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This article explores the theoretical investigation of peristaltic motion of a non-

Newtonian fluid accompanied in a horizontal channel with elastic walls. Most of the 

physiological fluids (blood) behaves like a non-Newtonian fluid. To characterize the 

fluid flow behavior, Casson fluid model is considered which a yield stress model and it 

holds good to explain the behavior of blood flow through small diameter conduits at 

low shear rates. The deformation in the walls of the channel is studied under two 

aspects, one is peristalsis and another is elasticity. Exact solutions are obtained for 

velocity and stream function. The size of the trapped food bolus increases with 

increasing values of yield stress parameter. The theoretical obtained results may be 

useful in understanding of pathological conditions arising due to change in elasticity 

and different peristaltic wave forms. 
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1. INTRODUCTION

Peristaltic transport of biofluid includes movement of 

chyme in the gastrointestinal tract, urine passage from kidney 

to bladder, blood circulation, and locomotion of worms, ovum 

movement in the fallopian tube and spermatozoa in ductus 

efferents. Industrial applications of peristalsis may include 

transport of sanitary, corrosive and noxious materials. Such 

activity is also quite important in processes of pharmaceutical, 

cosmetic and paper industries. In view of this, Latham [1], 

Burns and Parkes [2] and Shapiro et al. [3] made earliest 

investigations of viscous fluid in a channel with peristaltic 

pumping. In present analysis, Casson model is considered 

which is a yield stress model and is used to explain the 

behavior of blood flow through small blood vessels at low 

shear rates. Merrill et al. [4] established that Casson model 

holds good for blood flow in small diameter conduits with 

certain wall shear stress limits. Afterwards the peristaltic 

movement for Newtonian and non-Newtonian fluids has been 

analyzed widely. Relevant information on the topic in view of 

diverse aspects is extensive. However, few most recent 

attempts in this regard can be consulted through the references 

[5-13]. 

Most of the theoretical work available in literature deals 

with tubes and channels with rigid walls. Various models are 

being proposed to study the effect of elasticity on living 

organisms. According to the available information about 

peristalsis, maximum consideration in the previous works has 

been concentrated on the flow of biofluid flows in channels 

with rigid walls. Consideration of elasticity present in the 

walls is important since many biological ducts like 

gastrointestinal tract, blood vessels, arteries and fallopian tube 

are elastic in nature. In this point of view, an attempt is made 

to investigate the flow of non-Newtonian fluid through 

channel walls having elastic nature with the peristalsis. The 

significance of elasticity for the pulse wave generating from 

the heart was first recognized by Young [14]. Afterwards, 

theoretical and experimental works on flow of Newtonian/ 

non-Newtonian fluids with elastic conduits are made by the 

researchers [15-22]. 

Most the real fluids are characterized as shear-thinning yield 

stress material like Casson liquid. Currently in food stuff 

processing the Casson fluid model is used. Also, this model 

has been utilized to model the rheological behavior of 

chocolate. Furthermore, various working materials e.g. molten 

plastics, artificial fibers, polymeric materials, foodstuffs, 

blood, slurries and synovial liquids which demonstrate 

characteristics non-Newtonian liquids. Liquids of such kinds 

having relationships in the form of shear-stress-strain which 

are materially dissimilar from the viscous model. Various non-

Newtonian models require some form of amendment in the 

force constraints. In the category of these non-Newtonian 

materials, Casson material has diverse vital features. In 

polymer processing industry and in the field of biomechanics 

it has considerable demands. Sometimes the Casson material 

is found very better for rheological data when compared with 

general viscoelastic models for various fluids. In view of the 

above facts, various researchers [23-26] studied the flow of 

Casson liquid with different physical characteristics.  

Absi [27] proposed a new relation between pressure and 

area which is useful for understanding the flow behavior in 

arterial vessels. Nahar et al. [28] investigated the influence of 

both Newtonian and non-Newtonian fluid flow with low and 

high shear thinning fluids through various deformations of the 

tube. Choudhari et al. [29] examined the peristaltic flow of 

Bingham fluid through elastic tube with porous wall under the 
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effect of variable viscosity. Wang et al. [30] proposed a model 

of three dimensional viscous flow in a compliant artery 

containing an aneurysm by employing the immersed 

boundary-lattice Boltzmann-finite element method which 

allows to adequately account for the elastic deformation of 

both the blood vessel and aneurysm walls. 

