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The paper deals with mathematical modeling and theoretical study of the heat 

distribution within the surrounding biological tissue during the effect of the magnetic 

hyperthermia. The mathematical model is formulated and solved numerically by using 

the finite difference method. The intensity of heat production is used in the present 

model. The obtained results allow predicting the temperature change in tumor as well 

as in the surrounding tissue depending on intensity of the tumor heating. 
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1. INTRODUCTION

Magnetic hyperthermia is a new type of cancer treatment [1-

4], allowing to achieve selective heating of a tumor without 

damaging of the surrounding healthy tissues. The main idea of 

this method is in embedding of magnetic nanoparticles in a 

tumor region and heating them with the help of alternating 

magnetic field. In the temperature corridor 42-50℃ the tumor 

cells undergo protein destruction, which leads to the cells 

death, whereas the cells of the healthy tissue, being more 

temperature resistant, are not injured. Magnetic hyperthermia 

is a way of tissue heating, by using thermal effect produced by 

embedded magnetic nanoparticles under the action of 

oscillating or rotating magnetic field.  

In physical models of magnetic hyperthermia, biological 

media are usually considered as a blood-flooded matrix 

composed of cells and interstitial space [5-9]. The tumor 

models with a well-defined geometry, typically spherical, are 

added to this simple picture so that they remain surrounded by 

a finite or infinite layer of healthy tissue with infinity radius. 

Specific heat, thermal conductivities of the involved biological 

media - tumors, viscera, muscle, fat, skin, etc., must be 

included in the model. 

The development of mathematical models of heat transfer 

in living tissues has been a topic of interest for various 

biologists, physicians, mathematicians and engineers. The 

accurate explanation of the thermal interaction between 

vasculature and tissues is necessary for the development of 

medical technology of tumor diseases [10, 11]. Thermal 

models of bioheat transfer equations in living tissue and 

thermal dose equivalence due to hyperthermia are presented in 

[12, 13]. These works focus both on the basic formulations of 

the bioheat transfer equations in the living tissue and on the 

determination of thermal dose during thermal therapy. The 

distributions of temperature inside the heated tissues, 

generally controlled by heating modalities, are got by solving 

the bioheat transfer equation. A model for heating magnetic 

fluid with the help of alternating magnetic field is presented in 

[14]. The heat sources, i.e. magnetic nanoparticles, must be 

included to complete the basic tumor model of magnetic 

hyperthermia. These sources are determined by the particles 

size distribution, their magnetic properties, spatial distribution, 

which determines the formation of “hot spots” and the 

uniformity of heat deposition in the tissue where the magnetic 

nanoparticles are infused [15-20]. However, this model is 

difficult to be used in practical applications, since the obtained 

analytical solutions are too complicated and cumbersome. 

Some analytical solution of the system of dimensional Fourier 

and non-Fourier bioheat transfer equations in skin tissue 

exposed to an instantaneous heating condition is presented by 

Askarizadeh and Ahmadikia [21]. 

In this work, we present a theoretical study and 

mathematical modeling of a tumor heating taking into account 

the heat exchange with the surrounding biological tissue. 

Numerical techniques are used to solve the equations of the 

mathematical model with heat source of the permanent 

intensity, located in a spherical region, which models the 

tumor. Some discussion of important parameters research 

issues in hyperthermia problem are also addressed. 

2. FORMULATION OF THE PROBLEM

The tumor is loaded with magnetic nanoparticle, while the 

healthy tissue, surrounding this tumor, does not contain the 

particles. Thus only the tumor is directly heated by the applied 

field. We suppose that the perfusion term, corresponding to the 

heat transfer into the blood, is proportional to the volumetric 

blood flow and to the difference between temperature of the 

local tissue and the arterial temperature. The blood perfusion 

is homogeneous throughout the healthy and affected tissue, 

since blood capillaries are typically more or less 

homogeneously distributed in the tissue bed. We study 

magnetic hyperthermia in a spherical tumor tissue. The 
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illustration of the model is shown in Figure 1. 

 

 
 

Figure 1. Illustration of the model of the heated tumor region 

(I) separated from the main part (III) of biological tissue with 

transition region (II) 

 

Let us denote radius of the spherical tumor region as R1; the 

average specific heat capacity and the thermal conductivity of 

this area as с1, λ1 respectively; the intensity of heat generation, 

under an alternative magnetic filed, per unit volume of the 

tumor as P.  

