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The present work proposes a computational procedure for evaluating the response of 

laminated composite beam subjected to transverse loading using moving least square 

and point interpolation meshless technique. A finite element procedure based on 

Higher-order Beam Theory (HBT) and Timoshanko Beam Theory (TBT) used for 

computing the deformation response of a laminated composite beam subjected to 

different loading conditions. The predictive capability of Moving Least Square (MLS) 

and Point Interpolation (PI) meshless technique is judged by comparing present results 

with the results of literature based on the exact solution technique.  The deformation 

response of a laminated composite beam is obtained with several boundary conditions, 

aspect ratio, and lamination scheme. The exactness and soundness of the present 

computational algorithm are ensured by correlating results available with the results of 

various literature. 
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1. INTRODUCTION

The demand for the composite material is growing 

continuously in many significant applications of industries. 

This leads to the development of various modelling and 

analysis tools for the accurate prediction of response of 

composites subjected to different loading conditions. The 

computer-based numerical analysis helps in solving 

engineering problems which overcome time as well as 

challenges in solving partial differential equations. In the last 

decade, most of the researchers have shown interest in 

meshless methods for computing the stresses and deflections 

in laminated structures. The accuracy of deflection and 

stresses computation for the laminated composite and 

sandwich structures increases with the use of Higher-order 

theory over the First-order Shear Deformation Theory (FSDT) 

and classical theory [1-4]. The higher number of unknowns 

increases the complexity level of computation and demand for 

higher order theories with suitable assumptions [5]. The 

meshless methods combined with various analytical and 

numerical techniques are used for solving solid mechanics and 

fracture mechanics problems enables to include strong 

discontinuities such as cracks as well as weak discontinuities 

like material interfaces [6-8]. The element free Galerkin 

method is a substitution of finite element method which 

doesn’t require element or nodal connectivity and there will 

not be a problem of any kind of locking and mainly used for 

solving static and dynamic crack problems [9-11]. This 

method is also useful for solving complex problems like 

sloshing of liquid in a composite container subjected to 

vibration excitation [12], vibration analysis of layered 

composite shell [13], layered composite plate with 

piezoelectric patches [14]. As elements are not used for 

meshing in the problem domain, meshless method permits to 

develop adaptive codes for structural response of solids and 

structures [15]. In recent past, moving least square mesh less 

approach is utilized for solving generalized Kuramoto-

Sivashinsky equation [16] and it is modified for scattered data 

approximation and smoothening [17]. The coupling of 

meshless method with peridynamics yields good results for 2D 

transient elastodynamic crack quandaries involving study of 

crack propagation [18]. The crack in the stiffened plates can 

be simulated by using meshless method via first order shear 

deformation theory and yields better results in comparison 

with the results obtained by using commercial software 

ANSYS [19]. A fluid structure interaction problem for 

aerodynamic damping of oscillating fan blade can be solved 

with mesh less method and results show an accuracy of 13% 

in comparison with experimental results [20]. A fractional 

reaction-subdiffusion equation can be solved by using spectral 

meshless radial point technique and results are in agreement 

with the results obtained by using analytical method [21]. A 

Graphics Processing Unit (GPU) based meshless methods can 

be used to simulate flows over two- and three-dimensional 

aerodynamic configurations by reordering multi layered points 

and significand enhancement in GPU speedups is achieved 

[22]. A robust method based on moving least squares meshless 

interpolation technique in conjunction with finite difference 

method for fluid flow simulation problems found more 

accurate and flexible [23]. A conjugate heat transfer problem 

for heat transfer devices can be simulated by using localized 

meshless technique [24]. The discontinuous Galerkin weak 

formulation with direct reconstruction surface integration 

method can be utilized for solving large scale Computational 

Fluid Dynamics (CFD) problems [25]. A two-dimensional 

linear elasticity [26] and fracture mechanics [27] problems can 

be solved by utilizing local mesh free numerical method with 

automatic optimization of discretization parameters. The 
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acoustic field resulting from Helmholtz problems can be 

accurately represented by the plane wave basis functions with 

kemel meshfree approximation [28] and point interpolation 

shape functions [29].  

