝑜𝑠ℎ (
√4𝜇 − 𝜆2𝜉̅

2 )

𝑘1𝑐𝑜𝑠ℎ (
√4𝜇 − 𝜆2𝜉̅

2 ) + 𝑘2𝑠𝑖𝑛ℎ (
√4𝜇 − 𝜆2𝜉̅

2 )
)

 
 

−
𝜆

2
, 𝜆2 − 4𝜇 < 0.

2𝑘1

𝑘1 + 𝑘2𝜉̅
−
𝜆

2
, 𝜆2 − 4𝜇 = 0.

 

 

Using the Eq. (25) in Eq. (24) and by equating coefficients 

of (
𝐺′

𝐺
)  with same order, we obtain a collection of algebraic 

equations for ω a0, a1 and a2 as follows  

 

(
G′

G
)

0

: ω𝑎0 − 𝑎𝑎0
2 − 𝑏𝑎1𝜆𝜇 − 2𝑏𝑎2𝜇

2 = 0, 

(
G′

G
)

1

: ω𝑎1 − 2𝑎𝑎0𝑎1 − 𝑏𝑎1𝜆
2 − 2𝑏𝑎1𝜇 − 6𝑏𝑎2𝜆𝜇 = 0 

(
G′

G
)

2

: ω𝑎2 − 2𝑎𝑎0𝑎2 − 𝑎𝑎1
2 − 3𝑏𝑎1𝜆 − 4𝑏𝑎2𝜆

2 − 8𝑏𝑎2𝜇

= 0, 

(
G′

G
)

3

: − 2𝑎𝑎1𝑎2 − 2𝑏𝑎1 − 10𝑏𝑎2𝜆 = 0, 

(
G′

G
)

4

: − 𝑎𝑎2
2 − 6𝑏𝑎2 = 0. 

 

Constants ω a0, a1 and a2 can be obtained with the help of 

MAPLE 18, we obtain following two solution sets 

 

1st Solution Set: 

 

𝑎2 = −
6𝑏

𝑎
, 𝑎1 = −

6𝑏𝜆

𝑎
, 𝑎0 = −

6𝑏𝜇

𝑎
, 𝜔

= −4𝑏𝜇 + 𝑏𝜆2. 
(27) 

 

By using the values of a0, a1 and a2 in Eq. (25),  

 

𝑚 = −
6𝑏

𝑎
(
G′

G
)

2

−
6𝑏𝜆

𝑎
(
G′

G
) −

6𝑏𝜇

𝑎
. 

 

Case I: When λ2-4μ>0, 

 

𝑚1 = −3𝑏 (
𝜆2−4𝜇

2𝑎
)

(

 
 
𝑘1𝑠𝑖𝑛ℎ(

√𝜆2−4𝜇�̅�

2
)+𝑘2𝑐𝑜𝑠ℎ(

√𝜆2−4𝜇�̅�

2
)

𝑘1𝑐𝑜𝑠ℎ(
√𝜆2−4𝜇�̅�

2
)+𝑘2𝑠𝑖𝑛ℎ(

√𝜆2−4𝜇�̅�

2
)

)

 
 

2

 −

6𝑏𝜇

𝑎
. 

(28) 

 

𝜂1 = −3𝑏 (
𝜆2−4𝜇

2𝑎
)∬

(

 
 
𝑘1𝑠𝑖𝑛ℎ(

√𝜆2−4𝜇�̅�

2
)+𝑘2𝑐𝑜𝑠ℎ(

√𝜆2−4𝜇�̅�

2
)

𝑘1𝑐𝑜𝑠ℎ(
√𝜆2−4𝜇�̅�

2
)+𝑘2𝑠𝑖𝑛ℎ(

√𝜆2−4𝜇�̅�

2
)

)

 
 

2

�̅�

0
d𝜉̅d𝜉̅ −

3𝑏𝜇�̅�2

𝑎
.    

(29) 

 

where, k1 and k2 are arbitrary constants. 

