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 In this manuscript explains the classical aspects of economic dispatch phenomena 

through a theoretical approach. The method for minimizing the generation cost of the 

thermal generating unit will fail, if without covering the power losses on the 

transmission line, while the fuel cost is the largest component in the thermal generating 

unit. Based on that, the cost of producing the electrical power from a thermal generator 

should be sought as economically as possible. The existence of an incremental fuel cost 

of one generating unit may be lower than that of another, but the plant is located away 

from the load center which affects the power loss of transmission line has the large 

value. Optimization of fuel costs and power loss of transmission line are used the 

coordination equation for completion. In the coordination equation, economic costs are 

generated and achieved, when the total incremental cost of fuel that multiplied by the 

penalty factor is same for all generators. To calculate the achievement of economic 

dispatching value in electric power system with type of thermal generation with 

calculation of power loss of transmission line and value of limitation of generation of 

generating unit as generating function, hence can be reached by some way of 

calculation. 
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1. INTRODUCTION 

 

The ability of the power supply to the load as a determinant 

of the reliability of the electrical power system, so always 

strived that the power generated must equal the demand on the 

load side and the power loss on the transmission line for the 

condition at any time [1-5]. The fuel cost at the thermal 

generating station for the power plant is a function of load 

power [1, 4, 5]. Increasing the power for supply to the load on 

a fossil fuel thermal power plant unit is a driver of increasing 

the quantity of fuel per unit time which ultimately drives the 

increase in cost per unit time [1, 5, 6-9]. The fluctuation of 

demands on the load side as a fluctuator of the associated fuel 

costs, so as to obtain a pattern of correlation of both [2, 4]. A 

waiver of power losses on the transmission line affects failure 

in cost suppression [1, 3]. 

Determining the distribution of the load economically 

between the generating units, consideration of losses on the 

transmission line as a generation function is required [1]. The 

presence of additional fuel costs on one busbar generating unit 

may be higher than the system's additional cost, then the option 

remains to the additional cost of the system, in order for the 

electric power to move deep into the load center [5, 7]. The 

power loss on the transmission line from the generating unit 

which has a lower additional cost may be too great, so in terms 

of economics it is necessary to decrease the load on the 

generating unit at a lower additional cost, and increase power 

to the generating unit at a higher additional cost [1, 3-5, 7-9]. 

The determination of power losses on transmission line 

using the coordination equation when economic dispatch in 

electrical power system with case of network structure 

consisting of four buses with two generating buses and two 

load buses, while the value of generating limits from the 

thermal generation station is taken into calculation. The 

economic dispatch phenomena are an initial condition for the 

existence of an optimum power flow, because a specific 

problem [10], so it becomes a determining factor for the 

success of the optimum power flow condition [11].  

Limitations of economic dispatch is a condition caused by 

(i) generating units and loads are not all connected to the same 

bus and (ii) the economic dispatch may result in unacceptable 

flows or voltages in the network [12]. The real power losses 

minimization is required objective function for minimizing 

active power loss which can be formulated [13]. The 

transmission system has several constraints which can be 

categorized in the form of equality and inequality constraint 

[13]. However, adding inequality constraints for each problem 

is not practical in more complex situations, so that needed a 

more general approach [12]. In this manuscript explains the 

classical aspects of economic dispatch phenomena through a 

theoretical approach. 

 

 

2. MATERIAL AND METHOD 
 

2.1 Material 

 

A network equivalent of a single-node system with all the 

generators and the load is directly connected, it can be said to 

be a representation of conditions with neglected the power loss 
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on transmission line, so the penalty factor for each plant 

becomes one [3]. When the power loss on transmission line is 

considered, then the economic dispatch of electric power must 

be through iterative process with a non-linear coordination 

equation solving [3]. Deriviting the equation of power loss on 

transmission line in an electrical energy system, it should refer 

to a simple system consisting of two generators and two loads 

with a transmission network represented by a bus impedance 

matrix [2]. Decreasing the power loss equation is done through 

in two stages. The first stage used invariant power 

transformation to the system bus to show the system loss only 

on the generator current. The second stage transforms the 

generator current into the generating power output going to the 

form of the power loss equations for the system with the source 

[2]. 

