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This paper introduces forced vibration analysis of functionally graded materials (FGMs) 

beams subjected to moving harmonic loads in different physical and geometric states, 

under random boundary conditions. A mathematical model was developed based on a 

new refined logarithmic shear deformation theory (LSBT), used the Hamilton principle 

combined with the introduction of weak forms into the dynamic analysis, while 

including rotational inertia. The raster force is designed by the Dirac-delta function 

expressing moving harmonic loads. The Rayleigh-Ritz solution is used to separate 

system variables from equations with general boundary conditions. The fundamental 

frequencies of free vibration analysis are determined by solving the system of equations 

governing the eigenvalue problems and the modal responses of forced vibration 

behavior are also solved numerically using Newmark's temporal integration method.

The numerical results presented make it possible to clearly appreciate the contribution 

of this theoretical development by examining in detail the influence of several 

parameters on the Dynamic Amplification Factor (DAF) of the FGMs beams. 
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1. INTRODUCTION

In conventional multilayer structures, homogeneous layers 

are bonded to each other to improve the performance 

(mechanical, thermal, acoustic, ...) of the Structure (beams and 

sandwich plates, structures reinforced with composite 

materials, ...). The disadvantage of this approach is to create 

concentrations of stresses at the interfaces between the layers 

which can lead to matrix cracks as well as a serious 

delimitation problem due to the sudden transition in 

composition, especially in a high temperature environment [1]. 

A possible solution for this problem is the use of functional 

gradient materials (FGM). This material (FGM) is widely used 

in several structural applications such as; aeronautics, nuclear, 

civil and automotive. Since the applications of these new 

materials (FGM) continue to develop. Due to the wide 

application of FGM, Several studies have been conducted on 

the mechanical and thermal behavior of FGM [2-9]; they 

studied the thermal effects on the vibration behavior of the 

Euler Bernoulli beam with an FGM operating gradient with 

temperature-dependent porosity.

Vibration analysis of structural elements is a common study 

as important as any engineering problem, and knowledge of 

natural frequencies suggests that the designer avoids the 

maximum resonances that occur near natural frequencies [10]. 

Moreover, dynamic systems are often subject to time-

dependent external forces leading to forced vibration whose 

amplitude depends on the frequency ratio. If the frequency of 

the external force coincides with one of the natural frequencies 

of the element considered, like beams, plates and shells, there 

is a resonance which causes dangerously large oscillations.  

Many studies can be found in the literature on the subject of 

statics and dynamics of FGM beams.  Zaoui et al. [11] have 

developed a simple and refined theory approach to shear 

deformation higher order for free vibration behavior of the 

beams. Maarjus et al. [12] performed a free vibration analysis 

of a beam of functional gradient materials in which they 

evaluated the Haar wavelet method. Kapuria et al. [13] studied 

the response in bending and in free vibration of the beam with 

functionally graduated layers, using a theoretical model and its 

experimental validation. Nejad and Hadi [14] used the 

classical Euler-Bernoulli theory in the vibratory study of FGM 

beams. Moreover, other researchers [15-17] used 

Timoshenko's theory to study the dynamics of FGM beams. 

The study of forced vibration behavior of FGM beams has 

also attracted research-intensive interests, Kaveh Rajabi et al. 

[18] have studied the dynamic responses of FGM beams

subjected to a moving oscillator, based on the classical Euler-

Bernoulli theory. Foda et al. [19] used a Green's dynamic

function approach to determine the response of a simply

supported Euler-Bernoulli beam of finite length subjected to a

moving mass. Nguyen et al. [20] studied the dynamic response

of non-uniform porous beams of functional levels (FG)

subjected to moving forces, they assume that the cross section

of the beam varies longitudinally in the width direction by a

linear or quadratic function. Panigrahi and Pohit [21] propose

a detailed method of analysis of cracked FGM beams subjected

to static and dynamic loads based on the theory of Timoshenko

beams. Praharaj and Datta [22] presented the dynamic

response spectra of fractionally damped viscoelastic beams

subjected to concentrated moving load.

