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This article is the second of a three-part document, which is to develop and validate the 

finite difference method applied to the thermal conduction, has a spatial variable and 

state with a heat source in a wall of a square shaped oven following a single direction, 

which results a differential equation partial of parabolic. The finite difference method 

is used to solve these equations numerically. The obtained schemes have been solved 

by the iterative method of GAUSS Seidel. This difference schemes have approximation 

order 0(τ+h2), and absolutely stable. The difference schemes are a system of linear 

algebraic equations whose solution can be found by the method of Gaussian 

elimination. View of the tri diagonal structure of this system can save the amount of 

calculation using the algorithm next sweep. The numerical results obtained prove the 

stability and the convergence of the schemes with differences and the computation 

algorithm elaborated. 
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1. INTRODUCTION

In very many sectors of the industry, the engineer and the 

technician are confronted with heat transfer problems that 

have been taken in recent years particularly important because 

of the high costs of energy and requirements of economies 

which result from it. Hence, the need to learn about the heat 

transfer. The transmission of heat (or heat transfer, or thermo 

kinetics, according to the authors) has become a very vast 

science, some of which date back to 1811 (FOURIER's law) 

or later, but which has undergone for some decades an 

intensive and productive study, to which the requirements of 

nuclear, solar and aerospace technologies as well as those 

resulting from the energy crisis [1-3]. Heat transfer is one of 

the most common modes of energy exchange. It intervenes 

naturally between two systems of which there exists between 

them a difference of temperature whatever the medium, even 

empty which separates them. As a result, heat transfer has a 

role that is often essential in pure science and technology 

applications. This role becomes even decisive when it is at the 

origin of the techniques used (heat exchangers, thermal engine, 

oven, lagging, use of solar energy, etc.…). The exact 

analytical solution of the heat equation when it exists can be 

very complex in the form of series containing eigenvalues 

often obtained by the numerical solution [4, 5]. The analytical 

solution may also not exist for different reasons, for example 

when the thermal conductivity varies with the temperature, or 

the case the boundary conditions are nonlinear, when the heat 

transfer coefficient is a function of the temperature or when 

there is a radiation heat exchange modeled by a nonlinear 

temperature polynomial [6-10]. If the analytical solution is 

impossible to obtain, it is necessary to seek another means to 

obtain an approximate solution, even in a certain number of 

points of the geometry only, the numerical methods are used 

to reach this goal. They are approximate mathematical 

methods to approximate either partial differential equations or 

integrals and transforming them into a system of easy-to-solve 

algebraic equations [11-14]. The study with numerical 

resolution of the heat conduction equation in a thick vertical 

wall submitted on one side to a uniform heat flux density, and 

to convective and radiative boundaries conditions on both 

sides. We determine the temperature-profile, the convective-

radiative and conductive out puts on each face; versus the five 

dimensionless parameters concerned with that problem [15]. 

A discretization of the PDEs by the three large families of 

methods: finite deference, finite volumes, and finite elements. 

It discretized the heat equation of monodimensional in a bar of 

1 m in length and two-dimensional stationary in a rectangular 

field [16]. The basic principles, which intervene in the heat 

transfer by pure conduction in permanent mode of the 

temperatures, are presented [17]. The resolution the heat 

equation in the case of thin systems in a homogeneous 

isotropic immobile medium, with constant thermodynamic 

coefficients. It examined a simple case: the 1D slat subjected 

to thermal shock (without and with heat source volume) [18, 

19]. The presentation the methods of approximation of 

solutions of partial differential equations (PDEs) by finite 

differences, while being basing on the particular case of the 

heat equation in dimension 1, then presenting the methods 

classics of numerical matrix analysis for the resolution of 

linear systems. The purpose is to motivate the use of these 

methods and to introduce the notations and basic properties 
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used [20, 21]. The transfer the Black-Scholes equation to the 

