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The purpose of the paper is to conduct the numerical simulation for the payoff of European 

option based on stochastic differential delay equations, and three results are given. Firstly, 

by means of simulating the delay factor, the classical Black-Scholes financial model is 

extended to the generalized Black-Scholes model, which is described by stochastic 

differential delay equations (SDDEs). Secondly, in view of the hardship that it is difficult to 

obtain the exact solutions of SDDEs, the algorithm, which includes the Euler-Maruyama 

method and Monte Carlo method, is introduced to such generalized model of SDDEs. Via 

controlling the global error of the final time asset price for determining the step-size and the 

number of sample path, the algorithm is given. Thirdly, the mean-square error of the 

algorithm is analysed in the simulation of European option payoff. Finally, the related 

numerical experiments are conducted according to the main conclusions. The obtained 

results may serve as the simulation of European option payoff. 
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1. INTRODUCTION

In some ways, the world is full of randomness. With the 

efforts of many scientists of several centuries, in 1949, the 

Japanese scientist Ito established the theory of stochastic 

differential equations (SDEs) and developed the qualitative 

and quantitative analysis methods for random phenomenon. In 

recent decades, the SDEs are important and applied widely in 

many fields such as medicine, economics, physics, biology, 

and control science [1-3].  

In the financial market and other areas, it is meaningful and 

significant to model the impact of the stochastic factors [4,5]. 

The classical Black-Scholes model in financial markets was 

first studied by means of SDEs [6]. With the development of 

mathematics theory, the classical Black-Scholes model of 

SDEs was extended from different angles. In previous studies 

[8,9], the classical model was improved by broadening the 

Hurst parameter from H = 1/2 to H∈(0,1), which can capture 

the characteristic of long-range dependence and heavy tailed 

distribution in miscellaneous financial data. In other studies [10], 

the model was revised by introducing θ process. However, the 

exact solutions of SDDEs can hardly be obtained. Hence, 

investigating appropriate numerical methods and studying 

their properties, which can be classified into strong and weak 

approximations [11-16], are very important both in theory and 

in application.  

But now, the results about European option payoff 

described by SDDEs was very few. The major aim here is to 

fill this gap in numerical simulation.  

2. PRELIMINARY STEPS

This chapter studies Ito’s SDDEs model in financial 

mathematics. 

( ) ( )d ( ( )) ( )d ( )dS t S t t V S t S t W t = + − 0 t T  R +

( ) ( ), 0, ( ) ([ ,0]; )S t t t t C R    += −    −

T m= Rm +  (1) 

Assuming the equation is one-dimensional, S(t) represents 

the market price of an asset at time t; τ>0 is time lag; γ>0 

stands for risk interest rate; V is perturbation function; ( )W t is 

a one-dimensional Brown movement; T is the final moment. 

The purpose is to simulate the profitability of European 

options and to discuss the second-moment error of simulated 

profits. 

Assume 1. Assuming that the wave function V∈(R+;R+) 

satisfies global bounded and local Lipschitz conditions, that is: 

( ) , 0, ( ) (0), 0V x K x V x V x   = 

For every R>0, the existing KR>0 makes: 

| ( ) ( ) | | |, , [0, ]RV x V x K x x x x R
− − −

−  =  

Assume 2. Assuming that ξ satisfies the Holder continuity of 

γ∈(0,1/2] that is: 

0

| ( ) ( ) |
sup

( )u v

v u

v u 


 

−   

−
 

−

The Model (1) discussed in this chapter is the special case 

of the autonomous delay differential equation which satisfies 

Assumptions 1 and 2. This model has a unique positive 

solution or non-negative solution. Since the solution has a 

finite probability expectation, a variety of options-related 

quantities can be established; 
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The Eq(1) is insensitive to small changes in the time delay 

τ, so the asset price ( )S t  and its associated option price do not 

change much; the various quantities associated with the option 

can be simulated numerically, not just theoretically. 

In this chapter, the advantages of applying Euler-Maruyama 

and Monte Carlo algorithms are that the choice of step size can 

reflect the global error of the asset price simulation at the final 

moment. In addition, the conditions for option profitability 

studied in this chapter are few. The numerical simulation 

method also has weaker requirements for the conditions of 

option profit. This is more general, so the application scope is 

relatively wide. 