The objective of this paper is to carry out an analytical study 

on the forced vibratory behavior of the beams with 

functionally graded materials (FGM), solicited by a point load 
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which moves according to a harmonic motion, under different 

physical and geometrical states, on different boundary 

conditions. A new mathematical model of the refined 

logarithmic shear deformation theory (LSBT) is presented, 

which satisfies the boundary conditions of zero traction on the 

surfaces of the FGM beam without using shear correction 

factors.  

The contribution of this research is to improve the 

understanding of the forced dynamic behavior of functionally 

graded beams by detailed examination the effect of: material 

parameter, order of the beam theories, speeds and excitation 

frequencies of the mobile harmonic loads on the optimization 

of the Dynamic Amplification Factor in the functionally 

graded beams with random boundary conditions. 

 

 

2. MATHEMATICAL MODELING  
 

A functionally graded beam of length L, width b and 

thickness h subjected to a concentrated harmonic force P 

which moves in the axial direction of the beam defined by a 

constant speed vp. It is supposed that the beam has a linear 

elastic behavior with a coordinate system (O, x, y, z) having 

the origin O is represented on the Figure 1.  

 

 
 

Figure 1. FGM beam under a dynamic moving laod 
 

2.1 Functionally graded beams 
 

The material properties of FGM vary continuously in the 

direction of the thickness (h) due to the progressive variation 

of the volume fraction of the constituent materials.  

 

 
 

Figure 2. Upper volume fraction profile (Vu) through the 

thickness of FGM beam 

 

Based on the mixing rule, the actual material properties P 

can be written as: 

 

U U L LP P V P V= +  (1) 

 

PU, PL, VU and VL are the corresponding material properties 

and the volume fractions of the upper and the lower surfaces 

of the beam bound by: 

 

U LV V+ =1  (2) 

 

In our study, FGM profile of the higher volume fraction is 

supposed to follow the shape of power law that is written by 

Wakashima et al. [23]: 

 
p

U

z
V

h

 
= + 
 

1
2

 (3) 

 

(p) is the power law index, non-negative constant (0≤p≤∞), 

which determines the mixing law variation along the thickness 

of the beam, as shown in Figure 2.  

 

2.2 Displacement field  
 

Based on the general refined shear deformation beam theory, 

the displacements coordinate of any point of the beam are 

given as:  

 

o b ,x s ,x

b s

U ( x , z ,t ) u ( x ,t ) z .w ( x ,t ) f ( z ).w (x,t)

W( x , z ,t ) w ( x ,t ) w (x,t)

= − −


= +
 (4) 

 

 
 

Figure 3. Shear strain shape function of various beam models  

 

uo is the axial displacement in the middle of the beam section. 

wb and ws are the components of transverse displacement in 

bending and shearing respectively of the average plane of the 

beam. f(z) is the shape function which characterizes the 

transverse shear and stress distribution along the thickness of 

the beam. The test function is chosen to satisfy the boundary 

conditions of the shear stresses on the upper and lower surfaces 

of the beam where the shear correction factor is not necessary. 

Consequently, the present model is defined by a refined 

logarithmic shear function (LSBT) identified by: 

 

h h z
f ( z ) ln

h z

− 
=  + 

3
8

 (5) 

 

The partition of the transverse displacement in the parts in 

bending and in shearing helps to see the contributions due to 

shearing and the bending of the total transverse displacement. 

In the small disturbances hypothesis, the strain-displacement 

relations of the general beam theories are written as follows: 
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xx o ,x b ,xx s ,xx

xz ,z s ,x s ,x

u z .w f ( z ).w

( f ( z ) ).w g( z ).w

 = − −

 = − = 1

 (6) 

 

g(z) is the function of the transverse refined shear 

deformation. Figure 3 illustrates the shape function of the 

transverse shear stress of different models. We show that the 

stress distribution of transverse shear is approximately 

parabolic, Thus, the conditions meet zero shear stress on the 

upper and lower surfaces of the beams [24-27]. 