The aim of the present study is to compare the response of 

laminated composite beam subjected to different loadings and 

obtained by MLS and PI meshless technique based on higher-

order and Timoshenko beam theory. The deformation results 

are obtained for different aspect ratio, boundary conditions, 

and lamination angle. The results are compared with the 

similar results of various literature for ascertaining the 

accuracy of the present algorithm developed in MATLAB.  

 

 

2. MATHEMATICAL FORMULATION 

 
The laminated composite beam on a domain Ω of length (l), 

width (b) and overall thickness (h) bounded by   is 

considered for present study which occupies space as, 
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The beam consists of n number of laminas with different 

fiber orientation angle (β) with positive x-axes. The 

displacements (u, v, w) are considered along Cartesian 

coordinates (x, y, z) as shown in Figure 1. The displacement v 

is ideally assumed to be zero. Thus (u, v, w) are functions of x 

and z represented as, 
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where, α=0 for TBT and α=-4/3h2 for HBT. The field variables 

can be represented as axial displacement (u0), transverse 

displacement (w0), rotation about normal to the mid-surface (θ) 

and slope (∂w/∂x). The strain displacement relation can be 

obtained as, 
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where, 
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with differential operator, 
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and displacement vector, 
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Figure 1. Laminated composite beam with local and global 

coordinate system 

 

 

3. MESHLESS METHOD 
 

The static problem in solid mechanics can be solved with 

the help of equilibrium equation given by, 

 

0TL in =   (7) 

 

where, stress vector σ can be represented with stress resultants 

N, M, P, Q, R as, 
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(8) 

 

and resultant material stiffness constants as, 
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where, 
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and transformed stiffness constants, ijC  are described by 
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Reddy [30]. 

The natural boundary conditions are applied as,   

   

tn t in =   (11) 

 

where, t  is traction force at the natural boundaries and n is 

unit normal vector on the natural boundary. The constraints 

can be applied with the help of essential boundary condition 

as, 

 

uU U in=   (12) 

 

The displacement at the essential boundaries are U .  

 

3.1 Element Free Galerkin method 

 

The MLS is an approximation procedure utilized for shape 

function generation in Element Free Galerkin (EFG) technique. 

The shape functions are generated utilizing the cubic spline 

weighted function as explained by Belytschko [6]. The shape 

functions ϕ formed by the assistance of nodes in local support 

domain as,  
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The MLS approximations does not possess Kronecker delta 

property due to which constrained weak form of one-

dimensional beam is required and can be represented as [6], 
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where, Lagrange multipliers λ in Eq. (14), are used to maintain 

compatibility. These unknown functions of the coordinates are 

interpolated at nodes on essential boundaries using their shape 

functions and nodal values.  
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where, NI is the matrix of shape functions for ith node on the 

essential boundary. In Eq. (15), the shape function NI(s) are 

the Lagrange interpolants of first order. In a simple case, the 

essential boundaries are discretized using line segments. The 

Lagrange multiplier is interpolated using two nodes at the two 

ends of this line segments. The variation of the Lagrange 

multiplier given by,  

  
h N =  (16) 

 

The weak form of Eq. (14) can be obtained by replacing the 

trial functions, test functions as, 
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where, 
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where, 
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3.2 Point interpolation method 

 

The PI method is another meshless technique developed by 

Liu [15]. The PI method possess Kronecker delta property, 

which eliminates requirement of Lagrangian multipliers in 

EFG method. The final discrete equations can be obtained 

similar to finite element method, by eliminating G and q terms 

in Eq. (17) as [15] 
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where, K and F can be obtained by replacing PI method shape 

functions in place of MLS shape functions. The essential 

boundary conditions can be handled by direct method. The 

components in the global force vector are modified to, 
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4. RESULTS AND DISCUSSION 

