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In this work, the Galerkin-Vlasov variational method was implemented for the problem of 

bending of rectangular thin plate resting on Winkler foundation with simply supported edges 

at x = 0, x = a, y = 0, y = b. The Galerkin integral statement was written for the problem for 

the case of arbitrary distributed load and solutions obtained for deflections, bending and 

twisting moments. Solutions were then obtained for point loads, sinusoidal loads, uniform 

loads and linearly distributed loads. It was found that the foundation modulus reduces the 

maximum deflections, as well as the maximum bending moments which occur at the center 

for uniformly distributed loads. Solutions obtained were found to be the same as those 

obtained using the Navier double trigonometric series method. 
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1. INTRODUCTION

Structures resting on elastic foundations are commonly used 

in engineering applications to model foundation structures like 

mats or rafts, airport runway pavements, rigid pavements, 

column footings and combined footings. Structures that are 

two dimensional are modeled as plates. Plates are described 

using Kirchhoff theory which is for thin plates for which 
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Other plate theories suitable for shear deformation plates have 

been proposed by Shimpi [4], Reddy [5], and Levinson [6]. 

Thick plates have been described using the mathematical 

theory of elasticity. Modelling and description of the 

interaction of the foundation on the structure/plate has always 

been problematic and difficult. However, mathematical 

descriptions of the soil reactive pressure distribution on the 

plate have been proposed by Winkler [7] who gave a one 

parameter model of the soil reaction. Others who proposed two 

parameter elastic foundation models include Pasternak [8], 

Hetenyi [9], Filonenko Borodich [10], and Kerr [11]. Soil 

structure interaction models have also been studied by 

Gorbunov-Posadov [12], Caselunghe and Eriksson [13], 

Ghaitani et al [14], and Rajpurohit et al [15]. Mathematically, 

Winkler [7] one parameter elastic foundation model gives the 

soil reaction qs(x, y) at any point as directly proportional to the 

deflection w(x, y) at the point. Thus, 

qs(x, y) = kw(x, y) = ps(x, y)      (1) 

where k is the Winkler foundation modulus or coefficient of 

subgrade modulus.  

Filonenko-Borodich [10], Hetenyi [9] and Pasternak [8] 

presented the expressions for two parameter elastic foundation 

models as: 

2( , ) ( , ) ( , ) ( , )s sq x y kw x y G w x y p x y= −  =          (2) 

2( , ) ( , ) ( , ) ( , )s sq x y kw x y T w x y p x y= −  =          (3) 

where k and T are the Filonenko-Borodich elastic foundation 

parameters, and 2  is the Laplacian; k and G are the Pasternak 

foundation parameters 

2 2
2

2 2x y

 
 = +

 
   (4) 

Hetenyi [7] presented the two parameter elastic foundation 

model as: 

4( , ) ( , ) ( , ) ( , )s sq x y kw x y D w x y p x y= +  =          (5) 

where D is the plate modulus, and k and D are the Hetenyi 

foundation parameters 4 is the biharmonic operator 

4 4 4
4 2 2

4 2 2 4
2

x x y y

  
 =   = + +

   
         (6) 

In general, plate on elastic foundation problems are 

boundary value problems (BVP) defined as differential 

equations which are to be solved subject to certain loading and 

restraint (geometric) boundary conditions. Methods for 

solving BVP have been employed in the technical literature for 

solving such problems.  Problem of plates on elastic 

foundation have been solved in the literature using a variety of 

methods such as: Navier method, Levy method, and 

numerical/approximate methods such as Finite Element 

Method, Finite Difference Method, Finite Strip Method, Ritz 

variational method. Mama et al [16] used the finite Fourier 

sine transform method to solve the problem of rectangular 
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Kirchhoff plate on Winkler foundation for the case of simply 

supported edges and transverse distributed loads on the plate 

domain. They obtained exact solutions identical to the 

solutions obtained using Navier’s double trigonometric series 

method. 

Ike [17] extended the previous work done by Mama et al 

[16] in that new particular types of distributed transverse load 

namely, bisinusoidal distribution and linear distribution over 

the entire plate domain were considered and solved using the 

Fourier sine transform method. In addition, numerical 

problems were considered and solved by Ike [17] for simply 

supported Kirchhoff plates resting on Winkler foundations for 

varying values of the non-dimensional Winkler parameter; for 

cases of uniformly distributed transverse load on the plate 

domain. 

