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 This paper proposes a novel solution to the fixed-ground target tracking control problem 

of satellites utilizing a Nonlinear Model Predictive Control approach (NMPC). The 

Continuation / Generalized Minimal Residual (C/GMRES) algorithm is selected as a 

promising fast solver to an optimal control problem in real time. The algorithm could 

perfectly deal with the huge computational load of this approach, represented in solving 

Riccati differential equation, by simple and efficient approximations.  A new control-

oriented model converting the main tracking problem into a simple regulation problem is 

developed. This simple and easy traceable reformulated model has an advantage in 

dealing with modeling errors and unplanned external environmental disturbances. The 

update of the control input is obtained by integrating a deduced time-dependent inputs 

and Lagrange multipliers vector; representing the solution of a set of linear equations and 

corresponding to the optimality conditions. The proposed algorithm is simulated using 

real satellite parameters to track a fixed-ground target for reconnaissance purposes. The 

simulation results show that the algorithm of C/GMRES method can track a desired fixed 

ground target robustly, with precise tracking error and guaranteed safe stability limits for 

shooting activities throughout the overpass flight.  
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1. INTRODUCTION 

 

The improvement of different strategic satellite attitude 

control systems by commissioning state-of-the-art intelligent 

control methods is an attractive arena of research recently. The 

extremely variant nature of satellite attitude control indicates 

that the elected effective intelligent control technique must be 

able to deal with a large Multi-Input Multi-Output (MIMO) 

system with nonlinear complex and constrained dynamics.  

Furthermore, in many conditions, it may also be necessary to 

avoid the different actuators from long operating near their 

thresholds to keep power consumption within some specified 

limits or to keep the rate of wear as low as possible. 
Satellite Ground-Target Tracking (GTT) controllers must 

also guarantee a precise tracking error and fast response as 

well. NMPC, as a unique optimal model-based approach to 

intelligent control systems design, is a talented candidate that 

covers all of these features. The capability to handle Two-

Point Boundary Value Problems (TPBVP) with such approach 

has made this technique superior. However, the main 

challenge faces NMPC controller developers is guaranteeing 

method implementation in a real-time in spite of the needed 

huge computational loads. Hence, fast Real-Time 

Optimization (RTO) methods are carefully searched to 

overcome this weakness. Optimization methods based on 

C/GMRES method are candidates of these RTO algorithms 

that have revealed great potential for real-time applications in 

general. Using the feature of the solution of a nonlinear 

receding horizon control problem that it varies smoothly 

related to the time at certain conditions is the main core idea 

in Ref. [1]. Thus, tracing this solution is possible without the 

need for iterative optimization methods. This is known by 

continuation method. Ohtsuka use this continuation method 

combined with a fast solver algorithm for linear equations 

instead of solving Riccati differential equation to develop his 

real-time algorithm of nonlinear receding horizon control 

problem. As he succeeded to manipulate the equations of 

nonlinear optimality conditions such that all the unknown 

variables which can’t obtained recursively are put in one 

vector. Solving the nonlinear equations that are a function of 

this defined vector is replaced by searching this vector which 

can satisfy the features of any stable dynamic system. Hence, 

a set of linear equations are obtained and solved in real-time 

by employing the GMRES method [2]. 

Explicit MPC (eMPC) has been recently proposed as an 

alternative to online approaches in a trial to overcome the 

implementation challenges of a huge computational load for 

NMPC in each sampling time [3]. The nonlinear optimization 

problem in eMPC approach is completely solved offline to 

cancel the necessity of having an online optimization solver. 

However, the optimal solution is handled as a look-up table of 

linear gains that must be stored, the problem converted to 

storage challenges rather than computational ones to fulfill the 

limitations of the on-board processor. 

The C/GMRES method is reapplied in a different 

application with using a developed modular code generation 

tool that can be tailored to be used in other applications [4]. 

However, some code changes should be employed to allow 
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covering the problems which comprise time-variant 

parameters that cannot considered as a system states. 

The GMRES-based NMPC method has been used in 

designing ecological adaptive cruise controller (E-ACC) for 

plug-in Hybrid electric vehicles (HEV) [5]. In the developed 

E-ACC the upcoming trip data and an on-board vehicle radar 

reading are used to optimize energy cost of the trip and to 

preserve safety and comfort as well.  

This paper investigates the potential of novel employing 

C/GMRES based RTO algorithms to design intelligent attitude 

control systems, in particular, intelligent fixed GTT 

controllers.  The paper is organized to present a model 

predictive control and a control problem solution in section (2). 

