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 This paper deals with the flow of an incompressible couple-stress fluid containing 

gyrotactic microorganisms in a channel with expanding or contracting porous walls. 

The bio-convection in couple stress fluid is advantageous to study various kinds of 

physical problems since couple stress fluid model can explain the rheology of various 

complex fluids, such as polymeric suspension, lubricants, liquid crystals, and blood. 
The governing equations are reduced to a system of non-linear ordinary differential 

equations using similarity transformations, linearized using successive linearization 

method and then solved using the Chebyshev collocation method. The influence of 

couple stress fluid parameters and other pertinent physical parameters on the motile 

microorganism distribution and density number of motile microorganism is examined. 
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1. INTRODUCTION 

 

The couple stress fluid theory pioneered by Stokes [1], is 

one among the fluid theories that take into account couple 

stresses in addition to the classical Cauchy stress. It is the 

generalization of the classical theory of viscous fluids with 

distinct features, such as the presence of couple stresses, body 

couples and non-symmetric stress tensor. In this theory, 

curvature twist rate tensor is proposed based on pure kinematic 

aspects of rotation vector and couple stress is defined in terms 

of this curvature twist rate tensor. Stress tensor at any point 

contains symmetric and antisymmetric parts. The anti-

symmetric part is due to the curvature twist rate tensor. The 

second-order gradient of the velocity vector is introduced into 

stress constitutive equations. The couple stress fluid theory 

presents models for fluids whose microstructure is 

mechanically significant. The effect of very small 

microstructure in a fluid can be felt if the characteristic 

geometric dimension of the problem considered is of the same 

order of magnitude as the size of the microstructure [2]. The 

main effect of couple stresses is to introduce a size-dependent 

effect that is not present in the classical viscous theories. 

Couple stress fluid model has several industrial and scientific 

applications. The couple stress fluids are capable of describing 

various types of lubricants, blood, suspension fluids, etc. A 

large number of theoretical investigations dealing with the 

flow of couple stress fluid in different geometries in bounded 

and unbounded domains have appeared during the last few 

decades. Stokes [1] discussed the hydromagnetic steady flow 

of a fluid with a couple stress effect. Stokes [2] presented a 

long list of problems discussed by researchers about this 

theory. The important fields where couple stress fluids have 

applications are Bio-fluid mechanics [3-6], squeezing [7] and 

lubrication of synovial joints [8], Synthetic and Plastic 

industries. Islam and Zhou [9] presented analytical solutions 

for two-dimensional flows of couple stress fluids.  Khan et al. 

[10] obtained exact solutions for MHD flow of couple stress 

fluid with heat transfer. 

On the other hand, the fluid flow in a channel with 

deformable/expanding/contracting porous walls has gained 

significance because of their uses in the perspiration cooling 

or heating, modelling of pulsating diaphragms, separation of 

isotopes, paper manufacturing, purification, and the grain 

regression during solid propellant combustion. Several authors 

have considered the flow of a couple stress fluid in a two-

dimensional channel with porous walls. Srinivasacharya et al. 

[11] analyzed the flow of a couple stress fluid in a channel with 

expanding or contracting porous walls. Khan et al. [12] 

examined the couple stress fluid flow in a semi-infinite 

rectangular channel with uniformly expanding or contracting 

porous walls. Odelu and Naresh [13] analyzed the effects of 

Hall and ion slip currents, chemical reaction, Soret and Dufour 

on the heat and mass transfer characteristics of an electrically 

conducting couple stress fluid through channels with 

expanding or contracting porous walls. Shennawy and Elkhair 

[14] investigated the effect of slip boundary condition and 

magnetic field on the couple stress fluid flow in a porous 

channel with expanding or contracting walls. 