Regarding the numerical method of Eq(1), many literatures 

have been studied. If h=τ/M, M∈N+, then the Euler-Maruyama 

method has a strong convergence order of 1/2 order and a weak 

convergence order of 1 order. This section introduces the 

concept of strong convergence order and weak convergence 

order. When the problem of orbit simulation for a stochastic 

system is required, a strongly convergent discrete format must 

be constructed so that the numerical solution converges to the 

analytical solution in a mean-square or almost-ambiguous 

sense. Sometimes, for a stochastic system, it is not the shape 

of the orbit, but a statistic of it, such as the first moment, the 

second moment, etc. The numerical solution given by the 

discretization scheme does not have to converge strongly, but 

only needs to satisfy the weak convergence. 

Definition 1 Divide the time interval [0,T]: 

0=t0<t1<...<tN=T, and record the corresponding numerical 

solution that is�̅�𝑖 , i=0,...,N, then the strict definition of γ -

squared mean convergence is as follows: 

 

2 2

1
0 1

E(|| || ) , max ( )N T i i
i N

X X C t t
−

+
  −

−    = −   

 

C is a constant that is independent of ∆, and γ is an integer 

or half-integer. 

Definition 2 Divide the time interval [0,T]: 

0=t0<t1<...<tN=T, and record the corresponding numerical 

solution that is �̅�𝑖 , i=0,...,N g is a function, so the strict 

definition of  -order weak convergence is as follows: 

 

1
0 1

|E[g( ) ( )] | , max ( )N T i i
i N

X g X C t t
−

+
  −

−    = −  

 

C is a constant that is independent of ∆, and γ is an integer 

or half-integer. 

Definition 3 The Monte Carlo method is also referred as 

Random simulation method, Random sampling technique or 

Statistical testing method. Its basic idea is that in order to solve 

the problems of mathematics, physics, engineering technology 

and production management, firstly a probabilistic model or a 

random process should be established so that its parameters 

are equal to the solution of the problem. Then, the statistical 

characteristics of the parameters should be calculated by 

observing or sampling the model or process. Finally, the 

approximate value of the solution is given, and the accuracy of 

the solution is given. This can be expressed as a standard error 

of the estimate. 

For the sake of simple discussion, this article assumes that 

financial markets are feasible and frictionless, that is, no taxes, 

no transaction fees, allowing short selling (borrowing 

securities and cash), and the deposit and loan interest rates of 

banks are the same. Assume again that the holder of this 

unconfirmed equity is a small investor and is self-financing, 

that is, the holder has neither added funds nor withdrew funds 

during the entire process. Here are some basic financial 

knowledge. 

Definition 4 Arbitrage in financial markets is an important 

concept, that is, people are driven by interests and are always 

looking for opportunities for arbitrage. The intuitive meaning 

of arbitrage is that there is no capital at the beginning, after the 

capital’s market operation, it becomes a non-negative (random) 

fund, and it has a positive probability of having a positive fund, 

which is commonly referred as “empty gloves and white wolf.” 

Definition 5 The market that satisfies the no-arbitrage 

hypothesis is called a viable market. 

Definition 6 A European call option that targets a security 

(known as the variable of the target) refers to a contract 

between Party A (generally a securities company) and Party B 

at 0=t. According to this contract, Party B has a right. A group 

of such securities can be purchased from Party A at time T at 

a price K  (called striking price or executable price), and if the 

market price 𝑆𝑇 at time T is lower than K, Party B may not buy. 

According to this agreement, as long as the market price 𝑆𝑇 of 

the securities is higher than K at time T, Party B will benefit. 

Therefore, Party B can get a net gain of 𝑋𝑇 = (𝑆𝑇 − 𝐾)+at 

time T. Among them, when 𝑎+ = {
𝑎 𝑎 > 0
0 𝑎 ≤ 0

, this kind of 

contract is called option. The kind of option that only allows 

Party B to make a choice at final time T is called European 

option. At this time, Party B wants 
ST  to be as large as 

possible in order to make more profits. That is, Party B, who 

has the right to choose, expects the stock to rise, so it is called 

a call option. In the opposite case, if t=0 Party A (usually the 

securities company) sells the following contract to Party B, 

this contract provides Party B with an authority to sell 

securities to Party A at the moment T with price K. If the 

market price ST is higher than K at time T, Party B may not sell. 

According to this contract, as long as the market price ST of 

the security is lower than K at time T, the seller will benefit. 

Therefore, Party B can obtain a net gain of XT=(K- ST)+ at time 

T. Therefore, Party B expects the stock to fall, so it is called a 

put option. 

For the sake of convenience, only European call options are 

studied and referred as European options for short in this paper. 