Other researchers who have worked on the plate on elastic 

foundation problem are: Althobaiti and Prikazchikov [18]; 

Zhong, Zhao and Hu [19]; Li, Zhong and Li [20]; Li, Zhong 

and Tian [21]; Li et al. [22]; Zhang, Shi and Wang [23]; 

Agarana, Gbadeyan and Ajayi [24]; Are, Idowu and Gbadeyin 

[25]; Agarana and Gbadeyin [26]; Tahuoneh and Yas [27]; and 

Ye et al. [28]. 

 

 

2. RESEARCH AIM AND OBJECTIVES 

 

The aim of this research is to use the Galerkin-Vlasov 

variational method to obtain solutions to the flexural problem 

of simply supported Kirchhoff plate resting on Winkler 

foundation for the case of transversely applied distributed 

loads. The specific objectives are: 

(i) to obtain the Galerkin-Vlasov variational integral 

statement of the problem of simply supported 

Kirchhoff plate on Winkler foundation for the case of 

arbitrary distribution of transverse loads. 

(ii) to transform the governing partial differential 

equation of equilibrium of simply supported 

Kirchhoff plate on Winkler foundation under 

distributed transverse load to an algebraic problem 

using the Galerkin-Vlasov variational method. 

(iii) to solve the Galerkin-Vlasov integral statement to 

obtain general solution for the deflection for any 

distributed transverse load, as well as the 

corresponding internal force resultants. 

(iv) to solve the resulting algebraic equation to obtain the 

solution for a generalised distribution of transverse 

load on the Kirchhoff plate on Winkler foundation 

problem. 

(v) to obtain solutions for deflections and internal forces 

for particular types of transverse load distributions, 

namely: 

(a)  point load P0 applied at a known point (x0, y0) on the 

plate domain 

(b) bisinusoidal distributed load over the entire plate 

domain  

(c) uniformly distributed load over the entire plate 

domain 

(d) linearly distributed load over the plate domain. 

  

2.1 Theoretical framework 

 

The classical thin plate theory or Kirchhoff plate theory was 

adopted for this research as the theoretical framework for the 

plate problem. It is a linear infinitesimal theory developed for 

plates whose thickness, h, to governing span, a, ratio (h/a) are 

less than 0.10. 

The fundamental assumptions, otherwise called the 

Kirchhoff’s hypotheses are: 

(i) Points on the plate lying initially on a normal to the 

middle plane remain on the normal to the middle 

plane even after bending deformations, implying that 

shear deformations are neglected. 

(ii) The normal and shear stresses in the direction 

transversal to the plate are so small that they can be 

neglected without significant errors. Thus, 

0, 0zz xz yz  = = =  where 
zz  is the normal stress 

in vertical direction, 
xz  and yz  are shear stresses. 

(iii) There is no deformation in the middle surface of the 

plate, which remains neutral during flexural 

deformation. 

(iv) The plate material is homogeneous, linear elastic and 

isotropic. 

 

2.2 Displacement field 

 

The theory assumes that the displacement field could be 

completely defined using the transverse displacement of the 

middle surface w(x, y, z = 0) = w(x, y) as: 

 

( , )
w

u z x y
x


= −


               (7) 

 

( , )
w

v z x y
y


= −


               (8) 

 

( , )w w x y=                   (9) 

 

where u, v are the inplane displacements, and z is the 

coordinate variable in the thickness direction. 

 

2.3 Strain-displacement relations 

 

The strain-displacement relations of small-displacement or 

infinitesimal strain elasticity are used to obtain the strain 

displacement relations, as follows: 

 
2

2xx

u w
z

x x


 
= = −
 

            (10) 

 
2

2yy

v w
z

y y


 
= = −
 

            (11) 

 
2

2xy

u v w
z

y x x y


  
= + = −
   

           (12) 

 

0zz

w

z



= =


             (13) 

 

2.4 Stress-strain laws 

 

The stress strain laws are simplified by the assumption in 

Equation (1) and (2) to the following: 
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         (14) 

 

where   is the Poisson’s ratio, E is the Young’s modulus of 

elasticity, and G is the shear modulus. 