Bioconvection is the name given to spontaneous pattern 

formation in suspensions of microorganisms due to swimming 

of the microorganisms. Bioconvection has various 

applications in engineering, biotechnology and biological 

systems. Pedley et al. [15] developed a continuum model for a 

suspension of swimming gyrotactic microorganisms by 

extending the model of Childress et al. [16] for geotactic 

microorganisms with an equation for conservation of motile 

microorganisms. Shaw and Sibanda et al. [17] considered the 

bioconvection near an inclined permeable plate embedded in a 

water-based nanofluid saturated porous medium containing 

motile microorganisms. Xu et al. [18] investigated the 

interaction of both nanoparticles and gyrotactic 

microorganisms in the mixed convection flow of a nanofluid 

over a stretching surface. Raees et al. [19] analyzed the 

bioconvection flow of a nanofluid in a horizontal channel with 

mixed convection. Raju [20] studied the effects of nonlinear 

thermal radiation and chemical reaction on the bioconvection 
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flow towards a rotating cone/plate in a rotating fluid. Makinde 

and Animasaun [21] examined the effect of chemical reaction 

of quartic autocatalytic nature on bioconvection of nanofluid 

over an upper horizontal surface of a paraboloid of revolution 

by including gyrotactic microorganisms, Brownian motion 

and thermophoresis effects in the flow. Mosayebidorcheh et al. 

[22] investigated the interaction of nanoparticles and 

gyrotactic microorganisms in the flow of nanofluid flow 

through a horizontal channel. Zhao et al. [23] examined the 

bioconvection flow of nanofluid between two infinite parallel 

plate in the presence of the magnetic field and a first-order 

chemical reaction. Bin-Mohsin et al. [24] studied the 

bioconvection in a channel filled with a nanofluid containing 

gyrotactic microorganisms. Khan et al. [25] considered the 

bioconvection flow of couple stress nanofluid over a stretched 

porous surface in the presence of activation energy and 

gyrotactic micro-organisms. 

In this paper, the bio-convection boundary layer flow of a 

couple stress fluid containing gyrotactic microorganisms in a 

channel with expanding or contracting porous walls is 

analyzed. A set of nonlinear coupled ordinary differential 

equations are constructed using the similarity transformation. 

Numerical solutions to these nonlinear differential equations 

by applying the Chebyshev spectral collocation method. 

 

 

2. MATHEMATICAL FORMULATION 
 

Consider the couple stress fluid flow containing motile 

microorganisms between two infinite porous parallel plates. 

The plates are contracting and expanding uniformly at a time-

dependent rate Ḣ(t). The flow is unsteady and fluid is 

incompressible. The coordinate system is chosen such that the 

x-axis is along the line parallel to two plates and the y-axis is 

perpendicular to the plates. The two plates are placed at the 

distance y = 2H(t), which is smaller than the width and length 

of the channel. The fluid is aspirated or injected into the 

channel with a uniform speed through the channel walls. Let 

the temperature, concentrations and concentration of 

microorganisms at the lower and upper walls be T1 and T2, C1 

and C2 and 1 and 2, respectively. 

With the above assumptions, the equations governing the 

unsteady incompressible couple stress fluid the flow, in the 

absence of body forces and body couple, are 
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where, (U, V, 0) is the velocity vector, T and C is the 

temperature and concentration and  is the density of the 

motile microorganism.  is the density,  is the viscosity,  is 

the thermal diffusivity, D is the mass diffusivity and Dn is the 

microorganism diffusivity, wc is the maximum cell swimming 

speed and bc is the Chemotaxis constant. 

The conditions on the boundary of the walls are:  

 

u = 0, v = -AḢ, vx = uy, T = T1, C = C1,  = 1 at y 

= -H 

u = 0, v = AḢ, vx = uy, T = T2, C = C2,  = 2 at y = 

H 

(7) 

 

where, A represent the wall permeability.   

We now introduce the following similarity variables  
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Making use of the above similarity variables in Eqns. (1)-

(7), we obtain  
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F /(-1) =  F //(-1) = 0,  F(-1) = -Re,, (-1) = 1, 

 (-1) = 1, (-1) = 1 

F /(1) = F //(1) = 0, F(1) = Re,  (1) = ,   

(1) = , (1) =  

(13) 

 

where, the prime denotes differentiation with respect to  and 

𝑠 = √
𝜂1

𝜇
 is the couple-stress parameter, 1 = HḢ/ wall 

expansion ratio, where 1<0 corresponds to the case when the 

channel walls are contracting and 1>0 corresponds to the case 

when the channel walls are expanding, Le=/D is the Lewis 

number, Pr= / is the Prandtl number, Sc=/Dn is the 

bioconvection Schmidt number, Re=AHḢ/ is the 

Permeability Reynolds number with Re greater than 0 is for 

suction and Pe=bcwc/Dn is the bioconvection Peclet number. 