 

2.3 Equations of motion  
 

To derive the equations of motion, the equilibrium 

equations are obtained from the Hamilton principle. The 

principle can be stated in analytical from: 

 
t

t

( V )− + 
2

1

L  (7) 

 

t1 and t2 are the initial and final time, respectively; δΠ is the 

virtual variation of the strain energy; L  is the virtual 

variation of the kinetic energy; and δV is the virtual variation 

of the work done by external forces : 

The energy of virtual deformation  : 

 

ij ij xx xx xz xz
V

V V

dV dV dV =   =   +      
(8) 

 
L

b s

o ,x b,xx s,xx s,x( N . u M . w M . w Q. w ).dx =  −  −  + 0  (9) 

 

N , bM , sM  and Q are the results of the constraints 

defined by: 

 

b s

xx

A

( N ,M ,M ,Q ) .( , z , f ( z ), g( z )).dA=  1  (10) 

 

The results indicated with an exponent 'b' are the 

conventional bending moment of the classical beam theory; 

while the others with exponent ’s’ are additional quantities 

incorporating the effect of shear deformation. By substituting 

the stress-strain relationships for the definitions of force and at 

the moment resulting from current theory, we obtain the 

following constitutive equations: 

 

o ,x b,xx s,xx

b

o ,x b,xx s,xx

s

o ,x b,xx s,xx

s,x

N A .u B .w E .w

M B .u D .w F .w

M E .u F .w H .w

Q A .w

= − −


= − −


= − −
 =

11 11 11

11 11 11

11 11 11

55

 (11) 

 

Such as: 

 

A

( A ,B ,D ,E ,F ,H ) Q ( z ).( , z , f ( z ), z , zf ( z ), f( z ) ).dA= 
2 2

11 11 11 11 11 11 11 1  
(12) 

 

A

A Q ( z ).[ g( z ) ].dA= 
2

55 55
 

(13) 

 

The reduced elastic constants are defined by: 

 

E ( z ) E ( z )
Q ( z ) ; Q ( z )

( ( z ))( ( z ) )
= =

+ −
11 552 2 11

 (14) 

 

E(z) and (z) are the Young's modulus and the Poisson's 

ratio of FGM beams respectively, which vary continuously in 

the direction of the axis "z" in accordance with the power law 

function P-FGM. 

Including the effect of rotational and axial inertia, the virtual 

kinetic energy L  can be expressed as: 

 

V

( z ).(U . U W . W).dV =   + L  (15) 

 
L L

b ,x s ,x b ,x s ,x b ,x

L L

b ,x s ,x s ,x b s b s

( I .u I .w I .w ). u . x ( I .u I .w I .w ). w . x

( I .u I .w I .w ). w . x ( I (w w ).( w w ). x

 = − −   − − −  

− − −   + +  +  

 

 

1 0 2 3 0 2 0 4 5
0 0

3 0 5 6 1
0 0

L
 

(16) 

 

Such as: 

 

A

( I , I , I I I I ) ( z ).( , z , f ( z ), z , zf ( z ), f ( z ) ).dA= 
2 2

1 2 3 4 5 6 1  
(17) 

 

The virtual potential energy δV of the mobile transverse 

charge at any time 't' is given below:  

 
L

b sV P(x,t). (w w ).dx = −  +0  (18) 

 

The mobile loading P(x,t) expressed by: 

 

pP( x ,t ) P( t ). ( x x )=  −  (19) 

 

where, 

 

P( t ) P .sin( .t)= Ω0  (20) 

 

Po is the intensity of the concentrated load, xp  is the 

coordinates of the mobile load, δ (.) Is the Dirac-delta function 

and Ω it’s the excitation frequency of the mobile harmonic 

load of FGM beams. By replacing the Eqns. (9), (16) and (18) 

in Eq. (7), by integrating by parts and obtains the following 

equations of equilibrium:      

 

b ,x s ,x

N
u : I .u I .w I .w

x


 = − −

0 1 0 2 3  (21) 

 
b

b p ,x b ,xx s ,xx

b s

M
w : P( t ). ( x x ) I .u I .w I .w

x

I (w w )


 +  − = − −



+ +

2

2 0 4 52

1

 (22) 

 
s

s p b ,x s ,xx

b s

M Q
w : P( t ). ( x x ) I .u I .w I .w

xx

I (w w )

 
 + +  − = − −



+ +

2

3 0 5 62

1

 (23) 

 

2.4 Mathematical resolution  
 

The Rayleigh-Ritz method is adopted to discretize the 

partial derivatives of the displacement components of the 

forced vibration system and the form functions are developed 
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in terms of the algebraic polynomial series as indicated by the 

following formulas. 

