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In this paper, a new channel model was designed. The study aims to improve the 

dynamic and thermal behavior of a turbulent flow of hydrogen by introducing a new 

complex rib between its hot upper and lower walls. The new shape of the rib allows 

destabilizing flow with the creation of very strong recirculation cells on its back sides, 

mixing well fluid in the entire interior of the channel, thus a high thermal transfer. The 

Reynolds averaged Navier-Stokes (RANS) equations, along with the standard k-ε 

turbulence model and the energy equation, are used to control the channel flow model. 

All the equations are discretized by the finite volume method by means of a two-

dimensional formulation, using the SIMPLE pressure-velocity coupling algorithm. 

With regard to the flow characteristics, the interpolation QUICK scheme is used, and a 

second-order upwind scheme is applied for the pressure terms. The results are shown in 

terms of streamlines, mean and axial velocity fields, dynamic pressure, turbulent kinetic 

energy, viscosity and temperature fields. This type of analysis is very useful in many 

industries and engineering related problem for getting good idea about the physical 

model whenever the analytic solution is out of reach. 
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1. INTRODUCTION

The arrangement of obstacles, such as baffles, fins and ribs, 

within heat exchange channels are among the effective 

methods used by many researchers and investigators in their 

numerical and experimental studies. Liu et al. [1] conducted 

an experimental study of heat transfer characteristics in steam-

cooled rectangular channels with two opposite rib-roughened 

walls for Reynolds number (Re) in the range of 10,000 - 

80,000. Sethi et al. [2] carried out an experimental 

investigation for a range of system and operating parameters 

in order to analyse the effect of artificial roughness on heat 

transfer and friction characteristics in solar air heater duct 

which is having dimple shaped elements arranged in angular 

fashion (arc) as roughness elements on absorber plate. Eiamsa-

ard and Promvonge [3] numerically investigated the laminar 

periodic flow and heat transfer characteristics in a channel 

fitted with triangular wavy baffle elements in tandem, inline 

arrangements on two opposite walls. Eiamsa-ard et al. [4] 

numerically investigated the effects of the baffle at different 

angles of attack in a channel laminar periodic flow on the flow 

structure, heat transfer, friction factor and thermal 

performance behaviors. Jiang et al. [5] performed numerical 

simulations for the helical baffles heat exchanger and the 

segmental baffles heat exchanger with component clearance to 

reveal the features of leakage streams and their effect on heat 

exchanger performance. Tan et al. [6] presented the 

experimental work carried out to compare the shell-side heat 

transfer coefficients, Nusselt number, pressure drops and 

friction coefficients of non-Newtonian nanofluids to those of 

non-Newtonian base fluid in a helically baffled heat exchanger 

with low finned tubes for test fluid cooling using water as a 

coolant. Zhang et al. [7] provided experimental results for the 

heat transfer performance and the pressure drop characteristic 

of the shell sides enhanced by helical fins and vortex 

generators. Jamshed et al. [8] performed a detailed CFD 

analysis on helical grooved tubes with geometry from 

published articles to validate the results, and three other 

geometries with variable pitch length aloof from experiment. 

Zhang et al. [9] experimentally studied the flow and heat 

transfer characteristics of various shell-and-tube heat 

exchangers, one with segmental baffles and four with helical 

baffles with practical dimensions. Du et al. [10] analyzed by 

numerical simulation the influence of various geometric 

parameters on heat transfer and flow resistance characteristics 

of overlapped helical baffled heat exchangers. Eiamsa-ard and 

Promvonge [11] conducted a numerical prediction to study 

heat transfer and flow friction behaviors in turbulent channel 

flows over periodic grooves. Mohsenzadeh et al. [12] 

numerically investigated the effect of wall proximity of two 

isothermal tandem triangle cylinders on fluid flow and heat 

transfer for different gap spacing in a horizontal plane channel. 

Ali et al. [13] reported experimental investigations on steady 

state forced convection heat transfer from the outer surface of 

horizontal triangular surface cylinders in cross flow of air. 