 

 

3. METHOD OF SOLUTION 
 

The system of differential Eqns. (9)-(12) along with the 
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boundary conditions (13) are linearized using the successive 

linearization method. The linearized equations are solved 

numerically by Chebyshev spectral collocation method. 

The successive linearisation method (SLM) is proposed and 

developed by Makukula  et al. [26]. This method linearizes the 

nonlinear equations. To linearize the nonlinear boundary value 

problem in an unknown function z() (i.e. f() or () or () 

or () in this problem) using SLM, it  is approximated as 
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where, zk() is an unknown function and z0(), z1(), ... zk-1() 

are known approximate solutions.  Substituting (14) in the 

given nonlinear differential equation and ignoring the non-

linear terms of zk() gives the linearized differential equation 

in zk(). Hence, the subsequent approximations zk(), r=1, 2, ... 

are obtained by solving the linearized differential equations in 

zk(), r = 1, 2, ... successively, given that the previous guess 

zm(), m = 0, 1, 2, ... , k-1 are known. The initial guess z0(), 

is chosen such that it satisfy the given boundary conditions. 

Hence, using the succesive linearization method,  the 

linearized version of the Eqns. (9)-(12) is given by 
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where, the coeefficients as,k-1, zs,k-1, s= 1,2,3,4, bl,k-1, cl,k-1, l = 

1,2 and di,k-1, i = 1,2,3,4,5,6 are interms of the approximations 

Fm (), m (), m (), m (), m = 1, 2, 3, ... k-1 and their 

derivatives and are known at the previous stage. 

The Chebyshev spectral collocation method [27, 28] is 

based on the Chebyshev polynomials defined on the interval [-

1,1]. To solve a differential equation using this method, for an 

unknown function zk(), on [-1,1], first, we discretize the 

interval [-1,1] using the following N+1 Gauss-Lobatto 

collocation points  
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The unknown function Fk (), k (), k (), k (), are 

approximated at the above collocatopn points by 
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where, Tj is the kth Chebyshev polynomial defined by 𝑇𝑗(𝜉) =

𝑐𝑜𝑠(𝑘 𝑐𝑜𝑠−1 𝜉). 

The derivatives of the unknown functions at the collocation 

points are represented as 
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where, a is the order of differentiation and D being the 

Chebyshev spectral differentiation matrix. Substituting Eqns. 

(20)-(21) into the Eqns. (15)-(18), we get the following system 

of the algebraic equation 
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In Eq.(19), Ak-1 is a (4N + 4) (4N + 4) square matrix and 

Xk and Ṝk-1  are (4N + 4) 1 column vectors  
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where, I is the identity matrix, 0 is the zero matrix and D is the 

Chebyshev derivative matrix. 

Incorporating the conditions on the boundary in the matrix 

Eq. (20), the solution is attained as  
 

1
1 1=k k k

−
− −X A R  (24) 

 
 

4. RESULTS AND DISCUSSION 

 

In this section, the variation of density of motile 

microorganisms and density number of motile 

microorganisms with various values of non-dimensional 

parameters are presented. 

To validate the accuracy of the present numerical procedure, 

SLM, the values of velocity, microrotation and temperature at 

=0.5 are calculated by using shooting method and the 

comparison is displayed in Table 1. It is noticed from this table 
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that the error between these two numerical results is negligible 

so that the numerical calculations which we made by SLM are 

appropriate. 

 

Table 1. Correlation of f, 𝜃, 𝜙, and 𝜒 at  = 0.5 using SLM 

and shooting method for various values of 1 with Pr = 0.71; 

Le =1; Pe = 1; Sc = 0.22; Re =4; δχ = 1; δφ = 0; δθ= 0.2; S = 

0.1 

 
 f 𝜃 𝜙 𝜒 

SLM 

β1= -15 2.8629 0.5553 0.4437 1.2858 

β1= 15 3.2642 0.3301 0.1626 0.9125 

Shooting Method 

β1= -15 2.8629 0.5551 0.4437 1.2858 

β1= 15 3.2642 0.3301 0.1625 0.9124 

 

 
(a) 

 
(b) 

 

Figure 1. Effect of (a) 1, (b) Re on () 

 

Figure 1 presents the effect of wall expansion ratio 1, 

Reynolds Number Re on the density of the motile 

microorganisms () for the wall expansion ratio 1= -15 and 

1 = 15. Figure 1a depicts the variation of () for different 

values of 1.  From this figure, it is noticed that, as 1 increases, 

the density of the motile microorganisms is also increasing in 

the first half of the observed region. In other words, near to the 

lower plate, whether wall contracts or expands, the density of 

the motile microorganisms is observed to be increasing. 