The start of the formulation taken with reference to bus-1 

and bus-2 is the generating bus, bus-3 and bus-4 are load bus, 

and the n-th bus is a neutral system. Schematic diagram of 

simple system analogy of electrical power with four buses [2], 

as shown in Figure 1. 

 

 
 

Figure 1. Schematic diagram of simple system analogy of 

electrical power with four buses 

 

The currents of I3 and I4 injected at the load bus are 

combined simultaneously for the formation of the system load 

bus [2], to obtain the Eq. (1). 

 

𝐼3 + 𝐼4 = 𝐼𝐷 (1) 

 

It is assumed, each load with a constant and balanced 

division of the total load [2], so that it is obtained as Eq. (2). 

 

𝐼3 = 𝑑3 ∙ 𝐼𝐷 and 𝐼4 = 𝑑4 ∙ 𝐼𝐷 (2) 

 

then: 

 

𝑑3 + 𝑑4 = 1 (3) 

 

2.2 Method 

 

The problem of minimizing the overall cost function in an 

interconnected system must be with consideration the power 

loss on transmission line, so that the power balance [4] is 

defined as Eq. (4). 

 

(∑𝑃𝐺𝑖

𝑘

𝑖=1

) − 𝑃𝐿𝑜𝑠𝑠𝑒𝑠 − 𝑃𝐷𝑒𝑚𝑎𝑛𝑑 = 0 (4) 

Substituting the transmission line power losses into the 

system optimization, the Lagrange function [3, 4] is obtained 

as Eq. (5). 

 

𝐿𝐹 = 𝐶𝑖(𝑃𝐺𝑖) − 𝜆 ∙ [(∑𝑃𝐺𝑖

𝑘

𝑖=1

) − 𝑃𝐿𝑜𝑠𝑠𝑒𝑠 − 𝑃𝐷𝑒𝑚𝑎𝑛𝑑] (5) 

 

For optimum real power distribution and incremental cost 

are achieved when conditions such as Eqns. (6) and (7) is met 

[1, 4]. 

 
𝛿

𝛿𝑃𝐺𝑖

𝐿𝐹 = 0 (6) 

 
𝛿

𝛿𝜆
𝐿𝐹 = 0 (7) 

 

where, i=1,2, …, k. 

Solution to Eq. (6) is obtained the result of Eq. (8). 

 
𝛿

𝛿𝑃𝐺𝑖

𝐶𝑖 − 𝜆 ∙
𝛿

𝛿𝑃𝐺𝑖

[𝑃𝐺𝑖 − 𝑃𝐿𝑜𝑠𝑠𝑒𝑠 − 𝑃𝐷𝑒𝑚𝑎𝑛𝑑] = 0 (8) 

 

while solution to Eq. (7) is obtained the result of Eq. (9). 

 

−
𝛿

𝛿𝜆
[𝑃𝐺𝑖 − 𝑃𝐿𝑜𝑠𝑠𝑒𝑠 − 𝑃𝐷𝑒𝑚𝑎𝑛𝑑] = 0 (9) 

 

One generator's output change only affects the cost of the 

generator, so through the rearrangement of Eq. (8), we get the 

result as Eq. (10) or (11) or (12) [3, 4]. 

 
𝛿

𝛿𝑃𝐺𝑖

𝐶𝑖 − 𝜆 ∙ [1 −
𝛿

𝛿𝑃𝐺𝑖

𝑃𝐿𝑜𝑠𝑠𝑒𝑠] = 0 (10) 

 

𝛿

𝛿𝑃𝐺𝑖

𝐶𝑖 ∙ [
1

1 −
𝛿

𝛿𝑃𝐺𝑖
𝑃𝐿𝑜𝑠𝑠𝑒𝑠

] =  𝜆 (11) 

 
𝛿

𝛿𝑃𝐺𝑖

𝐶𝑖 ∙ 𝜆𝑖 =  𝜆 (12) 