Ozceyhan et al. [14] presented a numerical study for 

investigating the heat transfer enhancement in a tube with the 

circular cross sectional rings. Promvonge et al. [15] conducted 

a numerical work to examine turbulent periodic flow and heat 

transfer characteristics in a three dimensional square-duct with 
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inline 60° V-shaped discrete thin ribs placed on two opposite 

heated walls. Dutta and Hossain [16] investigated the local 

heat transfer characteristics and the associated frictional head 

loss in a rectangular channel with inclined solid and perforated 

baffles. Pirouz et al. [17] carried out a detailed numerical study 

of the flow and heat transfer through two wall-mounted 

obstacles placed in lower and upper walls. Wang et al. [18] 

reported computational and experimental results for research 

on the flow and heat transfer process of a rectangular channel 

embedded with staggered pin fins. Singh et al. [19] conducted 

experiments on rectangular duct having one broad wall 

roughened with discrete V-down rib and subjected to constant 

heat flux. Skullong et al. [20] experimentally and numerically 

investigated the effects of 30° oblique HB inserts at different 

BR and PR values on turbulent flow and heat transfer 

behaviors in a square duct. Kumar et al. [21] carried out an 

experimental investigation to study the heat transfer and 

friction characteristics in a solar air heater by using discrete 

W-shaped roughness. Ary et al. [22] numerically and 

experimentally investigated the fluid flow and heat transfer in 

a rectangular channel with a single inclined baffle and two 

inclined baffles. Karwa and Maheshwari [23] presented results 

of an experimental study of heat transfer and friction in a 

rectangular section duct with fully perforated baffles (open 

area ratio of 46.8%) or half perforated baffles (open area ratio 

of 26%) at relative roughness pitch of 7.2 - 28.8 affixed to one 

of the broader walls. Mokhtari et al. [24] investigated the 

effect of using various fin arrangements on cooling of the base 

plate in a laminar flow. Mousavi and Hooman [25] 

numerically investigated the laminar fluid flow and heat 

transfer in the entrance region of a two dimensional horizontal 

channel with isothermal walls and with staggered baffles. 

Promvonge [26] experimentally conducted an investigation on 

heat transfer augmentation in a square duct with insertion of 

combined 30° V-fins and quadruple counter-twisted tapes. 

Oztop et al. [27] reviewed the previously conducted studies 

and applications in terms of design, performance assessment, 

heat transfer enhancement techniques, experimental and 

numerical works, thermal heat storage, effective- ness 

compassion and recent advances. Alam and Kim [28] reported 

a comprehensive literature review of the various heat transfer 

techniques used to increase the performance of double-pass 

solar air heaters (SAHs). Kabeel et al. [29] presented a review 

of the literature dealing with improvement methods, design 

configurations and applications of different types of solar air 

heaters. Other works can be found in the literature [30-40]. 

Through this study, a new channel model was designed. The 

study aims to improve the dynamic and thermal behavior of a 

turbulent flow of hydrogen by introducing a new complex rib 

between its hot upper and lower walls. The new shape of the 

rib allows destabilizing flow with the creation of very strong 

recirculation cells on its back sides, mixing well fluid in the 

entire interior of the channel, thus a high thermal transfer.  

 

 

2. GEOMETRY UNDER INVESTIGATION 

 

The physical model considered is illustrated in Figure 1. It 

is a horizontal two-dimensional rectangular channel with hot 

two upper and lower walls, containing a detached V-shaped 

rib near its entrance. It is crossed by a flow of hydrogen, its 

constant properties. 

 

 
 

Figure 1. Computational domain under investigation 

 

The following assumptions were used to simulate this 

physical model:  

▪ The flow and heat transfer are two-dimensional.  

▪ The regime is steady and turbulent. 

▪ Physical properties of fluid (hydrogen) and solid 

(Aluminium) are constant. 

▪ Velocity profile at the inlet is uniform. 

▪ The temperature applied to the upper and lower walls 

of the channel is constant. 

▪ Radiation heat transfer is negligible. 

▪ The tackiness of the lower and upper walls of the 

channel is neglected. 

Based on these assumptions, the mathematical equations 

that describe the fluid flow and heat transfer in this channel are 

as follows:  

 

Continuity equation:  
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Momentum equation: 
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Energy Equation: 
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where, the second-order tensor of Reynolds stresses 
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introduced in momentumequation in terms of the Boussinesq 

hypothesis. The eddy viscosity (μt) defined as 
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(4) 

 

where, Γ and Γt are molecular thermal diffusivity and turbulent 

tharmal diffusivity, repectively and are given by 

 

ttt PrandPr  ==
 

(5) 

 

where, ρ is the fluid density, P the pressure, μ dynamic 

viscosity, ui and uj are average velocity components in x and y 

directions, respectively. 