Assuming that the operating law of an asset price follows 

the model (1), this chapter mainly studies the numerical 

simulation algorithm of profitability of the asset option, profit 

simulation error, and algorithm complexity. T: the final 

moment, K: execution price, P :  Expected profit, 
-

p: the profit of 

numerical simulation, 𝑆̅(𝑡)  the price of the numerical 

simulation using Euler-Maruyama method at time t, second 

moment error is E(|𝑃 − �̅�|2). The profit of European options 

studied in this chapter is in the following two forms. 

 

0 0

P ( ) inf ( ),P sup ( )
t T t T

S T S t S t K

+

   

 
= − = − 

 
  

 

The numerical simulation is in the form of 

 

0 0

p ( ) inf ( ),p sup ( )
t T t T

S T S t S t K

+
− − − − −

   

 
= − = − 

 
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3. SIMULATING EUROPEAN OPTION PAYOFF 

BASED ON EULER-MARUYAMA AND MONTE 

CARLO ALGORITHM 

3.1 Euler-Maruyama and Monte Carlo algorithms 

Lemma 1 If the Eq(1) satisfies the conditions of 

Assumptions 1 and 2, then there is a unique global positive 

solution on t≥0:  

 
2[ 0.5( 1) ]E ( ) (0) , 0; 1, ( ) (0) , 0t p p p K tS t e t p ES t e t   + −         (9) 

 

and  

 

2
2 2

[ 0.5( 1) ]

2
0

9
E[sup ( )] (0) 2 , 0

[ 0.5( 1) ]

p p p p K T

t T

p K
S t e T

p p K




+ −

 

 
 +  

+ − 
 

 

In this chapter, firstlt the Euler-Maruyama method is 

applied to discrete Eq(1) through the initial isometric step size 

h  to obtain the following discrete format: 

 

1 [1 V( ) ]n n n M nS S h S W+ −= + +     h
M


=  

=(( 1) ) ( ), ( ) ( )n n nW n h W nh S S t S nh + − = =

0,1,2, , 1.n mM= −                                                             (2) 

 

Then, the numerical solution obtained from (2) is 

continuously constructed, thus constructing a continuous 

numerical solution orbit: 

 

0 0( ) (0) ( )d ( ( )) ( )d ( )t tS t x u u V x u x u W u  
−

= + + −   

1

1

[ , )( ) ( ), 0, ,

              , 1, ,0,1, , 1.

k k

mM

k t t k

k M

x t S I t t t kh

k M M mM

+

−

=−

=  =

= − − + −

                                (3) 

 

It’s easy to see  

 

( ) ( ) ( ), , 1, ,0,1, , 1.kS kh x kh S t k M M mM
−

= = = − − + −  

 

The mean value of the asset price at the final time T  is 

E(S(T)). The Euler-Maruyama discrete method (2) is used to 

obtain the sample orbit of the N asset price run, that is, the 

numerical solution sample orbit. Using the resulting N  

sample orbits and applying the standard Monte Carlo method, 

we construct an estimate expression 𝜇 =
1

𝑁
∑ 𝑆𝐾

[𝑖]𝑁
𝑖=1  for the 

mean E[S(T)], where K=mM, 𝑆𝐾
[𝑖]

 is an approximation of the 

asset price S(T) at the final moment on the sample trajectory. 

The Euler-Maruyama and Monte Carlo algorithms are applied 

to simulate the global error of the asset price at the final 

moment as E[S(T)]-𝜇. 

The procedure for constructing the estimated expression 𝜇. 

by the standard Monte Carlo method is as follows: 

For i=1,2,...,N. 

 
[ ]i

kgenerate W   1,2, , 1k mM= −  
[ ] [ ] [ ]

1/ * (0, )* /i i i

k k kW W W N h+ = −                                                   (4) 
[ ] [ ] [ ] [ ]

1 [1 ( ) ]i i i i

k k k M kS S h V S W+ −= + +   

1

1
[ ]

[ , )( ) ( ), 0
k k

mM
i

k t t

k M

x t S I t t
+

−

=−

=   

 

where  

 
[ ]

[ ]

0 0
( ) (0) ( )d ( ( )) ( )d ( )

i
T T

iS T x u u V x u x u W u  
−

= + + −   

\ / * :T final   * /time  

 
[ ]

1

1
= ( )

iN

i

S T
N


−

=

  

 

/∗ 𝑆̅[𝑖](T): approximation to S(T)at the i sample */ 

Theorem 1 If option Pricing Model Eq(1) satisfies 

Assumptions 1 and 2, applying the Euler-Maruyama method 

(2) and the standard Monte Carlo method (4) to simulate the 

profitability of this option, the global error of the asset price at 

the final moment E[S(T)]- 𝜇  the accuracy O(ε)  can be 

achieved. Then the value of the step length h  of the Euler-

Maruyama method and the number N  of the sample orbits of 

the standard Monte Carlo method can be determined by ε. 