 

The present algorithm for HBT and TBT developed in 

MATLAB is validated for ensuring its accuracy by comparing 

deformation with the MLS and PI approximation method.  The 

results are compared with Murthy [3] and Khdier [2] for 

asymmetric cross-ply beam [0/90] as well as symmetric cross-

ply beam [0/90/0]s as shown in Table 1 and Table 2, 

respectively. The transverse deflection of a laminated 

composite beam under UDL for clamped-clamped (C-C), 

hinged-hinged (H-H), clamped–hinged (C-H) and clamp-free 

(C-F) boundary conditions are obtained. The convergence 

study is carried out, and finally, the laminated beam is 

discretized using 101 number of nodes. The material 

properties used are E1 = E2/25, G12 = G13 = 0.5E2, G23 = 0.2E2, 

and v12=0.25. The non-dimensional form of transverse 

deflection of laminated composite beam is given by, 
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From Tables 1 and 2, it is observed that HBT shows better 

results than Timoshenko theory for various boundary 

conditions. The accuracy of computation increases with the 

increase in aspect ratio (L/h). Both MLS and PI method 
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approximation techniques shows good agreement with the 

similar results of previous literature. It is also observed that the 

results obtained with the PI method are more promising than 

MLS. The variation of 10% is observed when the aspect ratio 

is small, and error reduces with the increase in aspect ratio. 

 

Table 1. Non-dimensional deflection ( )( )0, 2w L  of 

asymmetric cross-ply [0/90] beam for different boundary 

conditions with uniformly distributed load 

 

L/h Model H-H C-H C-C C-F 

5 Present HBT-PIM 4.833 2.766 2.150 15.783 

 Present TBT-PIM 5.379 3.317 2.722 17.465 

 Present HBT-MLS 4.839 2.789 2.178 15.808 

 Present TBT-MLS 5.396 3.339 2.756 17.477 

 Murthy [3] 4.750 2.855 1.924 15.334 

 Khdeir [2] 4.777 2.863 1.922 15.279 

10 Present HBT-PIM 3.701 1.545 1.039 12.424 

 Present TBT-PIM 3.836 1.682 1.179 12.837 

 Present HBT-MLS 3.690 1.570 1.054 12.462 

 Present TBT-MLS 3.832 1.705 1.194 12.876 

 Murthy [3] 3.668 1.736 1.007 12.398 

 Khdeir [2] 3.688 1.740 1.005 12.343 

50 Present HBT- PIM 3.337 1.143 0.679 11.3389 

 Present TBT-PIM 3.342 1.147 0.685 11.355 

 Present HBT-MLS 3.219 1.141 0.667 11.056 

 Present TBT-MLS 3.260 1.156 0.679 11.175 

 Murthy [3] 3.318 1.343 0.681 11.392 

 Khdeir [2] 3.336 0.679 0.679 11.337 

 

Table 2. Non-dimensional deflection ( )( )0, 2w L  of 

asymmetric cross-ply [0/90/0] beam for different boundary 

conditions with uniformly distributed load 

 

L/h Model H-H C-H C-C C-F 

5 Present HBT-PIM 2.426 2.062 1.688 7.161 

 Present TBT-PIM 2.446 2.239 1.929 7.598 

 Present HBT-MLS 2.438 2.073 1.708 7.146 

 Present TBT-MLS 2.467 2.247 1.952 7.569 

 Murthy [3] 2.398 1.946 1.538 6.836 

 Khdeir [2] 2.412 1.952 1.537 6.824 

10 Present HBT-PIM 1.105 0.761 0.555 3.512 

 Present TBT-PIM 1.096 0.778 0.579 3.548 

 Present HBT-MLS 1.107 0.767 0.561 3.516 

 Present TBT-MLS 1.100 0.782 0.587 3.549 

 Murthy [3] 1.090 0.738 0.532 3.466 

 Khdeir [2] 1.096 0.740 0.532 3.455 

50 Present HBT- PIM 0.665 0.280 0.148 2.253 

 Present TBT-PIM 0.664 0.279 0.147 2.252 

 Present HBT-MLS 0.658 0.288 0.149 2.249 

 Present TBT-MLS 0.660 0.289 0.149 2.253 

 Murthy [3] 0.661 0.279 0.147 2.262 

 Khdeir [2] 0.665 0.280 0.147 2.251 

 