In this paper, peristaltic transport of non-Newtonian fluid in 

a planar channel with elastic walls is investigated. Here 

Casson fluid is considered as non-Newtonian fluid. The 

expressions for velocity, stream function, flux and pressure 

rise are determined. The resulting equations are solved 

analytically subjected to the proper boundary conditions. To 

the best of literature survey, no discussion is made on trapping 

limits by considering both peristalsis and elasticity of the wall. 

Trapping phenomena is discussed. The results of the present 

study are analyzed though graphs. The theoretical 

investigations are more appropriate to analyse the biological 

systems. Obtained results may be useful in understanding the 

behavior of peristaltic transport of a blood flow in small blood 

vessels and different non-Newtonian yield stress fluids. 

 

 

2. PROBLEM FORMULATION  

 

Figure 1 signifies the two-dimensional peristaltic pumping 

of an incompressible Casson fluid in a channel of length L and 

half width of the channel a(x) with flexible elastic walls. μ is 

the viscosity of the Casson fluid. The wall deformation of the 

channel is represented by the equation 

 

( ) ( )0

2
, sinA X t a b X ct




= + −

 
(1) 

 

Here the radius of the tube in the absence of elasticity is a0. 

 

 
 

Figure 1. Physical model 

 

To study the problem we have transformed the stationary 

coordinates (X,Y) to moving coordinates (x,y) with the 

following transformations: 

 

( ) ( ), , , , ,u U c v V x X ct y Y p x P X t→ − → → − → →
 

(2) 

 

After using the transformations given in Eq. (2) the 

governing equations of motion in the moving frame can be 

written as 
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where, 
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(4) 

 

here the axial velocity is u, the yield stress parameter is τ0, the 

shear stress is τyx and pressure is P. 

Appropriate boundary conditions are  

 

at 
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at 
( )y a x=

:
q =

 (5c) 

 

at 
0y =

: 
0 =

 (5d) 

 

at 
0y =

: 
0yx =

 (5e) 

 

Here, the stream function is represented by ψ. 

 

 

3. SOLUTION OF THE PROBLEM 

 

Eqns. (3) and (4) can be solved subject to the boundary 

conditions in (5) by using the following non-dimensional 

quantities: 
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Using the non-dimensional quantities given in Eq. (6), the 

momentum equation becomes (removing the bars)  
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here 
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The dimensionless boundary conditions are as follows: 

 

at 
( ) 1 sin 2y a x x = = +

: 
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at 
( )y a x=

: q =  (9c) 
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at 
0y =

: 
0 =

 (9d) 

 

at 
0y =

:
0yx =

 (9e) 

 

Eq. (7) can be solved by using the boundary conditions 

given in Eq. (9), one can obtain the velocity as  
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4
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P
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(10) 

 

The upper limit of the plug flow region can be find by using 

the boundary condition 
𝜕𝑢

𝜕𝑦
= 0 at y=y0. But 𝑦0 =

𝜏0

𝑃
. Also by 

using the condition τyx=τa at y=a, we get 𝑃 =
𝜏𝑎

𝑎
. 

 

Therefore 
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(11) 

 

The velocity in the plug flow region is (put y=y0 in Eq. (10)),  
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(12) 

 

Integrating Eqns. (10) and (12) and using the conditions 

ψ=0 at y=0 and ψ=ψp at y=y0, the stream function as 
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(13) 

 

The stream function in plug flow region as 
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for 0≤y≤y0. 

The flux q through in any cross section is  
 

0
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where, 𝐺 = 𝑞 + 𝑎; 𝐹 = 1 +
3

2
𝜏 −

12

5
𝜏
1

2 −
1

10
𝜏3 

The above Eq. (15) represents the volume flow rate of 

Casson fluid flow in a channel with peristalsis in the absence 

of elasticity. 