If k1=0, then solutions in Eq. (28) and (29) can be expressed 

as 

 

𝑚2 = −3𝑏 (
𝜆2 − 4𝜇

2𝑎
) 𝑐𝑜𝑡ℎ2 (

√𝜆2 − 4𝜇𝜉̅

2
) −

6𝑏𝜇

𝑎
. (30) 

 

𝜂2 = −3𝑏 (
𝜆2 − 4𝜇

2𝑎
)∬ 𝑐𝑜𝑡ℎ2 (

√𝜆2 − 4𝜇𝜉̅

2
) 𝑑𝜉̅d𝜉̅

�̅�

0

−
3𝑏𝜇𝜉̅2

𝑎
 

(31) 

 

If k2=0, then solutions in Eqns. (28) and (29) can be 

expressed as 

 

𝑚3 = −3𝑏 (
𝜆2 − 4𝜇

2𝑎
) 𝑡𝑎𝑛ℎ2 (

√𝜆2 − 4𝜇𝜉̅̅

2
) −

6𝑏𝜇

𝑎
. (32) 

 

𝜂3 = −3𝑏 (
𝜆2 − 4𝜇

2𝑎
)∬ 𝑡𝑎𝑛ℎ2 (

√𝜆2 − 4𝜇𝜉̅

2
) 𝑑𝜉̅d𝜉̅

�̅�

0

−
3𝑏𝜇𝜉̅2

𝑎
. 

(33) 

 

Case II: When λ2-4μ<0, 

 

𝑚4 = −3𝑏 (
4𝜇 − 𝜆2

2𝑎
)

(

 
 
−𝑘1𝑠𝑖𝑛ℎ (

√4𝜇 − 𝜆2𝜉̅

2
) + 𝑘2𝑐𝑜𝑠ℎ (

√4𝜇 − 𝜆2𝜉̅

2
)

𝑘1𝑐𝑜𝑠ℎ (
√4𝜇 − 𝜆2𝜉̅

2
) + 𝑘2𝑠𝑖𝑛ℎ (

√4𝜇 − 𝜆2𝜉̅

2
)
)

 
 

2

−
6𝑏𝜇2

𝑎
. (34) 

 

𝜂4 = −3𝑏 (
4𝜇−𝜆2

2𝑎
)∬

(

 
 
𝑘1𝑠𝑖𝑛ℎ(

√4𝜇−𝜆2�̅�

2
)+𝑘2𝑐𝑜𝑠ℎ(

√4𝜇−𝜆2�̅�

2
)

𝑘1𝑐𝑜𝑠ℎ(
√4𝜇−𝜆2�̅�

2
)+𝑘2𝑠𝑖𝑛ℎ(

√4𝜇−𝜆2�̅�

2
)

)

 
 

2

�̅�

0
d𝜉̅d𝜉̅ −

3𝑏𝜇�̅�2

𝑎
.     (35) 
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If k1=0, so the solution in Eqns. (34) and (35) can be 

expressed as 

 

𝑚5 = −3𝑏 (
4𝜇 − 𝜆2

2𝑎
) 𝑐𝑜𝑡ℎ2 (

√4𝜇 − 𝜆2𝜉̅

2
) −

6𝑏𝜇

𝑎
. (36) 

 

ℎ5 = −3𝑏 (
4𝜇 − 𝜆2

2𝑎
)∬ 𝑐𝑜𝑡ℎ2 (

√4𝜇 − 𝜆2𝜉̅

2
)

�̅�

0

 d𝜉̅d𝜉̅

−
3𝑏𝜇𝜉̅2

𝑎
. 

(37) 

 

If k2=0, so the solutions in Eqns. (34) and (35) can be 

expressed as 

 

𝑚6 = −3𝑏 (
4𝜇 − 𝜆2

2𝑎
) 𝑡𝑎𝑛ℎ2 (

√4𝜇 − 𝜆2𝜉̅

2
) −

6𝑏𝜇

𝑎
. (38) 

 

𝜂5 = −3𝑏 (
4𝜇 − 𝜆2

2𝑎
)∬ 𝑡𝑎𝑛ℎ2 (

√4𝜇 − 𝜆2𝜉̅

2
)

�̅�

0

 d𝜉̅d𝜉̅

−
3𝑏𝜇𝜉̅2

𝑎
. 

(39) 

 

Case III: When λ2-4μ=0, 

 

𝑚7 = −24𝑏
𝑘1
2

𝑎(k1 + k2𝜉̅)
2 −

6𝑏𝜇

𝑎
. (40) 

  

𝜂7 = −24𝑏∬
𝑘1
2

𝑎(k1 + k2𝜉)̅
2

�̅�

0

 d𝜉̅d𝜉̅ −
3𝑏𝜇𝜉̅2

𝑎
. (41) 

 

Here in above all the cases 𝜉=̅x-(-4bμ+bλ2)t. 