Figure 2 shows transverse deflection of a laminated 

composite beam subjected to UDL for various boundary 

conditions and different (a) lamination angle at aspect ratio 

(L/h= 10) with [θ4/04/θ4] lamination scheme, (b) aspect ratio 

(L/h) with lamination scheme [0/90] s. It is observed from the 

results that the clamped-free boundary condition shows more 

deformation for all lamination angles, as shown in Figure 2(a). 

It is also observed from Figure 2(a) that deformation increases 

with the lamination angle. It is observed from Figure 2(b) that 

the deformation results are more consistent for higher aspect 

ratio. 

 

Table 3 and Table 4 show effect of lamination schemes and 

plate thickness on non-dimensional transverse deflection of a 

laminated composite beam under uniformly distributed load 

and Point load for Clamped-Clamped (CC) boundary 

conditions respectively. The response of beam is obtained for 

unidirectional ply, cross ply and angle ply lamination schemes. 

The lamination schemes considered are [0], [90], [0/90], 

[0/90]s, [0/90/0]s and [45/-45]s. The plate aspect ratio 

considered for this study are 5, 10, 20, 50 and 100. The results 

are obtained using point interpolation and moving least square 

mesh less technique via higher order beam theory and 

Timoshenko beam theory for different aspect ratios (L/h). For 

all the cases considered it is observed that the response of 

laminated composite beam in the form of deformation is 

higher for transverse loading condition. This clearly indicates 

that laminated composite beam has lower strength if the load 

is applied transverse to fibre direction and it is strong if the 

load is applied along the fibre. 

 

 
(a) 

 
(b) 

 

Figure 2. Transverse deformation response of laminated 

beam subjected to different boundary conditions with respect 

to (a) lamination scheme (β4/04/β4)s at aspect ratio 10 and 

(b) aspect ratio for lamination scheme (0/90)s 
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Table 3. Effect of lamination scheme and plate thickness on 

non-dimensional transverse deflection of laminated beam 

under UDL for Clamped-Clamped boundary conditions 

 
L/h Lamination 

scheme 
HBT 

(PI) 

HBT 

(MLS) 

TBT 

(PI) 

TBT 

(MLS) 