 

for all values of the i-th (𝑃𝐺𝑖
min. ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

max.) [3], where 𝜆𝑖 =
1

1−
𝛿

𝛿𝑃𝐺𝑖
𝑃𝐿𝑜𝑠𝑠𝑒𝑠

 is called the i-th bus penalty factor [3, 4]. Eq. (12) 

is called as a coordination Eq. [3], since the incremental costs 

and transmission line losses are coordinated, in order to 

achieve the most optimum results. Partial differentiation of 
𝛿

𝛿𝑃𝐺𝑖
𝑃𝐿𝑜𝑠𝑠𝑒𝑠  is called as incremental transmission losses or 

power loss in the auxiliary transmission line at the i-th 

throttling unit [3]. The use of Eq. (6), generated the value of 

the Eq. (4) as a normal active balance equilibrium equation [3]. 

The cost of a penalty factor is the same for all generators 

or written as Eq. (13). 

 
𝑑

𝑑𝑃𝐺1

𝐶1 ∙ 𝜆1 =
𝑑

𝑑𝑃𝐺𝑖2

𝐶2 ∙ 𝜆2 = 𝐾 =
𝑑

𝑑𝑃𝐺𝑘

𝐶𝑘 ∙ 𝜆𝑘 = 𝜆 (13) 

 

For small changes to the system load, for example 

∆𝑃𝐷𝑒𝑚𝑎𝑛𝑑, the generation of power in the k-th generating unit 

changes by ∆𝑃𝐺𝑘. The power output from the other generator 
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is kept constant, then the change in the power loss on 

transmission line is equal to ∆𝑃𝐿𝑜𝑠𝑠𝑒𝑠 , so that ∆𝑃𝐺𝑘 −

∆𝑃𝐿𝑜𝑠𝑠𝑒𝑠 = ∆𝑃𝐷𝑒𝑚𝑎𝑛𝑑 , and 
𝑑

𝑑𝑃𝐺𝑘
𝐶𝑘 ∙ 𝜆𝑛 = 

𝑑

𝑑𝑃𝐺𝑘
𝐶𝑘 ∙

1

1−
∆

∆𝑃𝐺𝑖
𝑃𝐿𝑜𝑠𝑠𝑒𝑠

. The existence of each generating unit with fuel 

cost characteristics as a second-order equation, then used for 

easy understanding to 𝜆 (incremental cost) of the fuel [3]. 

 

 

3. RESULTS AND DISCUSSIONS 
 

Can be simplified on a simple system consisting of 2 (two) 

units of generating units, so that the value of 𝜆  for each 

generating unit, such as Eq. (14). 

 

𝜆1 =
𝑑

𝑑𝑃𝐺1

𝐶1 = 𝑎1 ∙ 𝑃𝐺1 + 𝑏1 

 

and 

 

𝜆2 =
𝑑

𝑑𝑃𝐺2
𝐶2 = 𝑎2 ∙ 𝑃𝐺2 + 𝑏1  (14) 

 

Settlement for PG1 and PG2 are obtained as Eq. (15). 

 

𝑃𝐺1 =
𝜆−𝑏1

𝑎1
 and 𝑃𝐺2 =

𝜆−𝑏2

𝑎2
    (15) 

 

and the settlement of 𝜆 value is obtained as Eq. (16). 

 

𝜆 = (∑
1

𝑎1

2

𝑖=1

)

−1

(𝑃𝐺1 + 𝑃𝐺2) + (∑
1

𝑎1

2

𝑖=1

)

−1

∙ (∑
𝑏1

𝑎1

2

𝑖=1

)

−1

 

(16) 

 

In another form the Eq. (16) is written as Eq. (17). 

 

𝜆 = 𝑎𝑇 ∙ 𝑃𝐺𝑇 + 𝑏𝑇 (17) 

 

where: 
 

𝑎𝑇 = (∑
1

𝑎1

2
𝑖=1 )

−1

; 𝑃𝐺𝑇 = 𝑃𝐺1 + 𝑃𝐺2; and 

𝑏𝑇 = 𝑎𝑇 ∙ (∑
𝑏1

𝑎1

2
𝑖=1 )

−1

. 