 

2nd Solution Set: 

 

𝑎0 = −
𝑏(𝜆2 + 2𝜇)

𝑎
, 𝑎1 = −

6𝑏𝜆

𝑎
,

𝑎2 =
−6𝑏

𝑎
, 𝜔 = −𝑏𝜆2 + 4𝑏𝜇.

} (42) 

 

By using the values of a0, a1 and a2 in Eq. (25), we have 

 

𝑚 =
−6𝑏

𝑎
(
G′

G
)

2

−
6𝑏𝜆

𝑎
(
G′

G
) −

𝑏(𝜆2 + 2𝜇)

𝑎
. 

 

Case I: When λ2-4μ>0, 

 
𝑚8

= −3𝑏(
𝜆2 − 4𝜇

2𝑎
)

(

 
 
𝑘1𝑠𝑖𝑛ℎ (

√𝜆2 − 4𝜇𝜉̅

2
) + 𝑘2𝑐𝑜𝑠ℎ(

√𝜆2 − 4𝜇𝜉̅

2
)

𝑘1𝑐𝑜𝑠ℎ(
√𝜆2 − 4𝜇𝜉̅

2
) + 𝑘2𝑠𝑖𝑛ℎ(

√𝜆2 − 4𝜇𝜉̅

2
)
)

 
 

2

−
𝑏(𝜆2 + 2𝜇)

𝑎
. 

(43) 

 
𝜂8

= −3𝑏 (
𝜆2 − 4𝜇

2𝑎
)∬

(

 
 
𝑘1𝑠𝑖𝑛ℎ (

√𝜆2 − 4𝜇𝜉̅

2
) + 𝑘2𝑐𝑜𝑠ℎ (

√𝜆2 − 4𝜇𝜉̅

2
)

𝑘1𝑐𝑜𝑠ℎ (
√𝜆2 − 4𝜇𝜉̅

2
) + 𝑘2𝑠𝑖𝑛ℎ (

√𝜆2 − 4𝜇𝜉̅

2
)
)

 
 

2

−
𝑏(𝜆2 + 2𝜇)𝜉̅2

2𝑎
.

�̅�

0

d𝜉d̅𝜉 ̅ (44) 

 

where, k1 and k2 are arbitrary constants. 

If k1=0, then solutions in Eqns. (43) and (44) can be simplif

ied as 

 

𝑚9 = −3𝑏 (
𝜆2 − 4𝜇

2𝑎
) 𝑐𝑜𝑡ℎ2 (

√𝜆2 − 4𝜇𝜉̅

2
) −

𝑏(𝜆2 + 2𝜇)

𝑎
. (45) 

  

𝜂9 = −3𝑏 (
𝜆2 − 4𝜇

2𝑎
)∬𝑐𝑜𝑡ℎ2 (

√𝜆2 − 4𝜇𝜉̅

2
)

�̅�

0

d𝜉̅𝑑𝜉̅

−
𝑏(𝜆2 + 2𝜇)𝜉̅2

2𝑎
. 

(46) 

 

If k2=0, then solution (43) and (44) can be simplified as 

 

𝑚10 = −3𝑏 (
𝜆2 − 4𝜇

2𝑎
) 𝑡𝑎𝑛ℎ2 (

√𝜆2 − 4𝜇𝜉̅

2
)

−
𝑏(𝜆2 + 2𝜇)

𝑎
. 

(47) 

 

𝜂10 = −3𝑏 (
𝜆2 − 4𝜇

2𝑎
)∬𝑡𝑎𝑛ℎ2 (

√𝜆2 − 4𝜇𝜉̅

2
)

�̅�

0

d𝜉̅𝑑𝜉̅

−
𝑏(𝜆2 + 2𝜇)𝜉̅2

2𝑎
. 

(48) 

 

Case II: When λ2-4μ<0, 

 

𝑚11 =

−3𝑏 (
4𝜇−𝜆2

2𝑎
)

(

 
 
−𝑘1𝑠𝑖𝑛ℎ(

√4𝜇−𝜆2�̅�

2
)+𝑘2𝑐𝑜𝑠ℎ(

√4𝜇−𝜆2�̅�

2
)

𝑘1𝑐𝑜𝑠ℎ(
√4𝜇−𝜆2�̅�

2
)+𝑘2𝑠𝑖𝑛ℎ(

√4𝜇−𝜆2�̅�

2
)

)

 
 

2

−

𝑏(𝜆2+2𝜇)

𝑎
.     