The standard k-epsilon (ε) model, based on Launder and 

Spalding [41], is defined by two transport equations, one for 

the turbulent kinetic energy, k and the other for the dissipation 

rate ε, as given below: 
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In Eqns. (6) and (7), Gk represents the production rate of the 

kinetic energy due to the energy transfer from the mean flow 

to turbulence. The empirical constants for the standard k-ε 

model are assigned the following values [41]: 

 

Cμ = 0.99; C1ε = 1.44; C2ε = 1.92; σk = 1.0; σε = 1.3 (8) 

 

The hydrodynamic boundary conditions are set according to 

the numerical and experimental analysis of Demartini et al. 

[42]. The thermal boundary conditions are chosen according 

to the study of Nasiruddin and Siddiqui [43]. 

At the channel intake: 

 

( ) inUyu =,0
 (9a) 

 
( ) 0,0 =yv  (9b) 

 

( ) kTyT in 300,0 ==
 (9c) 

 

The kinetic energy of turbulence (k) and its dissipation rate 

(ε) are defined, respectively, as 

 

( ) 2.005,0,0 inin Ukyk ==
 (10a) 

 

( ) 2.1,0,0 inin ky == 
 (10b) 

 

At the upper and lower walls of the channel:  

 

0== vu  (11a) 

 

0== k  (11b) 

 

kTT w 375==
 (11c) 

 

Additionally, the points of solid-fluid contact must maintain 

continuity of both temperature and heat flux such that 

 

fs TT =
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where, the partial derivative with respect to n indicates a 

normal derivative, kf and ks are thermal conductivities of fluid 

and solid, respectively. 

At the channel:  
 

( ) atmPyLP =,  (13a) 
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where, ϕ ≡ (u, v, T, k, ε). The flow Reynolds number Re, based 

on channel hydraulic diameter Dh,  

 
( )WHHWDh += 2

 

(14a) 

 

is given by:  

 

 hinDU=Re
 

(14b) 

 

 

3. APPROACH 

 

The governing flow equations, i.e., continuity, momentum, 

and energy, are solved numerically by finite volume method 

[44] using the commercial CFD software FLUENT. The 

SIMPLE (Semi Implicit Method for Pressure Linked 

Equations) algorithm [44] is used for pressure velocity 

coupling. The QUICK (Quadratic Upstream Interpolation for 

Convective Kinetics) numerical scheme [45] is selected to 

discretize the convective terms in the governing equations. 

The SOU (Second-Order Upwind) numerical scheme [44] is 

used for the pressure terms. The Standard k-epsilon (ε) model 

[41] is used to describe the turbulence. A two-dimensional 

non-uniform grid is used. Figure 2 illustrates the refined mesh 

at all solid boundaries.  

 

 
 

Figure 2. Mesh 

 

The grid independence test was performed by comparing 

various sets of the grid cells (95 × 35), (120 × 45), (145 × 55), 

(170 × 65), (195 × 75), (220 × 85), (245 × 95) and (370 × 145) 

on the umax for Re = 8.73 × 104. The grid cell, with (245 × 95) 

nodes along the X and Y directions respectively, showed about 

0.150 per cent deviation from the values umax, as compared to 

those of the grid cell (370 × 145). Therefore, the grid with (245 

× 95) nodes is chosen for all cases. 

 

 
 

Figure 3. Verification of f0 for smooth channel 

 

The present numerical results of friction factor (f0) for 

smooth channel with no rib are compared with the results 

obtained from correlations of Petukhov and Blasius [46]. This 

comparison is shown in Figure 3. It is very clear that there is a 
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good quantitative agreement between them and this proves the 

validity of our simulation. 

 

 

4. RESULTS AND DISCUSSION 

 

Figure 4 a, b, c, d and e shows the contour plots of dynamic 

pressure fields (P) for hydrogen flow in the case of five 

different values of Reynolds number, i.e., Re = 5.000, 10.000, 

15.000, 20.000 and 25.000, respectively.  