heat equation that is easier to solve (numerically or 

analytically). Among the schemes presented, the most accurate 

and efficient way is to use a Crank -Nicholson method in time, 

and schemes with finite differences centered in space [22]. The 

resolution numerically the cooling of the Moon in several 

cases. First, it will be satisfied to solve the heat equation in 

spherical coordinates in the case of a homogeneous material in 

order to become aware of the encountered difficulties. Then, it 

starts to complicate the thing with the introduction of a term of 

creation of heat, which is radioactivity. It will numerically 

solve the heat equation using different methods (finite 

differences and finite volumes) that will be compared in order 

to know their advantages and disadvantages. Finally, it will 

discuss the physical results obtained [23]. The study numerical 

methods to solve the models commonly encountered in non-

compressible fluid mechanics [24]. The presentation a 

mathematical model for the characterization of thermal 

exchanges in variable regime between a flow of air in forced 

convection and a plane plate of finite thickness, whose back 

face is subjected to a constant temperature. The problem is 

treated by the method of KARMAN-POHLHAUSEN, 

unsteady case. The resolution of the integral energy equation 

is obtained by the fourth order Runge Kutta method [25]. The 

presentation the principal modes of heat transfer: conduction, 

convection, and radiation and a chapter on heat exchangers. 

They showed that this course could solve concrete problems 

in many areas, for example: thermic of building, calculation of 

a solar collector, a heat exchanger [26]. The treatment with the 

construction of random Crank-Nicolson solution for heat 

equation containing uncertainty through the coefficient. Under 

suitable hypotheses on data, we prove that the constructed 

random Crank-Nicolson solution is satisfying mean square 

convergent through the whole space [27]. 

This paper concentrates on solving the heat equation to a 

spatial variable using finite difference schemes of the second 

order approximation in spatial and temporal step 0 (h2 + τ). 

According to these difference schemes, the components of the 

solution at the fixed level can be calculated progressively from 

the components given at the initial level. These difference 

schemes represent a system of linear algebraic equations 

whose solution can be found by the GAUSS elimination 

method. Considering the tri diagonal structure of this system 

can save the calculation volume using the scanning algorithm. 

The solution is calculated according to the recurrence formula. 

The aim of this paper is to develop and validate the finite 

difference method applied to thermal conduction, the case of a 

spatial and temporal variable with or without a heat source in 

a wall of the oven, and to know the distribution of temperature 

in a plane plate along an axis. 

 

 

2. METHOD AND DISCRETIZATION  
 

2.1 Concept of discretization 

 

When concentrating on the temperature values at points of 

a grid, we replace the information contained in the differential 

equations by discrete values: the discretization. The algebraic 

equations of unknown Tij to mesh points that replaces the 

differential equations. To obtain these algebraic equations 

must make assumptions about changes in temperature between 

the points of the mesh and to express algebraically derived 

spatial and temporal temperature. 

2.2 Structure of the discretization equation 
 

The discretization equation is an algebraic relation linking 

the values of temperature for a number of mesh points. This is 

an equation derived from the differential equation (the 

mathematical model) and thus expresses the same physical 

information as the differential equation. When the number of 

grid points is large it is expected that the solution tends Green 

discretization the exact solution of the differential equation. 

For a given differential equation discretization of the equations 

are not unique but it is expected that all these equations give 

the same solution when the number of mesh points is great. 

The difference between the discrete equations is owed to the 

difference of the profiles chosen for the discretization. 

 

 

3. FINITE DIFFERENCE METHOD 
 

The finite differences method is the classical method of 

numerical solution of the partial derivative equations. It is the 

most suitable method because it allows an easier discretization 

of the equations, by replacing the derivative of the function by 

an approximation using finished differences; we obtain a 

linear system giving an approximation of the value of the 

function in several points. The discretization of the variables 

is obtained by dividing the studied domain by a grid of form 

and of dimensions adapted to each problem. Either in the plane 

(0, x, y) a domain D, be given on the domain a function to 

continue, tracing two families of lines: xi = i. Δx = i. h and yj 

= j. Δy = j. h or Δx, Δy are given numbers, i, j successively 

taking integer values. 