Specially,  

 

2

1
,h N



 



 
= =     
 
 

 

 

Proof: According to Minkowski inequality, 

 

1,E | | ,E | |p pP     ,
1 1 1

(E | | ) (E | | ) (E | | )P P PP P P   +  +  

 

the Euler-Maruyama and Monte Carlo algorithms are used to 

analyse the global error of asset prices at the final moment as 

follows: 

 

2|| E[ ( )] ||S T −  

1

2 2(E[E[ ( )] ] )S T = −  
1

2 2(E[E[ ( )] E[ ( )] E[ ( )] ] )S T S T S T 
− −

= − + −  
1 1

2 22 2(E[E[ ( )] E[ ( )]] ) (E[E[ ( )] ] )S T S T S T 
− −

 − + −  

 

Because the Euler-Maruyama method has a weak 

convergence order of 1 order, there are 

 

E[ ( ) ( )] ( ), 0S T S T O h h
−

− = →  

 

The second term E[𝑆̅(T)]-𝜇  on the right is the statistical 

error of the standard Monte Carlo experiment. From the 

perspective of the confidence interval 

 
1

E[ ( )] ( ),S T O N
N


−

− = →  

 

We then have 

 
1 1

2 22 2(E[E[ ( )] E[ ( )]] ) (E[E[ ( )] ] )S T S T S T 
− −

− + −  

1
( ) ( ), 0,O h O h N

N
= + → →  
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2|| E[ ( )] || ( ), 0S T O  − = →  

 

We thus get 

 

2

1
,h N



 



 
= =     
 
 

 

 

The way that section titles and other headings are displayed 

in these instructions, is meant to be followed in your paper. 

3.2 Error analysis of option profit simulation 

This chapter assumes that the operating law of the asset 

price in the study follows Eq(1). It mainly studies the 

numerical simulation of European option profitability and the 

second-order moment error of profit numerical simulation. 

It mainly studies the profitability of the two options. The main 

difference between the two is that the final execution price is 

different. Taking the option profit P = (S(T) − 𝑆(𝑡)0≤𝑖≤𝑇
𝑖𝑛𝑓

) as 

an example to illustrate the process of numerical modelling of 

option profit: First, the Euler-Maruyama method is used to 

numerically discretize the Model (2) to obtain a numerical 

sample orbit of the asset price over time. Then, the step size is 

determined by controlling the global error of the asset price at 

the final moment, and then the simulation �̅� = (𝑆̅(T) −

𝑆̅(𝑡)0≤𝑖≤𝑇
𝑖𝑛𝑓

)  is calculated. Finally, the second-order moment 

error of profit simulation is analysed. 

Theorem 2 If option pricing Model (1) satisfies 

Assumptions 1 and 2, the Euler-Maruyama method (2) and the 

standard Monte Carlo method (4) are applied to simulate its 

option earnings, then the second moment error of the profit 

simulation is O(h). 

Proof: According to profitability and numerical simulation 

of European options, 

 

0 0
P ( ) inf ( ),P ( ) inf ( )

t T t T
S T S t S T S t

− − −

   
= − = −  

 

the second-order moment error of this option profit simulation 

is 

 

2 2

0 0
E | P P | E | ( ( ) inf ( )) ( ( ) inf ( )) |

t T t T
S T S t S T S t

− − −

   

   
− = − − −   

   
 

 

Applying the formula again 

 
2 2 2| | 2(| | | | )a b a b+  +  

0 0 0

| inf ( ) inf ( ) | sup | ( ) ( ) |
t T t T t T

S t S t S t S t
− −

     

−  −  

 

and the strong convergence order of the Euler-Maruyama 

method, a positive number C  can be found to satisfy 

 

2 2 2

0 0
E | P P | 2E | ( ) ( ) | 2E | inf ( ) inf ( ) |

t T t T
S T S T S t S t

− − −

   

     
−  − + −     

     
 

2 2

0

2E | ( ) ( ) | 2E sup | ( ) ( ) |
t T

S T S T S t S t
− −

 

   
 − + −   

   
 

Ch  

 

Similarly, we have 

0 0

P sup ( ) ,P sup ( )
t T t T

S t K S t K

++ − −

   

  
= − = −   
   

 

 

where (∙)+ ≡ max (∙ ,0)  The second-order moment error of 

this option profit simulation can be given as: 

 

2 2

0 0

E | P P | =E| sup ( ) sup ( ) |
t T t T

S t K S t K

++− −

   

    
− − − −    

    

2

0 0

E | sup ( ) sup ( ) |
t T t T

S t S t
−

   

 −  

2

0

E sup | ( ) ( ) |
t T

S t S t
−

 

 
 − 

 
 

Ch  

 

3.3 Numerical examples 

This section will support the main conclusions of this 

chapter through numerical examples. 