 

2.5 Internal stress resultants 

 

The internal stress resultants Mxx, Myy and Mxy, and Qx, and 

Qy, where Mxx, Myy are the bending moments, Mxy is the 

twisting moment, and Qx and Qy are the shear forces are given 

by: 

 
/2 /2 2 2 2

2 2 2

/2 /2
1

h h

xx xx

h h

Ez w w
M zdz dz

x y
 


− −

  
= − = + 

−   
           (15) 

 
/2 2 2 2

2 2 2

/2
1

h

xx

h

Ez dz w w
M

x y



−

  
= + 

−   
            (16) 

 
2 2

2 2xx

w w
M D

x y


  
= + 
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            (17) 

 

where 
/ 2 2 3

2 2

/2
1 12(1 )

h

h

Ez dz Eh
D

 
−

= =
− −            (18) 

 

D is called the flexural rigidity of the plate, and h is the plate 

thickness. 

 
/2 2 2

2 2

/2

h

yy yy

h

w w
M zdz D

y x
 

−

  
= − = + 
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           (19) 

 
/ 2 2

/2

(1 )

h

xy xy

h

w
M zdz D

x y
 

−


= − = −

            (20) 

 
/ 2

/ 2

h

x xz

h

Q dz
−

=               (21) 

 
/ 2

/ 2

h

y yz

h

Q dz
−

=               (22) 

 

Some conventions adopt a negative sign for the bending and 

twisting moments given by Equations (17), (19) and (20). 

 

2.6 Differential equations of equilibrium 

 

The differential equations of equilibrium in terms of the 

force resultants are the three equations: 

 

( , ) ( , ) 0
yx

s

QQ
q x y p x y

x y


+ + − =

 
          (23) 

0
xyxx

x

MM
Q

x y


+ + =

 
            (24) 

 

0
xy yy

y

M M
Q

x y

 
+ + =

 
            (25) 

 

These three equations could be solved simultaneously to 

obtain one equation namely 

 
2 22

2 2
2 0

xy yyxx

s

M MM
q p

x yx y

 
+ + − + =

  
          (26) 

 

Substitution of the force resultants yields 

 
2 2 2 2 2 2

2 2 2 2 2 2

w w w w
D D

x x y y y x
 

              
+ + +      

              
  

2 2

2 (1 ) 0s

w
D q p

x y x y


  
+ − − + = 

    
          (27) 

 

Simplification yields 

 
4 4 4

4 2 2 4
2 s

w w w
D p q

x x y y
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+ + + = 

    
          (28) 

 

For the Winkler foundation, ps = kw and  

 
4 4 4

4 2 2 4
2

w w w
D kw q

x x y y
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+ + + = 

    
          (29) 

 
2 2D w kw q  + =             (30) 

 
4D w kw q + =              (31) 

 

 

3. METHODOLOGY 

 

The Galerkin method is an approximate method used in 

obtaining approximate solutions to boundary value problems 

and integral equations. It converts a continuous operator 

problem to a discrete problem. In principle, it is equivalent to 

the application of the method of variation of parameters to a 

function space, and thus converts the equation to a weak 

formulation. In solving a differential equation of the general 

form 

 

Lw(x, y) = p(x, y)            (32) 

 

where L is the differential operator, x, y the independent 

variables, w(x, y) the unknown function of x, y and p(x, y) a 

known function of x, y, the Galerkin method assumes an 

approximate solution given by a linear combination of basis 

functions ( , )ij x y  in the function space as: 

 

1 1

( , ) ( , )
M N

ij ij

i j

w x y c x y
= =

=            (33) 

 

where i = 1, 2, 3, …, M;  j = 1, 2, 3, …, N. 
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The basis functions ( , )ij x y  satisfy the boundary 

conditions and cij are unknown constants (parameters). The 

Galerkin’s weighted integral statement for the minimization of 

the error (residual) function becomes: 

 

( )
2

( , ) ( , ) 0ij ij kr

R

c L x y p x y dxdy − =          (34) 

 

where R2 is the two dimensional domain of integration. 

or, 

 

2 21 1

( ) ( , )
M N

ij ij kr kr

i j R R

c L dxdy p x y dxdy  
= =

=            (35) 

 

If ( , )ij x y  are orthogonal functions, then Galerkin-Vlasov 

integral statements simplify to become: 

 

2 2

( ) ( , )
M N

ij ij ij ij

i j R R

c L dxdy p x y dxdy  =            (36) 

 

The merits of the Galerkin’s method include: 

(i) its rapid convergence to the exact solution when the 

right basis functions that satisfy all the boundary 

conditions are used. 