 

 
(a) 

 
(b) 

 

Figure 1. (a): Geometry and (b): grid of the walls of the 

Oven 
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4. DESCRIPTION THE DIFFERENT STAGES OF

RESOLUTION BY FINITE DIFFERENCE

We will consider the differential equation that governs the 

phenomenon of conduction in an oven (if the medium is 

homogeneous ρ, Κ and C are constants) which provided as 

follows. 

𝜕𝑇

𝜕𝑡
= 𝛼 (

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
) + 𝑓 (1) 

With: 𝛼 = 𝐾/(𝜌. 𝐶) = 𝑐𝑠𝑡 ,      𝑓 = 𝑆/(𝜌. 𝐶) 
α: is known "thermal diffusivity" 

f: is thermal energy source, 

To send completely the process of heat transfer should be 

given initial temperature distribution in the medium (initial 

condition) and thermal regime on the border (boundary 

condition). 

We can consider different boundary conditions as follows: 

1- The temperature T is given on Γ

T | Γ = T0 

2- The heat flux on Γ is given: 𝑘 =
𝜕𝑇

𝜕𝑛
|
Γ
= 𝑇1

3- On the boundary Γ occur heat transfer by Newton's

law:  𝐾
𝜕𝑇

𝜕𝑛
+ 𝑑(𝑇 − 𝑇0) |Γ = 0

K: heat transfer coefficient 

T0: ambient temperature of the medium 

Newton's law expresses the fact that the heat flux through 

the boundary is proportional al deviation of temperature on 

both sides of the border. 

Note:  

In the case of stationary temperature distribution does not 

depend on the time it has to say. Of the (1) we obtain the 

Poisson equation for the stationary distribution of heat. 

−Δ𝑇 =
𝑓

𝛼
(2) 

If in the middle there is no heat source Poisson eq. (2) educe 

to Laplace equation 

Δ𝑇 = 0 (3) 

Eq. (3), it is the equation of the stationary distribution in the 

walls of an oven. 

We use finite difference schemes for approximation of order 

two in spatial and time step 0(h2+τ) and absolutely stable 

(Appendix A). 

5. THE PROBLEM OF HEAT TRANSFER TO ONE

SPATIAL VARIABLES

The principle is exposed about one-dimensional problem, in 

the case of a wall with thermal source and constant or variable 

thermal characteristics, for which the analytical heat Eq. (1) is 

written: 

{
  
 

  
 
𝜕𝑇

𝜕𝑡
= 𝛼 (

𝜕2𝑇

𝜕𝑥2
) + 𝑓(𝑥𝑖 , 𝑡𝑝+1) 𝑖𝑛 𝐷 = {(𝑥, 𝑡)|0 < 𝑥 < 1 ,   0 < 𝑡 < Ŧ}

𝑇(𝑥𝑖 , 0) = 𝜑(𝑥𝑖)      𝑥 ∈ [0,1] , 𝑥𝑖 = 𝑖ℎ     𝑖𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

 𝛵(0, 𝑡𝑝) = 𝛹0(𝑡𝑝)    𝑡 ∈ [0, Ŧ]                  𝑙𝑖𝑚𝑖𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

𝛵(1, 𝑡𝑝) = 𝛹1(𝑡𝑝)     𝑡 ∈ [0, Ŧ]    𝑙𝑖𝑚𝑖𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

0 ≤ 𝑡 ≤ Ŧ

(4) 

With the network Dh = {(xi, tp) = (i.h, p.τ) | i = 0... n; p = 0, 

1... [Ŧ / τ]} 

The problem (4) approximated by differences in the 

schemes below: 

{

𝑇𝑖
𝑝+1

−𝑇𝑖
𝑝

𝜏
=

𝛼

ℎ2
(𝑇𝑖−1

𝑝+1
− 2𝑇𝑖

𝑝+1
+ 𝑇𝑖+1

𝑝+1
) + 𝑓(𝑥𝑖 , 𝑡𝑝+1)