We will take into account that the tumor region can be 

separated from the environment by an area with a modified 

structure, therefore with a modified thermo-physical 

characteristic. In Figure 1, this transition layer is illustrated by 

the area II with the internal and external radiuses R1 and R2 

respectively. Specific heat capacity and thermal conductivity 

of this region will be denoted as с2 and λ2. The main part III of 

the biological tissue is outside this transition region; in this 

region the heat can be carried away by the bloodstream. 

Thermal properties of the biological tissue are denoted by с3 

and λ3. ρi is the density in region i. This work aims to develop 

a new approach toward solving the bio-heat transfer equations 

for different regions of biological system subjected to 

hyperthermia effect which depends on the magnetic 

nanoparticles that are injected into the tumor region and 

distributed in the tumor cells and It is considered to the heat 

source of power dissipation. 

The mathematical model of the heat distribution in the zone 

of hyperthermia can be presented as: 

 

At r<R1: 

 

с1ρ1

∂Θ1

∂t
= λ1

1

r2

∂

∂r
(r2

∂Θ1

∂r
) + P (1) 

 

At R1<r<R2:  
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At r>R2: 
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Here r is the distance from the tumor center; Θ1(r,t), Θ2(r,t), 

Θ3(r,t) are the differences of temperature in the respective 

tissue areas and the temperature at an infinite distance from the 

tumor; W and cw are the empirical parameters describing the 

thermal effects due to the blood circulation. The last term in 

(1) effectively describes the heat carried away by the 

circulation of blood from the tissue adjacent to the tumor 

region [19].  

We estimate the intensity P of the heat production, by using 

results [16] of theoretical study of the heat production in a 

system of ferromagnetic particles placed in an alternating 

magnetic field, taking into account magnetic interaction 

between these particles. The Neel mechanism of the particles 

remagnetization [16] was supposed. Magnetic interaction 

between them has been estimated in the frames of the 

mathematically regular approximation of pair interaction. The 

result reads: 
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Here, γ =
μ0m2

4π(2𝑎)3kBT
 is the dimensionless parameter of the 

dipolar interaction energy between two particles to the thermal 

energy kBT, m=Mpv, v =
4

3
π𝑎3 is the volume of particle, 𝑎 is 

the radius particle, α0 =
μ0mH0

kBT
 is the dimensionless of 

magnetic field. μ0 = 4π × 10−7  
T m

A
; is magnetic permeability 

of free space, kB = 1.38 ∙ 10−23  
J

 0K
; is Boltzmann constant, 

T=3000K; is absolute temperature. The parameters ϕ, μ0, 

H0, … are given in Table 1 in the section of discussion and 

results.  

For following Figure 1, the temperature distributions for 

each region of biological tissue are subject to initial and 

boundary conditions and use that, to solve the system Eqns. (1, 

2), then the symmetry and boundary conditions can be 

expressed as: 

 
𝜕Θ(𝑟,𝑡)

𝜕𝑟
= 0; 𝑟 = 0 (3a) 

 

Θ1 = Θ2; 𝜆1
𝜕Θ1
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𝜕Θ2 

𝜕𝑟
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𝜕Θ3

𝜕𝑟
  , 𝑟 = 𝑅2 

Θ3 → 0, 𝑟 → ∞, 

 

 

And initial conditions are 

 

𝑡 = 0, Θ1 = Θ2 = Θ3 = 370C (3b) 
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3. NUMERICAL TECHNIQUE 

 

On the basis of the reduced system of Eqns. (1-2) and the 

finite difference method, we will use the following 

substitutions: 

 

∂Θ

∂t
→

Θi
N − Θi

△ t
 

 

 

where, Θi
N  is the temperature at current i-time step in the 

region N, whereas Θi is the temperature in the previous step. 

The index i marks the coordinate of the ri, △t is the time step. 

The spatial derivatives of Eqns. (1-3) are replaced by using 

central differencing approximation: 
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2△r
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where, ri=i△r; i=0, 1, 2,…, n+1, the coordinate in increments 

of △ r =
1

n+1
. We take the system of heat distribution of the 

present model in numerical techniques that can be expressed 

as:  
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Region III: 
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And also, the relations (3) are transformed to new relations 

as:  

 

Initial conditions: 

 

t = 0, Θ1 = Θ2 = Θ3 = 370C (5a) 

 

Boundary conditions: 

 

1- At r=0: 

 

ΘN(0) = ΘN(△ r) (5b) 

 

2- At r=R1: 
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3- At r=R2: 
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4- At r→∞,  

 

Θi → 0, i=1,2,3 (5e) 

 
The system Eqns. (4-5) can be solved numerically to get the 

heat exchange of temperature surrounding the biological 

tissues.  