(ii) its universal applicability since it does not require the 

total potential energy functional. 

(iii) the solution of complex problems is simplified to the 

evaluation of certain definite integrals which can be 

performed numerically when analytical integrations 

are impossible or difficult. 

(iv) its close connection to the Rayleigh Ritz method and 

its use in the derivation of finite element 

characteristic matrices. 

However, the method has the shortcoming that it: 

(a) sometimes involves the arduous task of definite 

integrations 

(b) its accuracy is influenced by the order of 

approximating polynomial functions, and the choice 

of trial functions. 

 

 

4. RESULTS 

 

4.1 Galerkin-Vlasov method of rectangular Kirchhoff 

plate on Winkler foundation 

 

 
 

Figure 1. Simply supported Kirchhoff plate resting on a 

Winkler foundation, and carrying distributed transverse load 

A rectangular simply supported Kirchhoff plate for which 

0.01 < h/b < 0.05 and length a and width b, where ,a b  h is 

the plate thickness resting on a Winkler foundation as shown 

in Figure 1 was considered. 

The edges x = 0, x = a, y = 0, y = b are simply supported and 

the plate is subject to a distributed transverse load given 

generally by p(x, y). The governing partial differential 

equation of equilibrium of the Kirchhoff plate on Winkler 

foundation problem is given for homogenous isotropic plates 

and static loads by the fourth order equation: 

 
4 ( , ) ( , ) ( , )D w x y kw x y p x y + =            (37) 

 

for 0 , 0x a y b      

where 4  is the biharmonic operator, given as Equation (6), k 

is the modulus of subgrade reaction or Winkler foundation 

constant, h is the plate thickness,   is the Poisson’s ratio, E 

is the Young’s modulus of elasticity, D is the plate flexural 

rigidity and w(x, y) is the transverse deflection of the plate 

middle surface, x and y are the inplane Cartesian coordinate 

variables. In operator form, the PDE is expressed as: 

 
4( ) ( , ) ( , ) 0D k w x y p x y + − =            (38) 

 

The geometric and force boundary conditions at the simply 

supported edges are: 

 

w(x = 0, y) = w(x = a, y) = 0          (39) 

 
2 2

2 2
( 0, ) ( , ) 0

w w
x y x a y

x x

 
= = = =

 
          (40) 

 

w(x, y = 0) = w(x, y = b) = 0          (41) 

 
2 2

2 2
( , 0) ( , ) 0

w w
x y x y b

y y

 
= = = =

 
          (42) 

 

By the Vlasov method, a trial displacement function that 

satisfies the boundary conditions is 

 

1 1

( , ) sin sin ( , )mn mn mn

m n m n

m x n y
w x y w w x y

a b

 


   

= =

= =      (43) 

 

where wmn are generalised displacement parameters, and  

 

sin sinmn

m x n x

a b

 
 =             (44) 

 

are the basis functions. 

The Galerkin-Vlasov variational integral is then: 

 

4

0 0

( ) sin sin

b a

mn

m n

m x n y
D k w

a b

  
 +


   

( , ) sin sin 0
m x n y

p x y dxdy
a b

  
=


          (45) 

 

4

0 0

( )sin sin sin sin

b a

mn

m n

m x n y m x n y
w D k dxdy

a b a b

      
 +    
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0 0

( , )sin sin

b a
m x n y

p x y dxdy
a b

  
=             (46) 

 
2

2 2

0 0

b a

mn

m n

m n
w D k

a b

         + +           

    

sin sin sin sin
m x n y m x n y

dxdy
a b a b

    
  

0 0

( , )sin sin

b a
m x n y

p x y dxdy
a b

  
=             (47) 

 

The basis functions are orthogonal functions, and Equation 

(47) simplifies to: 

 
2

2 2

2 2

1 1 0 0

sin sin

b a

mn

m n

m n m x n y
w D k dxdy

a b a b

    

= =

      + +           

    

2 2

0 0

sin sin

b a

mn

m n

m x n y
p dxdy

a b

  

=           (48) 

 

where p(x, y) has been expressed using the Fourier sine series 

representation as 

 

1 1

( , ) sin sinmn

m n

m x n y
p x y p

a b

  

= =

=           (49) 

 

where pmn is the Fourier sine series coefficient of the 

distributed load p(x, y). 