(49) 

 
𝜂11 =

−3𝑏 (
4𝜇−𝜆2

2𝑎
)∬

(

 
 
𝑘1𝑠𝑖𝑛ℎ(

√4𝜇−𝜆2�̅�

2
)+𝑘2𝑐𝑜𝑠ℎ(

√4𝜇−𝜆2�̅�

2
)

𝑘1𝑐𝑜𝑠ℎ(
√4𝜇−𝜆2�̅�

2
)+𝑘2𝑠𝑖𝑛ℎ(

√4𝜇−𝜆2�̅�

2
)

)

 
 

2

�̅�

0
d𝜉̅𝑑𝜉̅ −

𝑏(𝜆2+2𝜇)�̅�2

2𝑎
.    

(50) 

 

If 𝑘1 = 0, then solutions in equation (49) and (50) can be 

simplified as 

 

𝑚12 = −3𝑏 (
4𝜇 − 𝜆2

2𝑎
) 𝑐𝑜𝑡ℎ2 (

√4𝜇 − 𝜆2𝜉̅

2
)

−
𝑏(𝜆2 + 2𝜇)

𝑎
 

(51) 

 

𝜂12 = −3𝑏 (
4𝜇−𝜆2

2𝑎
)∬ 𝑐𝑜𝑡ℎ2 (

√4𝜇−𝜆2�̅�

2
)

�̅�

0
d𝜉̅𝑑𝜉̅ −

𝑏(𝜆2+2𝜇)�̅�2

2𝑎
.     

(52) 

 

If k2=0, then solutions in Eqns. (49) and (50) can be 

simplified as 

 

𝑚13 = −3𝑏 (
4𝜇 − 𝜆2

2𝑎
) 𝑡𝑎𝑛ℎ2 (

√4𝜇 − 𝜆2𝜉̅

2
)

−
𝑏(𝜆2 + 2𝜇)

𝑎
. 

(53) 
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𝜂13 = −3𝑏 (
4𝜇 − 𝜆2

2𝑎
)∬𝑡𝑎𝑛ℎ2 (

√4𝜇 − 𝜆2𝜉̅

2
)

�̅�

0

d𝜉̅𝑑𝜉̅

−
𝑏(𝜆2 + 2𝜇)𝜉̅2

2𝑎
. 

(54) 

 

Case III: When λ2-4μ=0, 

 

𝑚14 = −24𝑏
𝑘1
2

𝑎(𝑘1 + 𝑘2𝜉)̅
2 −

𝑏(𝜆2 + 2𝜇)

𝑎
. (55) 

 

𝜂14 = −24𝑏∬
𝑘1
2

𝑎(k1 + k2𝜉̅)
2

�̅�

0

 d𝜉d̅𝜉̅

−
𝑏(𝜆2 + 2𝜇)𝜉̅2

2𝑎
. 

(56) 

 

Here in above all the cases 𝜉=̅x-(-4bμ+bλ2)t. 

 

 

4. RESULTS AND DISCUSSION 
 

 
 

Figure 1. Solution of soliton h1(x, y) for k1=1, γ=1, λ=3, μ=1, 

k2=1.5 
 

Through graphical demonstrations, we observe that the 

soliton is a wave that keeps its shape preserve after colliding 

by some other similar wave. By solving nonlinear evolution 

equations including the equation of foam drainage and the 

equation of 4th order evolution, we get required solitary wave 

solutions by using distinct values of random parameter. If the 

speed is positive, the solitary wave move in right direction and 

if the velocity is negative, it moves in left direction. The 

amplitude and velocities are controlled by parameters of 

various kind. Figures represent graphical illustration for 

different parameter values. Figure 1 describes a periodic wave 

solution by using parameters values as γ=1, λ=3 and μ=1, 

Figure 2 also describes a periodic wave solution by using 

parameters values as γ=1.5, λ=4 and μ=2. Similarly Figures 

from 1 to 11 demonstrate that periodic wave solution for 

different values of parameters. Figure 12 represents a solitary 

wave solution by using parameters values as λ=4 and μ=2. 

Figure 13 represents a solitary wave solution by using 

parameters values as λ=3 and μ=1. The soliton solution which 

are shown in Figures 12 to 15 and Figures 17 to 20 represents 

solitary wave solutions for different values of parameters like 

μ and λ. Figure 16 presents the peakon solution by using 

parameters values as μ=2 and λ=4. In all above discussed cases, 

we obtain identical solitary wave solutions for different values 

of parameters which absolutely show that the final solution is 

not always based on these parameters effectively. Therefore, 

we can consider random values of these parameters as input 

into our solutions. The results are obtained by using analytic 

technique (G'⁄G)-expansion method. Graphical representations 

reveal the accuracy of the proposed technique. 