 

Implementation of the system with the generating unit, then 

the coefficient of Eq. (17) changes into Eqns. (18) and (19). 

 

𝑎𝑇 = (∑
1

𝑎1

2

𝑖=1

)

−1

= (
1

𝑎1

+
1

𝑎2

+ ⋯+
1

𝑎𝑘

)
−1

 (18) 

 

𝑏𝑇 = 𝑎𝑇 ∙ (∑
𝑏1

𝑎1

2

𝑖=1

)

−1

= 𝑎𝑇 ∙ (
𝑏1

𝑎1

+
𝑏2

𝑎2

+ ⋯+
𝑏𝑘

𝑎𝑘

)
−1

 (19) 

 

and the total output of the generating unit PGT = PG1+ PG2 + ... 

+ PGK 

The substitution of the coordination equation by taking into 

account of the equations for power loss on the transmission 

line, then for a simple system consisting of 2 (two) generating 

plants is obtained as Eq. (20). 

(𝑎1 ∙ 𝑃𝐺1 + 𝑏1) −  𝜆
+ (2 ∙ 𝐿11 ∙ 𝑃𝐺1 + 2 ∙ 𝐿12 ∙ 𝑃𝐺2

+ 𝐿10) 

(20) 

 

Through the reassembling of its tribes and dividing the 

resultant equation by 𝜆, giving as Eqns. (21) and (22). 

 

(
𝑎1

 𝜆
+ 2 ∙ 𝐿11) ∙ 𝑃𝐺1 + +2 ∙ 𝐿12 ∙ 𝑃𝐺2

= (1 − 𝐿10) −
𝑏1

 𝜆
 

(21) 

 

2 ∙ 𝐿21 ∙ 𝑃𝐺1 + (
𝑎2

 𝜆
+ 2 ∙ 𝐿22) 𝑃𝐺2 = (1 − 𝐿20) −

𝑏2

 𝜆
 (22) 

 

In the matrix form for the two units, it is obtained as Eq. 

(23). 

 

[
(
𝑎1

 𝜆
+ 2 ∙ 𝐿11) 2 ∙ 𝐵12

2 ∙ 𝐿21 (
𝑎2

 𝜆
+ 2 ∙ 𝐿22)

] ∙ [
𝑃𝐺1

𝑃𝐺2
]

= [
(1 − 𝐵10) −

𝑏1

 𝜆
 

(1 − 𝐵20) −
𝑏2

 𝜆

] 

(23) 

 

For system that consists k of generating units defined as Eq. 

(24). 
 

(
𝑎1

 𝜆
+ 2 ∙ 𝐿11) ∙ 𝑃𝐺1 + ∑2 ∙ 𝐿𝑖𝑗 ∙ 𝑃𝐺𝑗 =

𝑘

𝑖=1
𝑗≠1

(1 − 𝐿10)

−
𝑏1

 𝜆
 

(24) 

 

and in matrix form as Eq. (25). 

 

[
 
 
 
 
 (

𝑎1

 𝜆
+ 2 ∙ 𝐿11) 2 ∙ 𝐿12

2 ∙ 𝐿21 (
𝑎1

 𝜆
+ 2 ∙ 𝐿22)

⋯ 2 ∙ 𝐿1𝑘

⋯ 2 ∙ 𝐿2𝑘

⋮ ⋮
2 ∙ 𝐿𝑘1 2 ∙ 𝐿𝑘2

⋱ ⋮

⋯ (
𝑎1

 𝜆
+ 2 ∙ 𝐿𝑘𝑘)]

 
 
 
 
 

[

𝑃𝐺1

𝑃𝐺2

⋮
𝑃𝐺𝑘

] =

[
 
 
 
 
 (1 − 𝐿10) −

𝑏1

 𝜆

(1 − 𝐿20) −
𝑏2

 𝜆

⋮

(1 − 𝐿𝑘0) −
𝑏𝑘

 𝜆 ]
 
 
 
 
 

   

(25) 

 

Taking into account the balance of power, the equation for 

power loss on the transmission line become as Eq. (26). 