Assume that the financial market is feasible and frictionless, 

that is, no taxes, no transaction fees, allowing short selling 

(borrowing securities and cash), and the deposit and loan 

interest rates of banks are the same. Assume again that the 

holder of this unconfirmed equity is a small investor and is 

self-financing, that is, the holder has neither added funds nor 

withdrew funds during the entire process. 

The following autonomous random delay differential equation 

describes the operating law of an asset price: 

 

d ( ) 0.05 ( )d 0.2 ( 0.5)d ( ), 0 1

( ) 1, 0.5 0

S t S t t S t W t t

S t t

= + −  


= −  
                     (5) 

 

 
 

Figure 1. Price of asset with time 

 

 
 

Figure 2. Numbers of sample path with overall error 
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S(t) denotes the market price of the asset at time t . At the 

final time 1T = , the European-style call option profit of this 

asset at the last moment is P=max(0,S(1)-1), and the profit of 

the numerical simulation is  �̅� = 𝑚𝑎𝑥(0, 𝑆̅(1) − 1) , where 

𝑆̅(1) represents the final moment of asset price simulation by 

using the numerical method. 

 

 
 

Figure 3. Step-size of Euler-Maruyama with overall error 

 

The analytical solution of Eq(5) cannot be obtained directly, 

so its numerical solution is often used to approximate it. Here 

the Euler-Maruyama method of step size ℎ =
1

210 is used to 

discretize this equation and obtain an approximate 

representation of the analytical solution of Eq (5). Figure 1 can 

be obtained by applying the Matlab program. This chart 

depicts the changes of asset prices over time. The final asset 

price is S(1)  

Euler-Maruyama method with a step size of 
1

28  is used to 

discretize this equation, and then the mean of 1000 sets of 

random sample data is used to represent E[ (1)]S , that is 

 
1000

1

1
:1 i 1000, [ (1)] (1, )

1000
i i

i

E S S 
=

  =  ; 

 

Euler-Maruyama 

method with h(j) =
1

2𝑗 , 𝑗 = 1,2,3,4,5 and standard Monte 

Carlo method with the sample path number N(j) = 4𝑗, 𝑗 =
1,2,3,4,5 are used to simulate the price of asset at final time  

𝑆̅(1, 𝑗), 𝑗 = 1,2,3,4,5 Then get the expression μ(j) =
1

𝑁(𝑗)
∑ 𝑆̅(1, 𝑖), 𝑗 = 1,2,3,4,5

𝑁(𝑗)
𝑖=1  The 𝑆̅(1, 𝑖), 𝑗 = 1,2,3,4,5 

indicates that the asset price of the step size and sample size is 

ℎ(𝑗), 𝑁(𝑗), 𝑗 = 1,2,3,4,5 at the final time T=1. From the above 

calculation results, the global error expression  𝐸[𝑆(1)] −
𝜇(𝑗), 𝑗 = 1,2,3,4,5 of the asset price at the final moment is 

expressed, and the Matlab program is used to obtain Figure 2 

and Figure 3. The conclusion of Theorem 1 can be verified 

approximately by the figures, in which approximately.ℎ =
𝜏

⌈
𝜏

𝜀
⌉
, 𝑁 = ⌈

1

𝜀2⌉ 

4. CONCLUSION  

For the option pricing Model (1), this chapter mainly studies 

the following two aspects. 

Under certain conditions, the Euler-Maruyama method is 

applied to Equation (1) to obtain a sample orbit for the asset 

price run. The sample estimate μ =
1

𝑁
∑ 𝑆𝐾

[𝑖]𝑁
𝑖=1  of the asset 

price E[S(T)] at the final moment is constructed by using the 

standard Monte Carlo method. If the global error E[S(T)]-𝜇 of 

the asset price at the final moment can reach the precisionμ =
1

𝑁
∑ 𝑆𝐾

[𝑖]𝑁
𝑖=1 , by controlling this global error, the step size  ℎ =

𝜏

⌈
𝜏

𝜀
⌉
 and the sample number 𝑁 = ⌈

1

𝜀2⌉ can be deduced. 

Based on the Euler-Maruyama method step size and the 

number of samples of the Monte Carlo method, the 

profitability of the option is simulated, and the second-order 

moment error of the profit simulation is derived. 
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