In section (3) C/GMRES method is introduced in details. 

Section (4) is devoted to creating control-oriented model. 

Section (5) gives a brief about image quality requirements. In 

section (6) a case study with its simulation results is presented 

followed by the final conclusion statements in section (7). 
 

 

2. CONTROL PROBLEM SOLUTION USING MPC 

 

In the approach of MPC, or alternatively receding horizon 

control, the optimal solution of the control problem, called the 

control input is found by solving a constraint optimization 

problem at each time instant with a moving horizon. This 

results in a control law with a feedback nature. Actually, 

optimization problem of the constraint objective function can 

be converted into a root finding problem of a set of nonlinear 

equations. These nonlinear equations are obtained by means of 

applying necessary conditions for optimality [1].   

A general nonlinear dynamic system can be represented as: 

 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑝(𝑡))

𝑥(𝑡0) = 𝑥𝑜
    } (1) 

  

where, 𝑥(𝑡) ∈ 𝑅𝑛 is a state vector with 𝑛 states, 𝑢(𝑡) ∈ 𝑅𝑚𝑢 

is an input vector with 𝑚𝑢 inputs and 𝑝(𝑡) ∈ 𝑅𝑚𝑝  is a time-

varying vector. The optimal control problem for this system 

where a cost function is minimized while satisfying 𝑛𝑔 -

dimensional equality constraints 𝑔  and 𝑛ℎ -dimensional 

inequality constraints ℎ are represented as [1]: 

 

minimize ∶
𝑢

𝐽 = 𝜑 (𝑥(𝑡𝑓), 𝑝(𝑡𝑓))

+ ∫ 𝐿(𝑥(𝑡̀), 𝑢(𝑡̀), 𝑝(𝑡̀))𝑑𝑡̀
𝑡𝑓

𝑡0

 

subjected to

{
 
 

 
 �̇�(𝑡) = 𝑓(𝑥

(𝑡), 𝑢(𝑡), 𝑝(𝑡))

𝑥(𝑡0) = 𝑥𝑜
𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑝(𝑡)) = 0

ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑝(𝑡)) ≤ 0

 (2) 

 

where, 𝑇 = 𝑡𝑓 − 𝑡0 is the prediction horizon,  𝜑(.) represents 

the terminal cost at the end of the prediction horizon 

and  𝐿(. ) denotes the trajectory cost over the horizon. The 

actual state 𝑥(𝑡)  is used as the initial state for the optimal 

control problem over the horizon [𝑡, 𝑡 + 𝑇].  
Although the control input is determined over this horizon, 

the actual submitted input as a feedback to the system is the 

only optimum value at the initial time of this current horizon 

[1,4,5].  

Solving an optimization problem with inequality constraints 

is not an easy task because of the complexity of the optimality 

conditions known as Karush–Kuhn–Tucker (KKT) conditions.  

In this case, a particular interior point method known as barrier 

method is used to convert the inequality constraints to equality 

constraints. So, if ℎ𝑖 ≤ 0  it can be written as ℎ𝑖 + 𝛼𝑖
2 = 0 

where 𝛼𝑖 is a dummy input. If the problem is feasible, in the 

end, ℎ𝑖 = −𝛼𝑖
2  and for any given real value for 𝛼𝑖 , ℎ𝑖 ≤

0. The integrant part in cost function presented in Equation (2) 

has been also modified by adding a term −𝑟𝑇𝛼 that is to give 

incentive to the solver to stay away from the boundaries of the 

feasible set [1,4].  Thus, the optimal control problem can be 

modified as: 

 

minimize
𝑢,𝛼

  𝐽 = 𝜑 (𝑥(𝑡𝑓), 𝑝(𝑡𝑓))

            + ∫ (𝐿(𝑥(𝑡̀), 𝑢(𝑡̀), 𝑝(𝑡̀)) − 𝑟𝑇𝛼(𝑡̀)) 𝑑𝑡̀
𝑡𝑓

𝑡0

 

subjected to

{
 
 

 
 �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑝(𝑡))

𝑥(𝑡0) = 𝑥𝑜
𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑝(𝑡)) = 0

ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑝(𝑡)) + 𝛼(𝑡)2 = 0

 (3) 

 

So, if the entries of 𝑟  are small positive numbers, the 

solution of this modified optimization problem is close to the 

solution of the original one with inequality constraints. 