Now the elasticity of the channel wall is taken in to 

consideration along with the peristalsis to determine the 

variation of flux.  

Due to the pressure difference between the outside of the 

walls and fluid, there is a corresponding change in width of the 

channel a(x). From this, the flow follows famous Poiseuille 

law which states the flux is expressed as a linear function of 

pressure difference between inlet and outlet of the channel.  

The flux and the pressure gradient are related by the 

expression [15]  
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(17) 

 

where

( )
3
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(18) 

 

Here σ is conductivity of the tube and a’ is a function of the 

pressure difference p(x)-p0, p0 is the pressure outside the tube 

and a denotes the wall movement due to peristalsis is 

a(x)=1+sin2πx.  

The equation (17) is integrating w.r.t. x from x=0 and using 

condition at the inlet p1=p(0), one can get 
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where, p’=p(x)-p0. 

To find flux q, set x=1 and p2=p(1), which yields 
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( )
1 0

2 0

3 2 2 31 3 3
3

p p

p p

F
q a a a aa a dp

−

−

   = − + + + +
 

(21) 

 

If the tension in the walls of the channel T(a’) is known as 

a function of a’, then a’(p’) can be obtained using the 

equilibrium position, 
 

0

( )T a
p p

a


= −

  
(22) 

 

Roach and Burton [17] determined the static pressure-

volume relation which is converted into a tension versus length 

curve. Rubinow and Keller [15] gave the following equation 

by using least square method: 
 

5

1 2( ) ( 1) ( 1)T a t a t a  = − + −
 (23) 

 

where, t1=13 and t2=300. 

From Eqns. (22) and (23), we get 
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Substituting the Eq. (24) in (21), evaluated the integral by 

using Matlab package, and the flux of the fluid is given by 
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where,  
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The pressure rise per wavelength for Casson fluid throug a 

channel with elastic walls with peristalsis is calculated using 

the Eqns. (13) and (14) is  
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3 1 a
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where, Θ is the time averaged volumetric flow rate defined as 

 

0

1
1

T

Q dt q
T

 = = +
 

(29) 

 

Here, Q is the volumetric flow rate in stationary frame 

defined as 
 

( )
0

1
a

Q u dy q a= + = +  
(30) 

 

 

4. DISCUSSIN OF THE RESULTS 

 

For the sake of conclusion of the behavior of dimensionless 

velocity field, flux and pressure rise and to get some tangible 

perception of the obtained solutions, successive numerical 

calculations were accomplished for different values of 

pertinent constraints like elastic parameters t1&t2, amplitude 

ratio  and yield stress parameter τ.  

From Eq. (26), flux is calculated as a function of width of 

the channel. Figures 2-6 illustrate the effect of existing 

parameters on the flux with respect to width of the channel. 

From Figures 2 and 3, it is depicted that the flux is an 

increasing function of t1&t2. Figure 4 shows the profiles of flux 

for different values of  which states that flux is increasing 

with increasing values of . In Figure 5, consequences of yield 

stress upon flux profiles are shown. This indicates that flux of 

the fluid is decreasing with increasing yield stress parameter. 

In Figure 6, flux profiles for different peristaltic wave forms 

are discussed. More flux is observed in the case square wave 

when compared to sinusoidal and Triangular wave.   

Eq. (26) shows that the flux is a function of axial coordinate 

x. Figures 7-12 illustrate the effect of t1, t2, , τ, a1’ and 𝑎2
′  on 

flux with respect to the axial coordinate x . The effect of elastic 

parameters t1&t2 on flux are depicted in Figures 7 and 8. It is 

observed that as the elastic parameters increases, flux 

remarkably increases. Figure 9 exemplifies the effect of 

amplitude ration  on flux. It is observed that the flux increases 

with increasing values of . The effect of yield stress on flux 

is shown in Figure 10. It is worthwhile to note the flux is a 

decreasing function of yield stress. Figures 11 and 12 

demonstrates the influence of inlet and outlet width of the 

channel a1’ and a2’ respectively on flux of the Casson fluid. It 

is observed that the flux profile decreases as the value of the 

a1’ increases. Opposite behavior is noticed in the case of a2’.  
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Figure 2. Flux vs. width of the channel for different t1 with 