 

 

4. RESULTS AND DISCUSSIONS 

 

To show the presented results, we calculate the intensity of 

heat production P by using Table 1 that given in the theoretical 

study of the heat production in a system of ferromagnetic 

particles [16] placed in an alternating magnetic field, taking 

into account magnetic interaction between these particles. The 

values of the physical parameters of the system, used for 

solution of the problem (1-3) are given Table 2.  

 

Table 1. Values of parameters used for calculation of the 

intensity P heat of the heat production by using the results 

[16] 

 
Symbol Quantity Value 

H0 Magnetic field, (
𝐾𝐴

𝑚
). 15.5 

a Radius of particle, (𝑛𝑚). 11 

ϕ Particle volume concentration, (%). 10 

Mp Saturated magnetization, (
𝐴

𝑚
). 5.1×105 

ω Angular frequency, (
1

Sec
). 5.0×103 

τ 
Time of the particle Néel remagentization, 

(Sec). 
2×10-3 

 

Table 2. The numerical values of physical parameters, used 

at the numerical calculations 
 

Parameter Value Unit 

λ1 0.5 W/(m0C) 

λ2 0.45 W/(m0C)) 

λ3 0.4 W/((m0C)) 

ρi 1000 Kg/m3  

R1 0.003 m 

R2 0.0045 m  

c1 4180 J/(m3 0C) 

c2 4000 J/(m3 0C) 

c3 3800 J/(m3 0C) 

cw 3344 J/(m3 0C) 

W 8 Kg/(m3 ∙ Sec) 

 

Figure 2 shows the results of numerical solution of the 

problem (1, 2). We note that the temperature distribute in the 

heated tumor region (I) separated from the main part (III) of 

biological tissue with transition region (II) where, Figure 2 

reveals that profiles of temperature distribution is very close 

in the regions of therapeutic in biotissue regions and kept to 

the survive region when the temperature profile approach to 

zero. We remark there no exists significant penetration of the 

therapeutic temperatures to the outer region because thermal 

conductivity is small. Note that, the temperature profiles rend 
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of the temperature curve, and addition to satisfies and justifies 

the boundary conditions (3) along horizental direction 

 

 
 

Figure 2. Θ (r) as a function of the radial coordinate r for 

different values of time t after the start of heating of the 

tumor area; heat intensity P = 2 ∙ 106 W

m3 

 

 
 

Figure 3. The temperature Θ (0, t) in the center of the cell at 

different values of the intensity of the heat production P 

 

 
 

Figure 4. The temperature Θ (0, t) in the center of the cell at 

different values of the intensity of the parameter, W  

 

Figure 3 shows the time dependence of the temperature in 

the center of the heated region. Moreover, the temperature 

increases when the intensity of heat production (it is called 

magnetic hyperthermia) is increasing. The magnetic 

hyperthermia is depended on the physical parameters such as 

size of particles which control for the magnetic anisotropy and 

knowing the scale of hyperthermia that will use to treat the 

tumor cells in biological tissue.  

Figure 4 displays effect of parameter W of the blood 

perfusion rate on the temperature Θ in the tumor center. As 

expected, this temperature decreases with W. These results 

allow predicting the temperature change in the tumor and in 

the surrounding tissue depending on the heating intensity and 

the tumor size. In general, our results are agreement with the 

given results [8, 22] where authors [8] solved the similar 

problem of bioheat equation by Laplace transforms.  

 

 

5. CONCLUSION 

 

We present the mathematical model and results of 

numerical calculations of temperature in the tumor region and 

in surrounding biological tissue at the addressed heating of the 

tumor. Intensity of the heat production in the tumor region is 

determined on the basis of the mathematically regular given 

model of the magneto-hyperthermia in a system of particles 

with the Neel mechanism of remagnetization. The heating 

dissipates within a relatively small distance from the center of 

the perfused tumor, which can be used advantageously to 

preserve the surrounding healthy tissue. This conclusion must 

be taken into account at the development of the technology of 

magnetic hyperthermia therapy of tumor diseases.  
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