 

𝑃𝐿𝑜𝑠𝑠𝑒𝑠 = ∑∑ 𝑃𝐺𝑖 ∙ 𝐿𝑖𝑗

2

𝑗=1

∙ 𝑃𝐺𝑗 + ∑ 𝐿10

2

𝑖=𝑗

2

𝑖=1

∙ 𝑃𝐺𝑖 + 𝐿00

+ 𝑃𝐷𝑒𝑚𝑎𝑛𝑑 − ∑ 𝑃𝐺𝑖

𝑘

𝑖=1

= 0 

(26) 

 

The constraint function in optimization refers to Eq. (4), 

where,  

 

𝑃𝐺𝑖
min. ≤ 𝑃𝐺𝑖 < 𝑃𝐺𝑖

max.   𝑖 = 1,2,⋯ , 𝑘 (27) 

 

𝑃𝐺𝑖
max. ≥ 𝑃𝐷𝑒𝑚𝑎𝑛𝑑    𝑖 = 1,2,⋯ , 𝑘 (28) 
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Based on Figure 1, it is further analyzed by selection of the 

n-th bus as a reference for the equations of buses written as Eq. 

(29). 

 

[

𝑉1𝑛

𝑉2𝑛

𝑉3𝑛

𝑉4𝑛

] = [

𝑍11 𝑍12

𝑍21 𝑍22

𝑍13 𝑍14

𝑍23 𝑍24

𝑍31 𝑍32

𝑍41 𝑍42

𝑍33 𝑍34

𝑍43 𝑍44

] ∙ [

𝐼1
𝐼2
𝐼3
𝐼4

] (29) 

 

The first line translation of Eq. (29) is obtained as Eq. (30). 

           

𝑉1𝑛 = 𝑍11 ∙ 𝐼1 + 𝑍12 ∙ 𝐼2 + 𝑍13 ∙ 𝐼3 + 𝑍41 ∙ 𝐼4 (30) 

 

The substitution is for I3 = d3  ID and I4 = d4  ID in Eq. (2), 

then completion of the equation simultaneously to be ID is 

produced as Eq. (31). 

 

𝐼𝐷 =
−𝑍11

𝑑3 ∙ 𝑍11 + 𝑑4 ∙ 𝑍14

∙ 𝐼1 +
−𝑍12

𝑑3 ∙ 𝑍13 + 𝑑4 ∙ 𝑍14

∙ 𝐼2

+
−𝑍11

𝑑3 ∙ 𝑍13 + 𝑑4 ∙ 𝑍14

∙ 𝐼𝑛
0 

(31) 

 

where, I0
n is no-load current and identified as a value like Eq. 

(32). 

 

𝐼𝑛
0 = −

𝑉1𝑛

𝑍11

 (32) 

 

For explanation help it is mentioned, that I0
n is called a no-

load current. Schematic diagram for the explanation of the no-

load current I0
n is shown in Figure 2. 

 

 
 

Figure 2. Schematic diagram for explanation of no-load 

current I0
n 

 

Based on Figure 2, when all loads and generating units are 

released from the voltage system V1n is used in bus-1, only the 

current I0
n will flow through the shunt connection to the n-th 

bus. This current is generally small and relatively constant. 

The simplification coefficient is found in Eq. (31) by Eq. 

(32) is obtained as Eq. (33). 

 

𝑡𝑍1 =
𝑍11

𝑑3∙𝑍11+𝑑4∙𝑍14
  and  𝑡𝑍2 =

𝑍12

𝑑3∙𝑍11+𝑑4∙𝑍14
     (33) 

 

then Eq. (32) becomes as Eq. (34). 

               

𝐼𝐷 = −𝑡𝑍1 ∙ 𝐼1 − 𝑡𝑍2 ∙ 𝐼2 − 𝑡𝑍1 ∙ 𝐼𝑛
0 (34) 

 

The substitution of Eq. (34) to Eq. (2) is obtained as Eq. (35) 

and (36). 