 

 
 

Figure 4. Fields of dynamic pressure (P) for (a) Re = 5.000; 

(b) Re = 10.000; (c) Re = 15.000; (d) Re = 20.000; (e) Re = 

25.000. P values in Pa 
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Figure 5. Pmax values for various Re values 

 

It is very clear that the pressure values are very high on the 

upper and lower edges of the v-rib, across the gaps, next to the 

top and bottom surfaces of the channel. P values decrease on 

the front side of the rib, while they are very low on the back 

side between its wings, and on its front sharp edge. As 

expected, P values improve with Reynolds values and Re = 

25.000 indicates the pest pression value. This was also 

confirmed in Figure 5. There is a direct correlation between 

Reynolds numbers and pressure values due to the increase in 

fluid velocity at the input, where pressure increases through 

the gaps due to the presence of the v-rib. 

 

 
 

Figure 6. Fields of stream function (Ψ) for (a) Re = 5.000; 

(b) Re = 10.000; (c) Re = 15.000; (d) Re = 20.000; (e) Re = 

25.000. Ψ values in kg/s 
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Figure 7. Ψmax values for various Re values 

 

The contour plots of stram function fields (Ψ) are shown in 

Figure 6 (a-e) for various Re values. The hydrogen current 
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lines are very turbulent near the v-rib, while they are regular 

and parallel near the upper and lower walls of the channel. The 

current has constant speed at the channel intake with regular 

lines. The current is disturbed as it approaches the front of the 

v-rib. The current passes through the top and bottom gaps, near 

the upper and lower sharp edges of the v-rib, along parallel 

lines to the exit of the channel, while these lines are disturbed 

on the right side of the same obstacle, where two recycling 

cells are formed next to its upper and lower wings due to low 

pressure in this region. As also shown in Figure 6, the strength 

of these zones of recirculation increases with increasing Re 

values. Ψ values are important for the large Re values, as 

shown in Figure 7. 

 

 
 

Figure 8. Fields of mean velocity (V) for (a) Re = 5.000; (b) 

Re = 10.000; (c) Re = 15.000; (d) Re = 20.000; (e) Re = 

25.000. V values in m/s 

 

Figure 8 shows the variation of the mean velocity (V) with 

the Re value. The V values decreases after the channel 

entrance on the front region of the v-rib. The presence of this 

obstacle in the middle of the channel and near its intake allows 

the division and direction of the hydrogen current at very high 

speeds towards the gaps that are located near the upper and 

lower sharp edges of the same obstacle. This increase in 

velocity is due to an increase in pressure values across these 

narrow areas due to the presence of the v-rib. The top and 

bottom front wings of the v-rib changes the flow direction and 

creates a large disturbance near its upper and lower tips. At the 

back of this obstacle, the V values are very low as a result of 

the presence of a large recycling zone extending from the right 

sides of its upper and lower wings to the middle of the channel. 

The V values are very high near the hot surfaces of the channel 

in the regions opposite the upper and lower wings, especially 

for the large Revalues, Figures 8 and 9. This increase in speed 

decreases as the flow approaches the channel outlet, Figures 8. 
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Figure 9. Vmax values for various Re values 

 

 
 

Figure 10. Fields of axial velocity (u) for (a) Re = 5.000; (b) 

Re = 10.000; (c) Re = 15.000; (d) Re = 20.000; (e) Re = 

25.000. V values in m/s 

 

The distribution of axial velocity fields (u) in the ribbed 

channel for five various Re values is presented in Figure 10. 

As shown in the figure, there are negative values for velocity. 

These weak values are present on the back region of the v-rib, 

which extend from its inside to the middle of the channel. 

These negative values indicate that there are recycling cells in 

this region. These cells are reverse currents that flow in the 

opposite direction. In the regions between the upper and lower 

edges and the channel walls, the u values are very high. As 

expected, the change in Re values has a significant impact on 

the flow velocity, Figures 10 and 11. The u value augments 

with the augmentation of Re number and thus, the Re = 25.000 

provides maximum axial velocity, Figures 10 and 11. 