fixed values of τ=0.6, t2=300, =0.6, x=0.1 
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Figure 3. Flux vs. width of the channel for different t2 with 

fixed values of τ=0.6, t1=13, =0.6, x=0.1 
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Figure 4. Flux vs. width of the channel for different  with 

fixed values of t2=300, t1=13, τ=0.6, x=0.1 
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Figure 5. Flux vs. width of the channel for different τ with 

fixed values of t2=300, t1=13, =0.6, x=0.1 
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Figure 6. Flux vs. width of the channel for different wave 

forms with fixed values of 𝑡2 = 300, 𝑡1 = 13, 𝜙 = 0.6, 𝑥 =
0.1, 𝛽 = 2 
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Figure 7. Flux vs. x for different t1 with fixed values of 𝛽 =
2, 𝑡2 = 300, 𝜙 = 0.4, 𝑎1

′ = 0.2, 𝑎2
′ = 0.3 
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Figure 8. Flux vs. x for different t2 with fixed values of 𝛽 =
2, 𝑡1 = 13, 𝜙 = 0.4, 𝑎1

′ = 0.2, 𝑎2
′ = 0.3 
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Figure 9. Flux vs. x for different  with fixed values of 𝑡2 =
300, 𝑡1 = 13, 𝛽 = 2, 𝑎1

′ = 0.2, 𝑎2
′ = 0.3 
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Figure 10. Flux vs.x for different τ with fixed fixed values of 

𝑡2 = 300, 𝑡1 = 13, 𝜙 = 0.4, 𝑎1
′ = 0.2, 𝑎2

′ = 0.3 
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Figure 11. Flux vs.x for different 𝑎1
′  with fixed values of 

𝑡2 = 300, 𝑡1 = 13, 𝜏 = 0.6, 𝜙 = 0.4, 𝑎2
′ = 0.3 
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Figure 12. Flux vs.x for different 𝑎2
′  with fixed values of 

𝑡2 = 300, 𝑡1 = 13, 𝜏 = 0.6, 𝜙 = 0.4, 𝑎1
′ = 0.2  
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Figure 13. Flux vs.p2-p0 for different p1-p0 with fixed values 

of t2=300, t1=13, =0.6, =0.4 
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Figure 14. Flux vs. p1-p0 for different p2-p0 with fixed values 

of t2=300, t1=13, =0.6, =0.4 
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Figure 15. Flux vs. x for different  with fixed values of 𝑡2 =
300, 𝑡1 = 13, 𝜏 = 0.6, 𝑎1

′ = 0.2, 𝑎2
′ = 0.3 (square wave) 
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Figure 16. Flux vs. x for different  with fixed values 𝑡2 =
300, 𝑡1 = 13, 𝜏 = 0.6, 𝑎1

′ = 0.2, 𝑎2
′ = 0.3 (Triangular wave) 
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Figure 17. p vs. Θ for different  with fixed values of 𝜏 =
0.6, 𝑎1

′ = 0.25 
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Figure 18. p vs. Θ for different τ with fixed values of 

a’=0.25, =0.4 
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Figure 19. p vs. Θ for different a’ with fixed values of 

τ=0.6, =0.4 
 

Figures 13 and 14 respectively, shows the variations of flux 

with the outlet for different values of inlet pressure and 

variations in flux with inlet pressure for different values of 

outlet pressure. Flux decreases with increasing values of inlet 

pressure for a fixed outlet pressure. Opposite behavior is 

noticed in the case of increasing values of outlet pressure. This 

phenomenon exists due to the mechanism of peristaltic 

pumping. Figures 15 and 16 show the effect of  on the flux 

with respect to axial distance x for two different peristaltic 

wave forms namely square wave and triangular wave. More 

flux is observed in the case of square wave.  

From Eq. (28), pressure rise p is expressed as a function 

of time averaged flow rate Θ. Figures 17-18 show the effect of 

,τ,a’ on pressure rise. From Figures 17 and 18, it can be 
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clearly seen that for a given Θ, p depends upon , τ and it 

increases with increasing , τ respectively. p increases with 

the increasing values of a’ which is evident from Figure 19.  
 