     

𝐼3 = −𝑑3 ∙ 𝑡𝑍1 ∙ 𝐼1 − 𝑑3 ∙ 𝑡𝑍2 ∙ 𝐼2 − 𝑑3 ∙ 𝑡𝑍1 ∙ 𝐼𝑛
0 (35) 

and 

 

𝐼4 = −𝑑4 ∙ 𝑡𝑍1 ∙ 𝐼1 − 𝑑4 ∙ 𝑡𝑍2 ∙ 𝐼2 − 𝑑4 ∙ 𝑡𝑍1 ∙ 𝐼𝑛
0 (36) 

 

Furthermore, we can change the Eqns. (35) and (36) with 

the definition of the transformation of the currents I1, I2, I3 and 

I4 is shown in Eq. (30), into new currents, I1, I2 and 𝐼𝑛
0, then is 

obtained as Eq. (37). 

                                        

[

𝑉1𝑛

𝑉2𝑛

𝑉3𝑛

𝑉4𝑛

] = [

1
0

0
1

0
0

−𝑑3 ∙ 𝑡𝑍1

−𝑑4 ∙ 𝑡𝑍1

−𝑑3 ∙ 𝑡𝑍2

−𝑑4 ∙ 𝑡𝑍2

−𝑑3 ∙ 𝑡𝑍1

−𝑑4 ∙ 𝑡𝑍1

] ∙ [

𝐼1
𝐼2
𝐼𝑛
0
]

= 𝐶 ∙ [

𝐼1
𝐼2
𝐼𝑛
0
] 

(37) 

 

Eq. (37) can be written as Eq. (38). 

 

𝑃𝐿𝑜𝑠𝑠𝑒𝑠 = [𝐼1 𝐼2 𝐼𝑛
0] ∙ 𝐶𝑇 ∙ 𝑅𝑏𝑢𝑠 ∙ 𝐶∗ ∙ [

𝐼1
𝐼2
𝐼𝑛
0
] (38) 

 

Against each bus the generator is assumed, that QGi 

(reactive power) is a very small constant of Si from PGi (active 

power) at each review period. It is equivalent to assuming, that 

each of the generators operates at a constant cos 𝜑  (power 

factor) over the same period. Therefore, it can be written as Eq. 

(39), 

 

𝑃𝐺𝑖 + 𝑗𝑄𝐺𝑖 = (1 + 𝑗𝑆𝑖) ∙ 𝑃𝐺𝑖  (39) 

 

where, 

 

𝑆𝑖 =
𝑄𝐺𝑖

𝑃𝐺𝑖
 = real amount. 

 

The generator output current is given by Eq. (40). 

 

𝐼𝑖 =
(1 + 𝑗𝑆𝑖)

𝑉𝑖
∗ ∙ 𝑃𝐺𝑖 = 𝛼𝑖 ∙ 𝑃𝐺𝑖  (40) 

 

Using Eq. (40) to calculate the current on two generators is 

obtained: 

 

𝐼1 =
(1 + 𝑗𝑆1)

𝑉1
∗ ∙ 𝑃𝐺1 = 𝛼1 ∙ 𝑃𝐺1 

𝐼2 =
(1 + 𝑗𝑆2)

𝑉2
∗ ∙ 𝑃𝐺2 = 𝛼2 ∙ 𝑃𝐺2

  

Guided by Eqns. (40), values of currents and I1, I2 and I0
n 

can be written in matrix form as Eq. (41). 

 

[

𝐼1
𝐼2
𝐼𝑛
0
] = [

𝛼1 0 0
0 𝛼2 0

0 0 𝐼𝑛
0
] ∙ [

𝑃𝐺1

𝑃𝐺2

1

] (41) 

 

The substitution of Eq. (41) to Eq. (38) is obtained as Eq. 

(42).             