Similarly, near to the upper plate, the density of the motile 

microorganisms is decreasing with an increase in the wall 

expansion ratio. If 1 is positive, i.e. the plates are expanding, 

the density of the motile microorganisms is increased up to a 

point close to the middle of the channel and exhibits reverse 

pattern in the upper half of the channel. The reverse trend is 

observed for the negative values of 1. The influence of the 

parameters Re on the density of motile microorganisms is 

displayed in Figure 1b. If 1 is positive, the density of the 

motile microorganisms is growing in the lower half of the 

channel and lessening in the upper half region of the channel 

as Re  is increasing. Similarly, for 1 negative, a reverse pattern 

is observed for increasing values of Re. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2. Effect of (a) Le (b) Pr, (c) Pe on () 

 

The effect of Lewis number Le, and bioconvection Peclet 

Number Pe on the density of the motile microorganisms  for 

the wall expansion ratio 1 = -15 and 1 = 15 is depicted in 

Figure 2. Figure 2a displays the variation of the density of 

motile microorganisms with the Lewis number Le. If the plates 
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are expanding, i.e. for 1 is positive, the density of the motile 

microorganisms is increasing in the lower half of the channel 

and decreasing in the upper half region of the channel as the 

Lewis number is increasing. As Le is increasing, a decreasing 

pattern is observed in the lower half region and an increasing 

pattern in the upper half of the channel is noticed when the 

plates are contracting. The influence of the parameters Pr and 

Pe on the density of motile microorganisms is displayed in 

Figures 2b and 2c. If 1 is positive, the density of the motile 

microorganisms is increasing in the lower half of the channel 

and decreasing in the upper half region of the channel as Re 

and Pe are increasing. Similarly, for 1 negative, a reverse 

pattern is observed for increasing values of Pr and Pe. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3. Effect of (a ) S, (b) 1, (c), (d) Sc with  1 on 

() 

 

Figure 3 represents the variation of the density of motile 

microorganisms  with couple stress parameter S, Schmidt 

Number Sc. From Figure 3a and Figure 3b, it is interesting to 

note that the influence of couple stress parameter on the 

density of motile microorganisms is not significant 

irrespective of the plates are expanding or contracting. Figure 

3c presents the variation of  with Sc in 1 is negative,  is 

diminishing in the lower half of the channel and rising in the 

upper half region of the channel as Sc is enhanced. The reverse 

pattern is noticed when the plates are expanding. Figure 3d 

reveals that the impact of Sc on the density of motile 

microorganisms is minimal when the plates are expanding 

while the Schmidt Number has its effect on the fluid when the 

plates are contrasting. 

The effects of wall expansion ratio 1 on the density number 

of motile microorganisms Qx at the lower and upper plates is 

presented in Figure 4. When the plates are expanding, the 

density number of motile microorganisms is increasing at the 

lower plate as displayed in Figures 4a-4b and the upper plate 

displayed in Figures 4c-4d. Further, the density number of 

motile microorganisms is decreasing at the lower plate and 

increasing at the upper plate when the plates are contracting. 

Also, Qx is decreasing for increasing values of slip parameter 

 at the lower plate and increasing at the upper plate except 

for 1 > 3 in which it is decreasing. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 

Figure 4. Effect of the parameter 1 with δ variation on Qx 

at  = -1 (Lower Plate) and  = 1 (Upper Plate)  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 5. Effect of the parameter Re with  variation on Qx 

at =-1 (Lower Plate) and  = 1 (Upper Plate) 

 

The influence of Reynolds Number Re on the density 

number of motile microorganisms at the lower and upper 

plates with  is portrayed in Figure 5. At the lower plate, as 

Re increases, Qx is increasing when the plates are 

expanding/contrasting as shown in Figures 5a-5b. For a given 

Re as the slip parameter of motile microorganisms increases 

the Qx is decreasing. Also, at the upper plate, Qx increases with 

an increase in Re, by showing increasing pattern when 1 is 

negative and decreasing in 1 positive with the slip in motile 

microorganisms  as shown in Figures 5c-5d. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 6. Effect of the parameter S with  variation on Qx  

at  = -1 (Lower Plate) and  = 1 (Upper Plate) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 7. Effect of the parameter Le with  variation on Qx 

at  = -1 (Lower Plate) and  = 1 (Upper Plate)  
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The variation of the density number of motile 

microorganisms at the lower and upper plates with couple 

stress parameter S is presented in Figure 6 From Figures 6a 

and 6d it is understood that the impact of couple stress 

parameter on the density number of the motile microorganisms 

is insignificant. 