𝑖 = 1,… , 𝑛 − 1;   𝑝 = 0,… , [
Ŧ

𝜏
] − 1

𝑇𝑖
0 = 𝜑(𝑥𝑖)   ;  𝑖 = 1, … , 𝑛 ;  𝑥𝑖 = 𝑖. ℎ  ; ℎ =

1
𝑛⁄

𝑇0
𝑝
= 𝜓0(𝑡𝑝),   𝑇𝑛

𝑝
= 𝜓1(𝑡𝑝)  ;   𝑝 = 1,… , [

Ŧ

𝜏
]  ;   𝑡𝑝 = 𝑝. 𝜏

(5) 

This difference schemes have approximation order 0(τ+h2) 

and absolutely stable. 

According to the difference schemes can be calculated 

progressively components of the solution at t = tp. 

Tp ={Tp
i , i=0,1,…,n }, p=1,2,…,[Ŧ/τ] (6) 

From components to the initial data 

T0 ={T0
i = φ(xi)    , i=0,1,…,n } (7) 

For each level t = tp fixed the difference schemes is a system 

of linear algebraic equations whose solution can be found by 

the method of Gaussian elimination. 

View of the tri diagonal structure of this system can save the 

amount of calculation using the algorithm next sweep. 

Either a tridiagonal system of linear algebraic equation: 

{
𝑎𝑇𝑖−1

′ + 𝑏𝑇𝑖
′ + 𝑎𝑇𝑖+1

′ = 𝑒𝑖
𝑇0
′ = 𝑒0;  𝑇𝑛

′ = 𝑒𝑛 
(8) 

The solution is calculated by the recurrence formula: 

{
𝑇𝑛
′ = 𝑒𝑛       

𝑇𝑖
′ = 𝛼𝑖  𝑇𝑖+1

′ + 𝛽𝑖   ,   𝑖 = 𝑛 − 1,… ,0
(9) 

To define the coefficients 𝛼𝑖, 𝛽𝑖 we report:

𝑇𝑖−1
′ = 𝛼𝑖−1 𝑇𝑖

′ + 𝛽𝑖−1 in Eq. (9)

𝑎 (𝛼𝑖−1 𝑇𝑖
′ + 𝛽𝑖−1) + 𝑏𝑇𝑖

′ + 𝑎 𝑇𝑖+1
′ = 𝑒𝑖

Hence it takes: 

𝑇𝑖
′ = −

𝑎

𝑎 𝛼𝑖−1+𝑏
𝑇𝑖+1
′ +

𝑒𝑖−𝑎 𝛽𝑖−1

𝑎 𝛼𝑖−1+𝑏
(10) 

For (6) and (7) it follows: 

𝑇0
′ = 𝑒0 𝑎𝑛𝑑 𝑇0

′ = 𝛼0𝑇0
′ + 𝛽0   𝑤ℎ𝑒𝑛 𝛼0 = 0  , 𝛽0 = 𝑒0

Comparing Eq. (10) and Eq. (9) we obtain the recurrence 

formula to determine the coefficients 𝛼𝑖 and 𝛽𝑖:

{

𝛼0 = 0   ,      𝛽0 = 𝑒0 

𝛼𝑖 = −
𝑎

𝑎 𝛼𝑖−1 + 𝑏
 , 𝛽𝑖 =

𝑒𝑖 − 𝑎 𝛽𝑖−1
𝑎 𝛼𝑖−1 + 𝑏

; 𝑖 = 1,… , 𝑛 − 1  
(11) 

So the scanning algorithm for solving tridiagonal system (9) 

consists of two steps: 

Step 1: Calculate the coefficients 𝛼𝑖 , 𝛽𝑖  (i=0,…, n-1)

according to Eq. (9) 
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Step 2: Calculate the components  𝑇𝑖
′ (i=n,…,0) according to 

Eq. (8) 

 

Note 

This problem is intended simultaneously to study the 

change of the temperature inside the furnace and in the walls 

with diffusivities different 𝛼 = 𝛼𝑃 in the walls and 𝛼 =
𝛼𝑖inside the furnace 𝛼𝑃 ≤ 𝛼𝑖and 𝑓 = 𝑓𝑃 = 0 in the walls. 