 

𝑃𝐿𝑜𝑠𝑠𝑒𝑠 = [
𝑃𝐺1

𝑃𝐺2

1

]

𝑇

∙ [

𝛼1 0 0
0 𝛼2 0

0 0 𝐼𝑛
0
] ∙ 𝐶𝑇 ∙ 𝑅𝑏𝑢𝑠 ∙ 𝐶∗ ∙ [

𝑃𝐺1

𝑃𝐺2

1

] (42) 
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Assumes that there are 3 (three) matrices, namely D, E, and 

F, hence (DEF)T = DT ∙ET∙ FT, and taken complex conjugate 

on each side giving (DEF)T = DT ET FT. It can be shown that 

the matrix 𝑇𝛼  in Eq. (42) has the same simple form as the

complex conjugate of its transpose. The matrix with the 

characteristics referred to is called the Hermitian matrix. Each 

of the mij closely diagonal elements of the Hermitian matrix is 

the conjugate complex of the element mij, and all the diagonal 

elements are real. Consequently, adding 𝑇𝛼  to 𝑇𝛼
∗  it will

remove the closest elemental part of the diagonal and obtain a 

symmetrical real part of the matrix 𝑇𝛼 that defined as Eq. (43).

[

𝐿11 𝐿12
𝐿20

2⁄

𝐿21 𝐿22
𝐿20

2⁄

𝐿10
2⁄

𝐿20
2⁄ 𝐿00 ]

=
𝑇𝛼  +  𝑇𝛼

∗

2
(43) 

The addition of Eq. (42) to a complex conjugate using Eq. 

(43) is produced as Eq. (44)

𝑃𝐿𝑜𝑠𝑠𝑒𝑠 = [𝑃𝐺1 𝑃𝐺2 1] ∙

[

𝐿11 𝐿12
𝐿20

2⁄

𝐿21 𝐿22
𝐿20

2⁄

𝐿10
2⁄

𝐿20
2⁄ 𝐿00 ]

∙

[
𝑃𝐺1

𝑃𝐺2

1

] 

(44) 

where, L12 = L21. 

Further description of the Eq. (44) by multiplication of row-

column gives: 

𝑃𝐿𝑜𝑠𝑠𝑒𝑠 = 𝐿11 ∙ 𝑃𝐺1 + 2 ∙ 𝐿12 ∙ 𝑃𝐺1 ∙ 𝑃𝐺2 + 𝐿22 ∙ 𝑃𝐺2 +
𝐿10 ∙ 𝑃𝐺1 + 𝐿20 ∙ 𝑃𝐺2 + 𝐿00

or as Eq. (45). 

𝑃𝐿𝑜𝑠𝑠𝑒𝑠 = ∑ ∑ 𝑃𝐺𝑖 ∙ 𝐿𝑖𝑗
2
𝑗=1 ∙ 𝑃𝐺𝑗 + ∑ 𝐿𝑖0

2
𝑖=1

2
𝑖=1 ∙ 𝑃𝐺𝑖 +

𝐿00

(45) 

Arrangement in the form of matrix is obtained as Eq. (46). 

𝑃𝐿𝑜𝑠𝑠𝑒𝑠 = [𝑃𝐺1 𝑃𝐺2] ∙ [
𝐿11 𝐿12

𝐿21 𝐿22
] ∙ [

𝑃𝐺1

𝑃𝐺2
] 

+[𝑃𝐺1 𝑃𝐺2] ∙ [
𝐵10

𝐵20
] + 𝐵00

(46) 

or in a general form as Eq. (47) as the Kron’s equation. 

𝑃𝐿𝑜𝑠𝑠𝑒𝑠 = 𝑃𝐺
𝑇 ∙ 𝐿 ∙ 𝑃𝐺 + 𝑃𝐺

𝑇 ∙ 𝐿0 + 𝐿00 (47) 

If the system has a source, the vector and matrix of Eq. (47) 

will have k rows or k columns and will generally result in the 

power loss on transmission line equations as follows in Eq. 

(48). 

𝑃𝐿𝑜𝑠𝑠𝑒𝑠 = ∑∑𝑃𝐺𝑖 ∙ 𝐿𝑖𝑗

𝑘

𝑗=1

∙ 𝑃𝐺𝑗 + ∑𝐿𝑖0

𝑘

𝑖=1

𝑘

𝑖=1

∙ 𝑃𝐺𝑖 + 𝐿00 (48) 

4. CONCLUSIONS

Based on the results and discussion, then drawn the 

conclusion according to the purpose of the theoretical review. 