The variation of Qx at the lower and upper plates with  for 

different values of Lewis number Le is depicted in Figure 7. It 

is observed from these figures that Qx is decreasing with 1 is 

negative and increasing with 1 is positive at the lower plate 

and the similar pattern holds at the upper plate. Also, for a 

given Le, the Qx decreases as the  increase except at the 

upper plate with 1 is negative. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 8. Effect of the parameter Sc with  variation on Qx 

at =-1 (Lower Plate) and =1 (Upper Plate)  

 

The impact of bioconvection Schmidt Number Sc on Qx at 

the lower and upper plates with  is visualized in Figure 8. 

The Figures 8a and 8b reveals that Qx is increasing as Sc 

increases when the plates are contrasting at both lower and 

upper plate and it decreases with up to a critical value and then 

increases with increase in the value of Sc when the plates are 

expanding at both the plates, as shown in Figures 8c-8d. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

Figure 9. Effect of the parameter Pe with   variation on Qx 

at =-1 (Lower Plate) and =1 (Upper Plate)  

 

The influence of bioconvection Peclet number Pe on the 

density number of motile microorganisms at the lower and 

upper plates with  is portrayed in Figure (9). At the lower 

plate, as Pe increases, Qx
 
is increasing when the plates are 

contracting as shown in Figure (9a) and decreases when plates 

are expanding as shown in Figure (9b). As Pe is increasing, 

the density number of the motile microorganisms at the lower 

plate is also increasing when the plates are contracting. At the 

upper plate, Qx is decreasing up to a critical value and then 

increasing in increasing value of Pe for negative 1. In case of 

the plates are expanding, the density number of the motile 

microorganisms is decreasing with an increase in  Pe as shown 

in Figures (9c-9d). 

 

 

5. CONCLUSIONS 

 

The present analysis deals with the flow of couple stress 

fluid containing motile microorganisms in a horizontal 

channel with contracting/expanding porous. The nonlinear 

ordinary differential equations are linearized using the 

successive linearization method and solved by implementing 

the Chebyshev collocation method. The important results are 

itemized below: 

• The density of motile microorganisms increases near the 

lower wall and decreases at the upper-wall via concave-

down to concave-up for the parameter 1, Le, Pr and Pe 

and shows reverse trend w.r.t. Re.  

• The density of motile microorganisms decreases near the 

lower wall and increases at the upper-wall via concave-

downward to concave-upward for the parameters S and Sc, 

but with a nominal variations  

• The density number of motile microorganisms Qx 

decreases as the parameters 1, Re, S, Sc are increasing 

except at the upper plate when plates are contrasting.  

• The density number of motile microorganisms were 

decreasing both at lower and upper plates except for Le 

and Re at the upper plate in the case of 1 > 0. 
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NOMENCLATURE 

A A measure of wall permeability 

H(t) Distance between the plates 

bc Chemotaxis constant 

C The concentration of the fluid. 

DB Mass diffusivity 

Dn Microorganism diffusivity 

f Dimensionless stream function 

Le Lewis Number 

S couple-stress parameter 

Pe Bio-convection Peclet number 

Pr Prandtl number 

Qx Motile microorganism Density Number 

Re Permeability Reynolds number 

Sc Bio-convection Schmidt number 

T Fluid Temperature 

wc Maximum cell swimming speed 

Greek symbols 

 Thermal Diffusivity 

1 Wall expansion ratio 

, ,  Constants 

 Non-dimensional variable 

 Dimensionless temperature

 The density of the motile microorganism. 

 Dynamic Viscosity of the fluid 

 Magnetic diffusivity/kinetic viscosity

 Density of the fluid 

 Dimensionless concentration 

 Dimensionless microorganism 

Superscripts 

/ Differentiation with respect to  
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