Let 

 

2 2

( )

0 0

sin sin

b a

mn

m x n y
I dxdy

a b

 
=              (50) 

 

Then 

 
2

2 2

( ) ( )mn mn mn mn

m n m n

m n
w D k I p I

a b

          + + =           

        (51) 

 

Thus, 

 

2
2 2

mn

mn

p
w

m n
D k

a b

 

=
    

+ +    
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Then, 

 

2
2 2

1 1
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p
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 
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 

=
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
                       (54) 

The bending moment distributions are obtained from 

Equations (17), (19) and (20) for the general case of arbitrary 

distribution of p(x, y) as: 
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Galerkin-Vlasov solutions for point load P0 at (x0, y0)

00 ,x a   0 y b    

For point load P0 applied at (x0, y0), the Fourier sine series 

coefficient pmn is  
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Then the solutions for w(x, y), Mxx and Myy become: 
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For m = 1, 3, 5, … n = 1, 3, 5, … 
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For square plates, where 
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Galerkin-Vlasov solution for sinusoidal load 

0( , ) sin sin
x y
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Here, the Fourier sine series coefficient pmn is 
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Then solutions become: 
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For square thin plates, a = b, and we have: 
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The bending moments are found from the moment 

displacement relations as: 
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For square plates, 
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Galerkin-Vlasov solutions for uniformly distributed load 

p0(x, y) = p0 

The Fourier sine series coefficient for the load pmn is 
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For square plates, r = 1, 
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For square plates, 
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Galerkin-Vlasov solutions for linearly distributed load 
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In this case, the Fourier sine series coefficient is 
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wc is the center deflection. 
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At the center, the bending moment is: 
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For square plates, r = 1, 
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Table 1. Galerkin solution for deflection and bending moment coefficients for simply supported Kirchhoff plate on Winkler 

foundation for uniform load on the plate and square plates ( )1 ,a
b
=  

1/4
4ka

K
D

 
=  
 

 

 

K 
4

3

max 10
qa

w
D

− 
 
 

 ( )
max

2 210xxM qa−  ( )
max

2 210yyM qa−  ( )
max

2 210xyM qa−  

1 4.053 4.809 4.809 2.943 

3 3.348 3.910 3.910 2.456 

5 1.507 1.575 1.575 1.181 

 

Table 2. Galerkin solution for maximum deflections and bending moment coefficients for simply supported square Kirchhoff 

plate on Winkler foundations for sinusoidal load 0( , ) sin sin ,
x y

p x y p
a b

 
=  ( 0.30) =  

 
1/4

4ka
K

D

 
=  
 

 

4
2

max 10
pa

w
D

−  
2

xxM pa  
2

yyM pa  
2

xyM pa  

1 2.5599 2.56  0.03285 0.03285 0.001792 

3 2.1248 0.02726 0.02726 0.001487 

5 0.09856 0.01265 0.01265 0.0006899 

0 2.5665 0.03293 0.03293 0.001797 

 

The Galerkin-Vlasov solutions for the maximum deflection 

and maximum bending moments which occurs at the plate 

center (x = a/2, y = b/2) for square Kirchhoff plates resting on 

Winkler foundations for values of 
1/4

4ka
K

D

 
=  
 

equal to K = 1, K 

= 3, and K = 5 have been calculated and presented in Table 1 

for the case of uniformly distributed transverse load p0 over 

the entire plate domain. The Galerkin-Vlasov solutions for the 

maximum deflection and maximum bending and twisting 

moments for square Kirchhoff plates resting on Winkler 
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foundations for values of K equal to 1, 3, and 5 for the case of 

sinusoidal load distribution over the plate domain and simply 

supported edges are shown in Table 2.  