Minimization cost generation method without covering the 

power loss on transmission line will be a failure, even if the 

incremental cost for fuel is lower than other generating units, 

but the location far from the load centers resulted in the power 

loss, so the transmission line value is higher. Coordination 

equation is an equation with an incremental cost for fuel and 

power line loss losses. In the coordination equation, the cost 

of generation is economical and is achieved when the 

incremental cost for the total fuel is equal to the value of the 

penalty for all generating units. To calculate the achievement 

of economic dispatching value in electric power system with 

type of thermal generation with calculation of power loss of 

transmission line and value of limitation of generation of 

generating unit as generating function, hence can be reached 

by some way of calculation. 
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NOMENCLATURE 

 

𝐼1 currents at the generating bus (1-st bus) 

𝐼2 currents at the generating bus (2-nd bus) 

𝐼2 currents at the load bus (3-rd bus) 

𝐼4 currents at the load bus (4-th bus) 

𝐼𝑛
0 

no-load current, will flow through the shunt 

connection to the n-th bus (neitral point) 

𝐼𝐷 currents injected at all of the load bus 

𝑑3 
percentage of currents injected at the load bus (3-rd 

bus) 

𝑑4 
percentage of currents injected at the load bus (4-th 

bus) 

𝑃𝐿𝑜𝑠𝑠𝑒𝑠  power losses on the transmission line 

𝑃𝐷𝑒𝑚𝑎𝑛𝑑  load of the system 

𝐿𝐹 Lagrange function 

𝑃𝐺𝑖  the real power output from the 𝑖-th generating unit 

𝑃𝐺1 the real power output of the 1-st generating unit 

𝑃𝐺2 the real power output of the 2-nd generating unit 

𝑃𝐺𝑇  the total real power output of the generating unit 

𝑖 number 

𝑘 number or number of digits 

𝑄𝐺𝑖  
the reactive power output from the i-th generating 

units 

𝑆𝐺𝑖 
the apparent power output from the i-th generating 

units, Si 

𝐶𝑖  cost of fuel of the i-th generating unit 

𝐶1 cost of fuel of the 1-st generating unit 

𝐶2 cost of fuel of the 2-nd generating unit 

𝜆 
incremental cost of the fuel (in the Langrange 

Multifier) 

𝜆𝑖  
the value of 𝜆  of i-th bus, or the 𝑖-th bus penalty 

factor 

𝜆1 the value of 𝜆 of 1-st bus, or 1-st bus penalty factor 

𝜆2 
the value of 𝜆 of 2-nd bus, or the 2-nd bus penalty 

factor 

𝑎1 
the 1-st constant of the real power output of the 1-st 

generating unit 

𝑏1 
the 2-nd constant of the real power output of the 1-

st generating unit 

𝑎𝑇 
the total constant of the real power output of all 

generating units 

𝑏𝑇 
the total constant of the real power output of all 

generating units 

𝐿11 Inductance between the 1-st bus to 1-st bus 

𝐿12 Inductance between the 1-st bus to 2-nd bus 

𝐿10 Inductance between the 1-st bus to neutral point 

𝐿21 Inductance between the 2-nd bus to 1-st bus 

𝐿22 Inductance between the 2-nd bus to 2-nd bus 

𝐿20 Inductance between the 2-nd bus to neutral point 

𝑃𝐺𝑖
min. 

minimum power generation limits on the 𝑖  -th 

generator 

𝑃𝐺𝑖
max. 

maximum power generation limits on the 𝑖  -th 

generator 

𝑉1𝑛 the voltage value of first bus to neutral point 

𝐿𝑖𝑗  
coefficient of power loss in the form of a symmetric 

matrix 

𝐿𝑖0 
coefficient of power loss between the i –th to neutral 

point 

𝐿00 a constant 

 

Greek symbols 

 

∆ the change in of the variable 

𝑑 the derivative of single variable 

𝛿 the derivative of two or more variables 

Σ sum 

𝐾 the cost of a penalty factor for all generators 
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