 

5. TRAPPING PHENOMENA 
 

Trapping is another important phenomenon observed in 

peristaltic transport. By analysis, one can gets the trapping 

limits when Θmin<Θ<Θmax. 

where,  
 

( )

( )

3

min 2

2 1

3 1

T a




+ +
 = − +

+
 

and 

( )

( )

3

max 2

2 1

3 1

T a




− +
 = +

−
 

(31) 

 

Here 
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Special cases: 

(i) When a’=0 and τ=0 from Eq. (31), we obtain the 

trapping limits for the peristaltic transport of a 

Newtonian fluid in the absence of elasticity as 
2−𝜙

3
< 𝛩 <

2+𝜙

3
 which agrees with the results of 

Jaffrin and Shapiro [3].   

(ii) When a’=0 form equation (31), we obtain the 

trapping limits for the peristaltic transport of a 

Casson fluid in the absence of elasticity as −𝜙 +
2𝑇

3
(1 + 𝜙) < 𝛩 < 𝜙 +

2𝑇

3
(1 − 𝜙). 

(iii) When τ=0 form equation (31), we obtain the 

trapping limits for the peristaltic transport of a 

Newtonian fluid in the presence of elasticity as 

−𝜙 +
2(1+𝜙+𝑎′)

3

3(1+𝜙)2
< 𝛩 < 𝜙 +

2(1−𝜙+𝑎′)
3

3(1−𝜙)2
. 

In Figure 20, the streamlines for the trapping phenomenon 

are presented for Casson fluid flow with and without elasticity 

effects and Newtonian fluid flow with and without elasticity 

effects with Θ=0.6, =0.5 and a’=0.1. From the Figures of 

Casson fluid and Newtonian fluid with elasticity effect, we 

observed that effect of yield stress is to increase the size of the 

trapped bolus. From the Figures of Casson fluid flow with and 

without elasticity effect and Newtonian fluid flow with and 

without elasticity effect, it is noticed that the effect of elasticity 

is to decrease the size of the trapped bolus. 
 

 
(a) Trapping for Casson fluid with τ=0.5, a’=0.1, =0.5, 

Θ=0.6 (Channel with elastic walls) 

 
(b) Trapping for Casson fluid withτ=0.5, a’=0, =0.5, Θ=0.6 

(Channel with inelastic walls) 

 
(c) Trapping for Newtonian fluid with τ=0, a’=0, =0.5, 

Θ=0.6 (Channel with inelastic walls) 

 
(d) Trapping for Newtonian fluid with τ=0, a’=0.1, =0.5, 

Θ=0.6 (Channel with elastic walls) 

 

Figure 20. Trapping phenomena 

 

The non-dimensional expressions for the three different 

wave forms are expressed (i) Sinusoidal wave (ii) Triangular 

wave (iii) Square wave respectively 
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6. CONCLUSIONS 

 

The present article devoted to investigate the peristaltic 
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movement of a non-Newtonian fluid through a channel with 

elastic walls. Biofluid (blood) is modeled as a Casson fluid. It 

is used to study the changes in the blood flow pattern. The flow 

is examined under the consideration of yield stress parameter 

along with the effects of wall elasticity and peristalsis. 

Different peristatic wave forms are taken into consideration. 

The governing equations are solved analytically. The results 

are analyzed for different physical parameter through graphs. 

On the analysis of the present study, we conclude that the flux 

increases with increasing of elastic parameters. Enhancing the 

values of yield stress parameters the flux decreases. One can 

observe that more flux is observed in the case of square wave 

than sinusoidal wave and triangular wave. Pressure rise 

increases with the increasing of amplitude ratio and pressure 

rise increases with increasing yield stress parameter. The 

trapped bolus size is increases with increasing values of yield 

stress parameter. The present study explores the blood flow in 

pathological conditions. Furthermore, the results obtained 

from the present study will be useful in validating the results 

of more complex theoretical studies to be carried out in future. 
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