5 [0] 1.2317 1.2463 1.5644 1.5835 

 [90] 6.0406 6.1141 6.7127 6.8071 

 [0/90] 2.1503 2.1771 2.7204 2.7560 

 [0/90]s 2.0219 2.0446 2.1984 2.2251 

 [0/90/0]s 1.6655 1.6847 2.0501 2.0751 

 [45/-45]s 2.0646 2.0875 2.4924 2.5257 

10 [0] 0.4127 0.4176 0.4845 0.4909 

 [90] 3.8570 3.8979 4.0130 4.0690 

 [0/90] 1.0397 1.0528 1.1777 1.1946 

 [0/90]s 0.6544 0.6612 0.6557 0.6642 

 [0/90/0]s 0.5458 0.5521 0.6292 0.6375 

 [45/-45]s 0.8551 0.8640 0.9497 0.9646 

20 [0] 0.1982 0.2006 0.2145 0.2176 

 [90] 3.3028 3.3094 3.3381 3.3610 

 [0/90] 0.7587 0.7656 0.7920 0.8023 

 [0/90]s 0.2754 0.2783 0.2701 0.2739 

 [0/90/0]s 0.2549 0.2579 0.2740 0.2779 

 [45/-45]s 0.5433 0.5475 0.5641 0.5735 

50 [0] 0.1366 0.1373 0.1389 0.1404 

 [90] 3.1465 2.9174 3.1491 3.0058 

 [0/90] 0.6795 0.6661 0.6840 0.6793 

 [0/90]s 0.1636 0.1646 0.1621 0.1640 

 [0/90/0]s 0.1718 0.1728 0.1745 0.1765 

 [45/-45]s 0.4545 0.4494 0.4561 0.4582 

100 [0] 0.1276 0.1248 0.1281 0.1270 

 [90] 3.1240 2.3106 3.1221 2.5190 

 [0/90] 0.6681 0.5943 0.6686 0.6193 

 [0/90]s 0.1472 0.145 0.1466 0.1462 

 [0/90/0]s 0.1598 0.1565 1.6030 0.1592 

 [45/-45]s 0.4418 0.4089 0.4407 0.4225 

 

Table 4. Effect of lamination scheme and plate thickness on 

non-dimensional transverse deflection of laminated beam 

under point load for Clamped-Clamped boundary conditions 

 
L/h Lamination 

scheme 
HBT 

(PI) 

HBT 

(MLS) 

TBT 

(PI) 

TBT 

(MLS) 

5 [0] 2.457 2.439 2.641 2.621 

 [90] 12.066 11.992 12.214 12.128 

 [0/90] 4.291 4.261 4.746 4.711 

 [0/90]s 4.034 4.007 3.700 3.672 

 [0/90/0]s 3.322 3.299 3.459 3.432 

 [45/-45]s 4.120 4.091 4.292 4.260 

10 [0] 0.824 0.818 0.847 0.841 

 [90] 7.711 7.671 7.729 7.676 

 [0/90] 2.077 2.062 2.183 2.168 

 [0/90]s 1.306 1.298 1.138 1.130 

 [0/90/0]s 1.090 1.081 1.098 1.090 

 [45/-45]s 1.708 1.697 1.729 1.717 

20 [0] 0.396 0.393 0.399 0.396 

 [90] 6.606 6.562 6.608 6.565 

 [0/90] 1.517 1.502 1.542 1.532 

 [0/90]s 0.550 0.547 0.497 0.494 

 [0/90/0]s 0.509 0.509 0.508 0.505 

 [45/-45]s 1.086 1.080 1.089 1.080 

50 [0] 0.273 0.271 0.273 0.272 

 [90] 6.294 6.247 6.294 6.248 

 [0/90] 1.359 1.350 1.363 1.353 

 [0/90]s 0.327 0.325 0.318 0.316 

 [0/90/0]s 0.344 0.341 0.343 0.341 

 [45/-45]s 0.909 0.903 0.909 0.903 

100 [0] 0.255 0.254 0.255 0.254 

 [90] 6.248 6.179 6.249 6.184 

 [0/90] 1.336 1.325 1.337 1.327 

 [0/90]s 0.294 0.292 0.292 0.290 

 [0/90/0]s 0.320 0.317 0.319 0.318 

 [45/-45]s 0.884 0.877 0.884 0.877 

 

 

5. CONCLUSIONS 

 

The static bending response of a laminated composite beam 

subjected to transverse loading is obtained by implementing 

MLS and PI meshless method based on HBT and TBT. A 

MATLAB code is developed and validated for its accuracy by 

comparing deformation results with various literature. The 

effects of aspect ratio (L/h), different boundary conditions, 

symmetric, and asymmetric laminates for linearly static 

bending are examined.  

It is concluded from the results obtained under different 

loading and boundary conditions that the TBT can be used 

where computational cost is priority, while the HBT can be 

used where accuracy is priority. 

The variation of results by utilizing MLS and PI method is 

not considerable for same nodal density. The PI method 

possesses Kroneckere delta property, which simplifies 

implementation of essential boundary conditions. Also, the 

results get converged quickly and hence can be better choice 

than the EFG with MLS method. 
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