 

 

6. RESULTS AND DISCUSSION   
 

Data: 

L=1, T=1, n=5, 𝜏 = 0.1,  𝛼 = 0.1 

𝑓(𝑥𝑖 , 𝑡𝑝+1/2) = 𝑆𝑖𝑛(𝑥𝑖). 𝐸𝑥𝑝(−𝑡𝑝+1/2); 𝑇(𝑥𝑖 , 0) = 1  , 

𝑇(0, 𝑡) = 𝑇(𝐿, 𝑡) = 0 

 

The Figures 2 and 3 show the isotherms for different values 

of sources and three-dimensional x, t and T if the problem of 

heat transfers to a variable spatial and temporal. 

From the boundary conditions, the distribution of 

isothermal lines giving a very clear justification of the physical 

senses these conditions. Figures show the variation in 

temperature according to x and t for two different conditions S 

(heat source) where the source varying or zero. According to 

the figures we note the isotherms increases if S increases the 

hot zone and cold zone decreases, which implies a greater 

diffusion of heat generally. The temperature values belonging 

to S> 0 are higher than those corresponding to the case S = 0 

then the greater the source more temperatures rise. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Winding of isothermals (a) and (b) for TL
t = T0

t =0, 

without source 
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(b) 

 

Figure 3. Winding of isothermals (a) and (b) for TL
t = T0

t, =0, 

with source 
 
 

7. CONCLUSION 

 

In this paper we examined the problem solving method of 

heat transfer by conduction in a wall of an Oven following a 

single direction in the variable regime. The choice of method 

to adapt in this application can be guided by the following 

observations: 

• The numerical method is well suited to the problem 

whose geometry and boundary conditions are simple. It has the 

advantage of providing an exact solution, enabling rapid and 

accurate determination of the influence of various parameters. 

• If the geometry of the system and the boundary 

conditions are complex, then the numerical method is more 

appropriate. 

The numerical results have complied with the physical 

phenomenon of the problem. Numerical results proved the 

stability and the convergence of difference schemes and 

algorithms developed. The difference schemes and the 

resolution algorithm presented in this article are applicable for 

any geometric configuration [28]. 

We can develop, generalize the problem study in this work 

in an optimal control problem in which we must choose the 

control parameter (the thermal source), to obtain the desired 

thermal regime, it is a problem very current in the design and 

operation of industrial oven. 
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NOMENCLATURE 

 

a,b 

C  

Constants 

constant pressure heat 

D  domain of resolution 

f  thermal energy source, or function of x, y 

h  

k 

L 

p 

S 

t 

T 

T ' 

Tp 

X, xi 

Y, yj   

step according to x, y 

number of iteration 

length 

step time 

source of energy 

time 

temperature 

temperature 

wall temperature 

cartesian coordinates (i = 1,2,3) 

Cartesian coordinates (j = 1,2,3) 

 

Greek symbols 

 

Γ 

Ψ, φ 

wall surface 

function of x, y and t 

τ step time 

α, αp, αi 

 𝛼𝑖, 𝛽𝑖 
thermal diffusivity, wall, internal 

coefficients    

ρ density 

 

Subscripts 

 

∂ partial derivative 

d total derivative 

 

 

APPENDIX A 

 

About the approximation, the convergence and the stability 

of the difference schemes (5). 

 

1. The order approximation 0(τ+h2) 
 

It suffices to show that the norm of residual vector ‖𝛿𝑓ℎ‖𝐹ℎ 

is about 0(τ+h2). 