 

 
 

Figure 2. Solution of soliton h1(x, t) for k2=2.5, λ=4, γ=1.5, 

μ=2, k1=1 

 

 
 

Figure 3. Solution of soliton h2(x, t) for λ=3, γ=1, μ=1 

 

 
 

Figure 4. Solution of soliton h2(x, t) for γ=2, μ=2, λ=4
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Figure 5. Solution of soliton h3(x, t) for μ=2, γ=2, λ=4 

 

 
 

Figure 6. Solution of soliton h3(x, t) for λ=3, γ=2.5, μ=2 

 

 
 

Figure 7. Solution of soliton h4(x, t) for k2=1.5, λ=3, γ=2.5, 

μ=2, k1=1 

 

 
 

Figure 8. Solution of soliton h4(x, t) for μ=2, k2=2, k1=1.5, 

λ=2, γ=3  

 
 

Figure 9. Solution of soliton h5(x, t) for λ=2, μ=2, γ=3 

 

 
 

Figure 10. Solution of soliton h5(x, t) for μ=3, γ=3.5, λ=3 

 

 
 

Figure 11. Solution of soliton h6(x, t) for μ=3, γ=3.5, λ=3 

 

 
 

Figure 12. Solution of soliton m1(x, t) for λ=4, k1=2, b=2.5, 

k2=0.5, a=2.5, μ=2 
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Figure 13. Solution of soliton m1(x, t) for a=1.5, k1=1, μ=1, 

k2=1.5, λ=3, b=2 

 

 
 

Figure 14. Solution of soliton m2(x, t) for a=1.5, λ=3, b=2, 

μ=1 

 

 
 

Figure 15. Solution of soliton m2(x, t) for μ=2, λ=4, b=2.5  

 

 
 

Figure 16. Solution of soliton m3(x, t) for a=2.5, μ=2, λ=4, 

b=2.5 

 
 

Figure 17. Solution of Soliton m3(x, t) for λ=3, b=2, a=0.5, 

μ=2 

 

 
Figure 18. Solution of soliton m4(x, t) for λ=2, k2=1.5, k1=1, 

μ=2, b=2, a=0.5 

 

 
 

Figure 19. Solution of soliton m4(x, t) for μ=2, k2=2, b=1, 

a=7.5, k1=1.5, λ=1 
 

 
Figure 20. Solution of Soliton m5(x, t) for λ=1, μ=2, b=1, 

a=7.5 
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5. CONCLUSIONS

The more general and also new useful exact solutions of 

NLEEs has been attained in this research paper via using the 

method of (G'⁄G)-expansion method. For this purpose, the 

equation of nonlinear foam drainage and the evolution 

equation of fourth order were considered. Through various 

values of parameters, we obtained the desired soliton solutions 

of different types. The exactness of the obtained results is 

guaranteed by using obtained solutions into the partial 

differential equation by using software Maple 18. The 

methodology of the proposed method is very simple, efficient 

and straightforward. It was observed that the method under 

consideration is reliable, effective and have lesser 

computational work. Precisely, this method is very reliable and 

widely applicable for obtaining exact solution of NLEEs. 

Computational work and the graphical illustration shows the 

validity of the given algorithm. Outcomes attained through this 

technique are straightforward and very encouraging to 

determine exact solutions of any kind of NLEEs. The graphical 

illustrations noticeably show the solitary solutions. 

REFERENCES 

[1] Aslan, I. (2011). Exact and explicit solutions to some

nonlinear evolution equations by utilizing the (G’/G)-

expansion method. Applied Mathematics and 

Computation, 217(20): 8134-8139. 

http://dx.doi.org/10.1016/j.amc.2009.05.038 

[2] Bekir, A. (2008). Application of the (G’/G)-expansion

method for nonlinear evolution equations. Physics Letter

A, 372(19): 3400–3406.

http://dx.doi.org/10.1016/j.physleta.2008.01.057

[3] Feng, J., Li, W., Wan, Q. (2011). Using

(G′/G)−expansion method to seek traveling wave

solution of Kolmogorov-Petrovskii-Piskunov equation.