Therefore, there is an increase in u values with Re numbers 
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(see Figures 10 and 11) where the intensity, strength, size and 

extension of recirculation zones improve by improving Re 

values, Figures 6 and 7.  
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Figure 11. umax values for various Re values 

 

 
 

Figure 12. Fields of turbulent kinetic energy (k) (a) Re = 

5.000; (b) Re = 10.000; (c) Re = 15.000; (d) Re = 20.000; (e) 

Re = 25.000. k values in m2/s2 

 

The contour plots of turbulence kinetic energy fields are 

shown in Figure 12 for various values of Re number. The 

turbulence kinetic energy values are very high next to the front 

sharp edges of the top and bottom sides of the v-rib as well as 

on its back side at the right of the recirculation zone to the 

outlet of the channel. As is very clear, the turbulence kinetic 

energy is greatly increased by increasing the Re value where 

reaches its maximum value (kmax) in the case of Re = 25.000 

as shown in Figure 12, and as confirmed by Figure 13.  

Figure 14 shows the simulated data of turbulent viscosity 

using the k-epsilon (k-ε) model of turbulence in the range of 

Re number examined. The values of turbulent viscosity are 

considered on all areas of the channel except for the fluid 

surfaces near the top and bottom walls of the channel as well 

as next to the right side of the v-rib. The turbulent viscosity 

reaches its highest values on the upper and lower wings in its 

front. As indicated, there is a significant increase in turbulent 

viscosity values during the rise in Re number values, Figures 

14 and 15.   
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Figure 13. kmax values for various Re values 

 

 

 

Figure 14. Fields of turbulent viscosity (μt) for (a) Re = 

5.000; (b) Re = 10.000; (c) Re = 15.000; (d) Re = 20.000; (e) 

Re = 25.000. μt values in kg/m-s 

 

The distribution of fluid temperature in a v-ribbed channel 

for five various Re values is addressed in Figure 16. It is very 

clear that the presence of the v-rib in the center of the channel 

near its entrance allows the current to be directed towards the 

hot upper and lower walls of the channel and thus acquire more 
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thermal energy. The temperature gradient enhances next to the 

v-rib. These regions have good heat transfer. While the 

temperature gradient decreases as the flow approaches the 

channel exit. As expected, the heat transfer between the fluid 

and the hot surfaces is important for the large values of Re 

number.  
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Figure 15. (μt)max values for various Re values 

 

 
 

Figure 16. Fields of temperature (T) for (a) Re = 5.000; (b) 

Re = 10.000; (c) Re = 15.000; (d) Re = 20.000; (e) Re = 

25.000. T values in k 

 

 

5. CONCLUSION 

 

The most important conclusions that can be drawn from this 

study are as follows: 

- The pressure (P) values are very high on the upper and 

lower edges of the v-rib, across the gaps, next to the top and 

bottom surfaces of the channel. P values decrease on the front 

side of the rib, while they are very low on the back side 

between its wings, and on its front sharp edge. 

- The current passes through the top and bottom gaps, near 

the upper and lower sharp edges of the v-rib, along parallel 

lines to the exit of the channel, while these lines are disturbed 

on the right side of the same obstacle, where two recycling 

cells are formed next to its upper and lower wings due to low 

pressure in this region. 

- The top and bottom front wings of the v-rib changes the 

flow direction and creates a large disturbance near its upper 

and lower tips. At the back of the v-rib, the velocity values are 

very low as a result of the presence of a large recycling zone 

extending from the right sides of its upper and lower wings to 

the middle of the channel. These cells are reverse currents that 

flow in the opposite direction. 

- The turbulence kinetic energy values are very high next to 

the front sharp edges of the top and bottom sides of the v-rib 

as well as on its back side at the right of the recirculation zone 

to the outlet of the channel. The presence of the v-rib in the 

center of the channel near its entrance allows the current to be 

directed towards the hot upper and lower walls of the channel 

and thus acquire more thermal energy. As indicated above, 

there is a significant increase in pressure, velocity, turbulent 

kinetic energy and turbulent viscosity values during the rise in 

Re number values. The intensity, strength, size and extension 

of recirculation zones improve by improving Re values. 

- This type of analysis is very useful in many industries and 

engineering related problem for getting good idea about the 

physical model whenever the analytic solution is out of reach. 
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