In each interior node (𝑥𝑖 , 𝑡𝑝+1) was: 

 

(𝛿𝑓ℎ)𝑖
𝑝+1

=
𝑇(𝑥𝑖,𝑡𝑝+1)−𝑇(𝑥𝑖,𝑡𝑝)

𝜏
−

𝛼

ℎ2
(𝑇(𝑥𝑖−1, 𝑡𝑝+1) −

2𝑇(𝑥𝑖 , 𝑡𝑝+1) + 𝑇(𝑥𝑖+1, 𝑡𝑝+1)) − 𝑓(𝑥𝑖 , 𝑡𝑝+1)   
(12) 

 

Using the development formula of the node Taylor  

(𝑥𝑖 , 𝑡𝑝+1) was estimated: 
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{

𝑇(𝑥𝑖 , 𝑡𝑝+1) − 𝑇(𝑥𝑖 , 𝑡𝑝)

𝜏
=
𝜕𝑇

𝜕𝑡
(𝑥𝑖 , 𝑡𝑝+1) + 0(𝜏)  

1

ℎ2
(𝑇(𝑥𝑖−1, 𝑡𝑝+1) − 2𝑇(𝑥𝑖 , 𝑡𝑝+1) + 𝑇(𝑥𝑖+1, 𝑡𝑝+1)) =

𝜕2𝑇

𝜕𝑥2
(𝑥𝑖 , 𝑡𝑝+1) + 0(ℎ

2)
 

(13) 

Substituting Eq. (13) in Eq. (12) the estimate is derived: 

(𝛿𝑓ℎ)𝑖
𝑝+1

= (
𝜕𝑇

𝜕𝑡
− 𝛼

𝜕2𝑇

𝜕𝑥2
− 𝑓) (𝑥𝑖 , 𝑡𝑝+1) + 0(𝜏 + ℎ

2)

Since solving the problem of heat Eq. (4) 

Check: 

𝜕𝑇

𝜕𝑡
− 𝛼

𝜕2𝑇

𝜕𝑥2
− 𝑓 = 0

where, we have the estimate of the component of the residual 

vector at each node interior 

(𝛿𝑓ℎ)𝑖
𝑝+1

= 0(𝜏 + ℎ2)

Each node in the initial level t=0 or extremities x=0 or x=1 

the approximation is exact that is to say: 

(𝛿𝑓ℎ)𝑖
0 = (𝛿𝑓ℎ)0

𝑝
= (𝛿𝑓ℎ)𝑖

𝑝
= 0

where: 

‖𝛿𝑓ℎ‖𝐹ℎ = max𝑖,𝑝
|(𝛿𝑓ℎ)𝑖

𝑝
| = 0(𝜏 + ℎ2)

That is to say, the approximation of the difference schemes 

Eq. (5) is the order 0(τ+h2). 

2. Absolute stability of difference schemes (5)

The difference schemes Eq. (5) are written in the symbolic 

form: 

𝐿ℎ  𝑇
ℎ = 𝑓ℎ (14) 

where: 𝑓ℎ = {𝑓(𝑥𝑖 , 𝑡𝑝), 𝜑(𝑥𝑖), 𝜓0(𝑡𝑝), 𝜓1(𝑡𝑝), ∀𝑖, 𝑝}

We use the following standards: 