n n

b

j j b k k

j k

n

s

s p p

p

u ( x ,t ) ( x ).u ( t ) ; w ( x ,t ) ( x ).w ( t );

w ( x ,t ) ( x ).w ( t )

= =

=

=  = 

= 

 



0
0

1 1

1

(24) 

After performing the integration by part on Eqns. (21), (22) 

and (23) with the weighted functions respectively φi(x), Ψi(x) 

and ϕi(x)(i=1,2,...n), which must satisfy the boundary 

conditions, the weak forms of government equations of motion, 

equivalent to both ordinary differential equations can be 

written in the following final form:  

  [ M ] q( t ) [ K ] q( t ) F( t )+ = (25) 

[M] and [K] are the mass and rigidity matrices respectively, 
their order is [3n×3n], {q (t)} is the column vector of unknown 

coefficients temporary, of the order [3n×1]. {F(t)} is the 

generalized vector produced by the transverse load in motion 

of the order [3n×1]. 

3. NUMERICAL RESULTS

We are to present a set of results obtained following the 

execution of Matlab calculation program, which is based on 

the mathematical development of a forced vibration model, 

actuated by a mobile harmonic loads on the FGM beams, under 

varying parameters with arbitrarily boundary conditions, i.e., 

Simply–Simply (S–S), Clamped–Simply (C–S), Clamped–

Clamped (C–C), and Clamped–Free (C–F).  

The natural frequencies are determined by solving the 

system of equations governing the eigenvalue problems. The 

dynamic responses of the moving harmonic loads are 

calculated numerically using Newmark's method in the critical 

section of the FGM beams, where the deformations are 

maximum. For the desired precision in the calculation, the time 

is subdivided into 400 stations with a uniform time increment 

(Δt). The functionally graded materials (FGMs) consist of a 

mixture for ceramic and metal whose properties vary 

continuously through the thickness direction of the beams 

according to the power law function (P-FGM). The upper part 

of the beams (z=+h/2) is purely ceramic (PU=100% Alumina), 

while the lower part of the beams (z=-h/2) is purely metal 

(PL=100% Aluminum). 

The mechanical properties of Alumina (Al2O3) are: 

Ec=380GPa, ρ=3960 Kg/m3, =0.3, and those of Aluminum 

(Al) are: Em=70 Gpa, ρ=2702 Kg/m3, =0.3. The indices of the 

Rayleigh-Ritz test function which must satisfy the boundary 

conditions are given in Table 1 [7]. 

Table 1. Admisible functions index for random boundary 

conditions 

For practical reasons, the natural frequencies n( ) , the 

velocity of the mobile load (α) and the excitation frequency of 

the moving harmonic force (Ω), which is represented by the 

frequency ratio (β), are defined by dimensionless parameters 

respectively, as follows: 

pn
n

L cr

L L
; ;

h E

 
 =  =  =

 

Ω
2

1

where, vcr  is the critical quantity of mobile charging speed

determined by Fryba [28]. ω1 is the first fundamental 

frequencies of the FGM beams. The direction of the moving 

load is from left to right. Therefore, when t = 0, the point force 

(P) is in the left support of the beam (xp=0), when t=L/vp, the

point force (P) arrived at the right support of the beam (xp=L).

The Dynamic Amplification Factor (DAF) is determined by:

DAF =
wDynamic,max  

 wStatic,max

wDynamic,max and wStatic,max correspond respectively to the 

dynamic transverse deflection and to the static deflection, on 

the critical section of the FGM beams which gives a maximum 

transverse displacement. 

In Table 2, a variation of the first nondimensional 

fundamental frequency (ϖ1) is performed using the present

logarithmic LSBT model. The study is done while changing 

the power low parameter (p) of the FG material, for various 

boundary conditions of the beam (S-S, C-S, C-C and C-F) with 

L/h=20. The results in this table are presented without taking 

into account the effect of the Poisson's ratio (υ) in the 

expression of the reduced stiffness coefficient (Q11). The 

comparison shows an excellent agreement between the 

numerical results and those Nguyen et al. [20], which approve 

the accuracy of our proposed model. 