Applied Mathematics and Computation, 217(12): 5860-

5865. https://doi.org/10.1016/j.amc.2010.12.071

[4] Song, M., Ge, Y. (2010). Application of (G`/G)-

expansion method to (3+1)-dimensional nonlinear

evolution equations. Computers and Mathematics with

Applications, 60(5): 1220-1227.

https://doi.org/10.1016/j.camwa.2010.05.045

[5] Naher, H., Abdullah, F., Akbar, M.A. (2011). The

(G′/G)−expansion method for abundant traveling wave

solutions of Caudrey-Dodd-Gibbon equation.

Mathematical Problems in Engineering, Article ID:

218216. https://doi.org/10.1155/2011/218216

[6] Ozis T., Aslan, I. (2010). Application of the

(G′/G)−expansion method to Kawahara type equations

using symbolic computation. Applied Mathematics and

Computation, 216(8): 2360-2365.

https://doi.org/10.1016/j.amc.2010.03.081

[7] Wang, M., Li X., Zhang, J. (2008). The

(G′/G)−expansion method and traveling wave solutions

of nonlinear evolution equations in mathematical physics. 

Physics Letter  A, 372(4): 417-423. 

https://doi.org/10.1016/j.physleta.2007.07.051 

[8] Zayed, E.M.E., Al-Joudi, S. (2010). Applications of an

Extended (G′/G)−Expansion Method to Find Exact

Solutions of Nonlinear PDEs in Mathematical Physics.

Mathematical Problems in Engineering, Article ID:

768573. https://doi.org/10.1155/2010/768573

[9] Duranda M., Langevin, D. (2002). Physicochemical

approach to the theory of foam drainage. The European

Physical Journal E., 7: 35-44.

https://doi.org/10.1140/epje/i200101092

[10] Naher, H., Abdullah, F.A., Akbar, M.A. (2013).

Generalized and improved (G′/G)−expansion method for

(3+1) dimensional modified KdV-Zakharov-Kuznetsev

equation. Plos One, 8(5): e64618.

http://dx.doi.org/10.1371/journal.pone.0064618

[11] Roshid, H., Akbar, M.A., Alam, M.N., Hoque, M.D.,

Rahman, N. (2014). New extended (G’/G)-expansion

method to solve nonlinear evolution equation: the (3 + 1)-

dimensional potential-YTSF equation. Springer Plus, 3:

122. https://doi.org/10.1186/2193-1801-3-122

[12] Chen, J., Li, B. (2012). Multiple (G`/G)-expansion

method and its applications to nonlinear evolution

equations in mathematical physics. Indian Academy of

Sciences, 28(3): 375-388.

https://doi.org/10.1007/s12043-011-0237-6

[13] Wang, M., Zhang, J., Li, X. (2008). Application of the
(𝐺′ 𝐺⁄ ) -expansion to traveling wave solutions of the

Broer-Kaup and the approximate long water wave

equations. Applied Mathematics and Computation,

206(1): 321-326.

https://doi.org/10.1016/j.amc.2008.08.045

[14] Aslan, I., O z̈ is, T. (2009). Analytic study on two

nonlinear evolution equations by using the (G`/G)-

expansion method. Applied Mathematics and 

Computation, 209(2): 425-429.

https://doi.org/10.1016/j.amc.2008.12.064 

[15] Yang, X.J. (2017). A new integral transform operator for

solving the heat-diffusion problem. Applied Mathematics

Letters, 64: 193-197.

https://doi.org/10.1016/j.aml.2016.09.011

[16] Yang, X.J. (2016). A New integral transform method for

solving steady Heat transfer problem. Thermal Science,

20(suppl. 3): S639-S642.

https://doi.org/10.2298/TSCI16S3639Y

[17] Yang, X.J., Tenreiro, J.A., Baleanu, D., Cattani, C.

(2016). On exact traveling wave solutions for local

fractional Korteweg-de Vries equation. Chaos, 26(8):

084312. http://dx.doi.org/10.1063/1.4960543

[18] Yang, X.J., Feng, G., Srivastava, H.M. (2017). Exact

travelling wave solutions for the local fractional two-

dimensional Burgers-type equations. Computers &

Mathematics with Applications, 73(2): 203-210.

http://dx.doi.org/10.1016/j.camwa.2016.11.012

250

https://doi.org/10.1155/2011/218216
https://doi.org/10.1155/2010/768573
https://www.researchgate.net/journal/1292-8941_The_European_Physical_Journal_E
https://www.researchgate.net/journal/1292-8941_The_European_Physical_Journal_E