‖𝑇ℎ‖𝑈ℎ = 𝑚𝑎𝑥{|𝑇𝑖
𝑝
|, ∀𝑖, 𝑝}

‖𝑓ℎ‖𝐹ℎ = 𝑚𝑎𝑥{|𝑓(𝑥𝑖 , 𝑡𝑝)|, |𝜑(𝑥𝑖)|, |𝜓0(𝑡𝑝)|, |𝜓1(𝑡𝑝)|, ∀𝑖, 𝑝}

‖𝑇‖𝑝 = 𝑚𝑎𝑥{|𝑇𝑖
𝑝
|, ∀𝑖}

Absolute stability of difference schemes Eq. (14) means that 

there is a constant C independent of the network τ, h not be 

verified as the inequality 

‖𝑇ℎ‖ ≤ 𝐶‖𝛿𝑓ℎ‖𝐹ℎ  By posing: 𝑟 =
𝛼𝜏

ℎ2

We derive the difference schemes (5) the equation 

(1 + 2𝑟)𝑇𝑖
𝑝+1

− 𝑟(𝑇𝑖−1
𝑝+1

+ 𝑇𝑖+1
𝑝+1

) = 𝑇𝑖
𝑝
+ 𝜏 𝑓(𝑥𝑖 , 𝑡𝑝+1)

For each interior node (i, p+1). Or (s, p+1) interior node as: 

|𝑇𝑠
𝑝+1

| = max
1≤𝑖≤𝑁−1

|𝑇𝑖
𝑝+1

|

Then we have the estimates: 

‖𝑇‖𝑝 + 𝜏‖𝑓
ℎ‖𝐹ℎ ≥ |𝑇𝑠

𝑝
| + 𝜏|𝑓(𝑥𝑠 , 𝑡𝑝+1)|

≥ (1 + 2𝑟)|𝑇𝑠
𝑝+1

| − 𝑟|𝑇𝑠−1
𝑝+1

+ 𝑇𝑠+1
𝑝+1

|

≥ |𝑇𝑠
𝑝+1

|

where: 

‖𝑇‖𝑝+1 = max{|𝑇𝑠
𝑝+1

|, |𝑇0
𝑝+1

|, |𝑇𝑁
𝑝+1

|}

⟹ ‖𝑇‖𝑝+1 ≤ max(‖𝑇‖𝑝 + 𝜏‖𝑓
ℎ‖𝐹ℎ , ‖𝑓

ℎ‖𝐹ℎ)
(15) 

This estimate is valid for any level (p+1) the network. 

Particularly for p=0 was:  

‖𝑇‖1 ≤ 𝑚𝑎𝑥(‖𝑇‖0 + 𝜏‖𝑓
ℎ‖𝐹ℎ , ‖𝑓

ℎ‖𝐹ℎ)

≤ 𝑚𝑎𝑥(‖𝑓ℎ‖𝐹ℎ + 𝜏‖𝑓
ℎ‖𝐹ℎ , ‖𝑓

ℎ‖𝐹ℎ)

That is to say: ‖𝑇‖1 ≤ (1 + 2𝑟)‖𝑓
ℎ‖𝐹ℎ

Suppose the estimate:  

‖𝑇‖𝑝 ≤ (1 + 𝑝𝑟)‖𝑓
ℎ‖𝐹ℎ (16) 

Holds for a level p any for Eq. (14) and Eq. (16):  

‖𝑇‖𝑝+1 ≤ max(‖𝑇‖𝑝 + 𝜏‖𝑓
ℎ‖𝐹ℎ , ‖𝑓

ℎ‖𝐹ℎ)

≤ max((1 + 𝑝𝑟)‖𝑓ℎ‖𝐹ℎ + 𝜏 ‖𝑓
ℎ‖𝐹ℎ , ‖𝑓

ℎ‖𝐹ℎ)

⟹ ‖𝑇‖𝑝+1 ≤ (1 + 𝜏(𝑝 + 1))‖𝑓ℎ‖𝐹ℎ

That is to say Eq. (16) holds for all levels p. 

By definition 

‖𝑇ℎ‖𝑈ℎ = 𝑚𝑎𝑥{|𝑇𝑖
𝑝
|, ∀𝑖, 𝑝}

= 𝑚𝑎𝑥 (max
𝑖
|𝑇𝑖

𝑝
|)max

𝑝
‖𝑢‖𝑝

≤ (1 + 𝑇)‖𝑓ℎ‖𝐹ℎ

So the difference schemes Eq. (5) are absolutely stable. 

Of the approximation and stability it follows the 

convergence of difference schemes Eq. (5). 
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