Table 2. Eigenfrequencies (𝜛1) of the FGM beams

BCs Model 
Power low exponent (p) 

0 1 2 5 10 ∞ 

S-S
Present 

Ref. [20] 
5.4611 

5.4603 

4.5028 

4.2051 

4.2687 

3.8361 

4.0073 

3.6485 

3.7393 

3.5390 

2.8376 

--- 

C-S
Present 

Ref. [20] 

8.4880 

--- 

6.6534 

--- 

6.1297 

--- 

5.8011 

--- 

5.5666 

--- 

4.4103 

--- 

C-C
Present 

Ref. [20] 

12.2398 

12.2243 

9.4919 

9.4319 

8.6785 

8.5977 

8.2187 

8.1446 

7.9353 

7.8860 

6.3597 

--- 

C-F
Present 

Ref. [20] 

1.9498 

1.9496 

1.5073 

1.5011 

1.3782 

1.3696 

1.3107 

1.3034 

1.2689 

1.2646 

1.0131 

--- 

BCs 𝐩𝟎 𝐪𝟎

C–C 

C–S 

C–F 

S–S 

2 

2 

2 

1 

2 

1 

0 

1 
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Table 3. Dynamic Amplification Factor (DAF) of the FGM beams  

 

 

The fundamental frequencies are inversely proportional to 

the power exponent, the decrease of the parameter (p) gives 

rise to an increase in flexural rigidity. So, it can be said that 

the change of the material constitutes a significant effect on 

the results of the free vibration of FGM beams. We also note 

that the rate of variation of the frequencies increases when the 

rigidity of the beam increases, while change the parameter of 

power (p). The lowest rate of the eigenfrequencies is given by 

the condition of supports C-F and the rate the highest is given 

by the C-C support condition. This implies that the influence 

of the power exponent (p) on the fundamental frequency 

variation is important for low flexibility beams. 

Table 3 shows the variation of Dynamic Amplification 

Factor (DAF) of the FGM beams with different modes of 

support (S-S, C-S, C-C and C-F), by varying the power 

exponent (p). This study is modeled by using different orders 

of the beams theories at α=0.2, β=0.5, and L/h=5. The shear 

correction factor is considered as ks = 5/6 for FSBT. It should 

be noted that the Dynamic Amplification Factor varies 

depending on the applied boundary condition. The power 

parameter effect (p) on the (DAF) is less obvious on all 

boundary conditions. For homogeneous beam (k=0 or k=∞), 

the (DAF) take the same value. 

We also note that in S-S and C-C boundary conditions, the 

DAF calculated by taking account of the warping effect (FSBT 

and LSBT) is relatively lesser compared to that calculated with 

classical Euler-Bernoulli theory (CBT) , is relatively superior 

for both C-S  and C-F support conditions; the variation rate of 

DAF in this boundary condition is higher compared to the S-S 

and C-C limit conditions, while the two theories FSBT and 

LSBT give substantially the same values for general modes of 

support. From there, we conclude that the transverse shearing 

effect should be considered in the mathematical modeling to 

calculate the Dynamic Amplification Factor (DAF) of the 

FGM beam. 

Figure 4 describes the relationship between the speed of the 

mobile harmonic forces (α) and the Dynamic Amplification 

Factor (DAF) to the critical displacement of the FGM beams, 

for a frequencies ratio  β= 0.1, 0.5, 1 and 1.5 , under arbitrarily 

boundary conditions (S-S, C-S, C-C and C-F), with p=2 and 

L/h=10. It is evident that the velocity of the mobile charge (α) 

plays a major role in the variation of the Dynamic 

Amplification Factor. The DAF results of the low excitation 

frequency of the harmonic mobile load (β= 0.1) change in a 

regular form unlike the high harmonic moving load which 

change randomly. Except when β=1, the dynamic deflections 

increase generally until a certain value of the velocity 

parameter (α), after this critical value, a growth of the speed 

parameter causes a reduction on the DAF, with some local 

peaks in the transverse curves of the mobile harmonic charges. 

Once the velocity parameter (α) is set to 0, this is the case of 

the static deflection loaded with a concentrated force at the 

critical section of the FGM beams (DAF=1). 