 

 

5. DISCUSSION 

 

The Galerkin-Vlasov variational method has been 

implemented successfully in this work to solve the fourth order 

partial differential equation for the Kirchhoff plate on Winkler 

foundation problem when the four edges x = 0, x = a, y = 0, 

and y = b are simply supported and the plate is subjected to 

transversely applied distributed load. The trial displacement 

function used is given as Equation (43) and the shape functions 

satisfy the boundary conditions at the edges. The Galerkin-

Vlasov variational integral statement which is a weak 

formulation of the boundary value problem of Kirchhoff plate 

on Winkler foundation subject to transverse load distribution 

p(x, y) is given as Equation (45). The solution for the unknown 

undetermined displacement parameters of the trial 

displacement function was found, for a Fourier double sine 

series representation of the distributed transverse load as 

Equation (52); which solution is valid for any arbitrary 

distribution of transverse load expressible by a Fourier sine 

series. The general expression for the transverse displacement 

was then found as Equation (53) for the generalised transverse 

load distribution. The internal bending moment distributions 

and twisting moments were found using the bending moment-

deflection (curvature) equations and twisting moment-

deflection (curvature) equations as Equations (55), (56) and 

(57). The general solutions obtained were then particularized 

for the cases of  

(i)  point load P0 applied at a point (x0, y0) in the plate 

domain where 
00 ,x a   00 y b    

(ii)  sinusoidal load applied over the entire plate surface 

(iii)  uniformly distributed load of intensity p0 over the 

entire plate region 

(iv)  linearly distributed load p(x, y) = p0x/a over the entire 

plate surface. 

The Galerkin-Vlasov solutions obtained for the deflections 

and bending moments for the case of point load P0 applied at 

point (x0, y0) are given as Equations (61), (62) and (63). Their 

maximum values for square plates on Winkler foundations 

were obtained as Equations (66) and (70). For the case of 

sinusoidal load, the deflections and moments were obtained as 

Equations (75), (77), and (78). Their maximum values for 

square plates on Winkler foundations were found at the plate 

center as Equations (76) and (81). The Galerkin-Vlasov 

solutions for the case of uniform transverse load was found for 

maximum deflections and maximum moments as Equations 

(88), (89), (90) and (91). The maximum values for deflection 

and moments for square plate on Winkler foundation were 

found as Equations (92), (93) and (98). For the case of linearly 

distributed transverse load on the Kirchhoff plate on Winkler 

foundation, the Galerkin-Vlasov solutions were obtained for 

deflections and moments as Equations (103), (107) and (111). 

Their values at the plate center were obtained as Equations 

(104), (108) and (112) for rectangular thin plates on Winkler 

foundations and Equations (113) and (114) for square thin 

plates on Winkler foundations. Here, the maximum values 

may not occur at the plate center due to the non symmetrical 

nature of the load on the plate about the plate center. The 

Galerkin-Vlasov solutions for square Kirchhoff plate resting 

on Winkler foundation for the case of uniformly distributed 

transverse load and simply supported edges shown tabulated 

in Table 1 for values of ( )
1/4

4kaK
D

= equal to K = 1, K = 3, 

and K = 5 show that the maximum deflections and bending and 

twisting moments at the plate center reduce as the values of K 

increase. It is observed that the Galerkin-Vlasov variational 

solutions yielded analytical mathematical closed form 

solutions which were identical with the solutions obtained 

using a Navier double Fourier sine series method for the 

problem.  Table 2 represents the Galerkin-Vlasov solutions for 

maximum deflections and moments for simply supported 

square Kirchhoff plates under sinusoidal load distribution. 

Table 2 shows that for sinusoidal distribution of transverse 

loads, the maximum values of transverse deflection and 

bending moments occur at the plate center and reduce as the 

Winkler foundation modulus increases. 

 

 

6. CONCLUSIONS 

 

The following conclusions can be made from this study: 

(i) the Galerkin-Vlasov variational method yielded 

mathematically closed form solutions to the 

Kirchhoff plate on Winkler foundation problem, 

which were exact within the limitations of the 

Kirchhoff plate theory and the Winkler model used in 

the problem formulation. 

(ii) the Galerkin-Vlasov solutions were exactly identical 

with the solutions obtained using a Navier 

trigonometric series method for the same problem. 

(iii) the Galerkin-Vlasov solutions obtained were exact 

because the exact shape functions were used in the 

displacement trial function. 

(iv) the Winkler foundation has the effect of reducing the 

maximum deflections and bending and twisting 

moments at the center of the plate. 

(v) the use of orthogonality functions in the displacement 

shape function simplified the definite integration, and 

reduced the boundary value problem to an algebraic 

one. 

(vi) convergence of the expressions obtained for the 

displacements were faster than those obtained for the 

moments. 

(vii) convergence of the expressions obtained for the case 

of point load was very slow due to the singularity 

property of the point load, and its representation by 

many terms of the Fourier series. 
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