 

 
a) β= 0.1                                                                      b)  β= 0.5 

 

BCs 

 

Model 
Power low exponent (p) 

0 1 3 4 5 

S-S 

LSBT 

FSBT 

CBT 

1.8682 

1.8674 

1.8835 

1.8680 

1.8672 

1.8825 

1.8680 

1.8672 

1.8825 

1.8661 

1.8658 

1.8821 

1.8661 

1.8658 

1.8821 

C-S 

LSBT 

FSBT 

CBT 

1.6171 

1.6165 

1.6013 

1.6172 

1.6166 

1.6038 

1.6199 

1.6185 

1.6053 

1.8616 

1.8632 

1.8827 

1.6171 

1.6165 

1.6013 

C-C 

LSBT 

FSBT 

CBT 

1.5245 

1.5236 

1.5370 

1.5258 

1.5250 

1.5370 

1.5257 

1.5251 

1.5371 

1.6252 

1.6208 

1.6028 

1.5245 

1.5236 

1.5370 

C-F 

LSBT 

FSBT 

CBT 

1.3805 

1.3806 

1.3684 

1.3777 

1.3778 

1.3684 

1.3779 

1.3774 

1.3684 

1.5231 

1.5227 

1.5370 

1.3805 

1.3806 

1.3684 
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                                                 c) β= 1                                                                                      d) β= 1.5    

 

Figure 4. DAF variations of the FGM beams  
 

In addition, the critical speed cited by Fryba [28] does not 

correspond to the maximum deflection of the beams, the 

highest rate for which a significant DAF changes as a function 

of the excitation frequencies β and the support mode applied. 

The DAF considerably affects on the S-S support condition 

relative to the C-S and C-C boundary conditions, and weakly 

affects to the cantilevers beam. The impact of the excitation 

frequencies on the DAF where β = 1 is very crucial when the 

charge moves at low speed. After this passage, the resonance 

phenomenon disappears and the Dynamic Amplification 

Factor returns to its normal value for all the boundary 

conditions. For the low excitation frequencies ratio (β≈0), the 

maximum dynamic deflection becomes less than the 

maximum static deflection (DAF <1), whatever the speed of 

the moving harmonic force exerted. 

 

 

4. CONCLUSION 
 

In this research, the dynamic behavior of functionally 

graded beams (FGMs) transported by harmonics moving 

forces was analyzed, under arbitrarily boundary conditions. 

First, we studied the fundamental frequencies of free vibration 

problem to describe the critical velocities of the moving loads, 

using a new distribution of the refined logarithmic transverse 

shear function (LSBT). This theory satisfies the zero traction 

boundary conditions on the top and bottom surfaces of FGM 

beam without shear correction factors. Secondly, we focused 

on the numerical solutions obtained from the mathematical 

formulation of forced vibration behavior for all orders of the 

beams theories. A parametric study was done to analyze in 

detail the impact of different parameters such as; the material 

distribution, the transverse shear deformation effect, the 

velocities and the excitation frequencies of the moving 

harmonic load on modal responses. We can affirm that the 

present dynamic model is not only accurate, but is also 

effective for analyzing the forced vibration of the FGMs 

beams excited by moving harmonic loads, regardless of the 

physical and geometrical conditions applied. 
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NOMENCLATURE 

 

L Length of beam 

h Thickness of the beam 

b Width of beam 

𝑃 Concentrated harmonic force 

P0 Intensity of the concentrated loads, 

p  Power index 

E Young's module 

vp Constant speed,  

ν
 

Poisson coefficient 

I inertia term  
  Normal stress, 
  Normal strain 
  Shear strain, rad 

ou  Axial Displacement along,  

bw  Transverse displacement in bending,  

sw  Transverse displacement in shearing,  

 

Greek symbols 

 

δV virtual potential energy 
L  virtual kinematic energy 

  virtual deformation energy 

ks The shear correction factor 

 Frequencies ratio 
  Mass density, Kg.m-3  

α Velocity of the mobile load 

δ(.) Dirac-delta function 

Ω Excitation frequency of the mobile harmonic 

load 
  Eignfrequency of the FGM beam 
  Nondimensional fundamental frequency 

Q Reduced stiffness coefficient 
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