Expanding the input vector 𝑢(𝑡) to contain not only the real 

inputs 𝑢 but also the dummy inputs 𝛼 and considering 𝐶  is the 

final equality constraints with dimension 𝑚𝑐 = 𝑚ℎ  + 𝑚𝑔 

including the original equality constraints and the converted 

inequality constraints to equality constraints, the optimal 

problem can be written in more useful and generalized form as 

following [1,4]: 

 

minimize 
𝑢

: 𝐽 = 𝜑(𝑥(𝑡 + 𝑇), 𝑝(𝑡 + 𝑇))

+ ∫ 𝐿(𝑥(𝑡̀), 𝑢(𝑡̀), 𝑝(𝑡̀))𝑑𝑡̀
𝑡+𝑇

𝑡

 

Subjected to: {

�̇� = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑝(𝑡))

𝑥(𝑡) = 𝑥𝑜
𝐶(𝑥(𝑡), 𝑢(𝑡), 𝑝(𝑡)) = 0  

 (4) 

 

where, the optimal control 𝑢∗(𝑡̀; 𝑡, 𝑥(𝑡))  that minimize 𝐽  is 

calculated over 𝑡̀ ∈ [𝑡, 𝑡 + 𝑇], and its initial value at initial 

time 𝑡, 𝑢∗(𝑡; 𝑡, 𝑥(𝑡)) is used as actual control input 𝑢(𝑡) to the 

system.  The functions 𝜑  and 𝐿  are commonly selected for 

such case as: 

 

𝜑 = 
1

2
(𝑥(𝑡 + 𝑇) − 𝑥𝑓)

𝑇𝑆𝑓(𝑥(𝑡 + 𝑇) − 𝑥𝑓) (5) 

  

𝐿 =  
1

2
((𝑥 − 𝑥𝑓)

𝑇
𝑄(𝑥 − 𝑥𝑓) + 𝑢

𝑇𝑅 𝑢 − 𝑟𝑇𝛼)) (6) 

 

where 𝑆𝑓, 𝑄, and 𝑅 are free parameters’ weighting matrices. 

The NMPC problem is basically a family of finite horizon 

optimal control problems (FHOCPs) along fictitious time 𝜏 as 

follows [1,4]: 

 

Minimize ∶  𝐽 = 𝜑(𝑥∗(𝑇, 𝑡), 𝑝(𝑡 + 𝑇)) 

+∫ 𝐿(𝑥∗( 𝜏, 𝑡), 𝑢∗( 𝜏, 𝑡), 𝑝(𝑡 + 𝜏))𝑑𝜏
𝑇

0
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Subjected to {

𝑥𝜏
∗(𝜏, 𝑡) = 𝑓(𝑥∗( 𝜏, 𝑡), 𝑢∗( 𝜏, 𝑡), 𝑝(𝑡 + 𝜏))

𝑥∗(0, 𝑡) = 𝑥(𝑡)

𝐶(𝑥∗( 𝜏, 𝑡), 𝑢∗( 𝜏, 𝑡), 𝑝(𝑡 + 𝜏)) = 0   

 

 (7) 
 

where subscript 𝜏  represents partial differentiation with 

respect to 𝜏 . The new state vector, 𝑥∗( 𝜏, 𝑡) , denotes a 

trajectory along the 𝜏 axis starting from 𝑥(𝑡) at 𝜏 =  0. The 

optimal control input, 𝑢∗( 𝜏, 𝑡), is obtained on the 𝜏 axis as the 

solution to FHOCP for each 𝑡, and actual control input is set 

by 𝑢(𝑡) = 𝑢∗( 0, 𝑡) . Horizon 𝑇  is commonly a function of 

time, 𝑇 = 𝑇(𝑡). 
To solve an optimization problem subject to equality 

constraints Lagrange multipliers method is used. The way it 

works is to write the Hamiltonian function as a sum of the 

integrant part of the cost function plus the dynamic equations 

multiplied by Lagrange multiplier 𝜆′𝒔 known as costates plus 

the constraints equations multiplied by Lagrange multiplier 

𝝁′𝒔 as seen in the following equation [1]. 

 

ℋ(𝑥, 𝜆, 𝑢, 𝜇, 𝑝) = 𝐿(𝑥, 𝑢, 𝑝) + 𝜆𝑇𝑓(𝑥, 𝑢, 𝑝) + 𝜇𝑇𝐶(𝑥, 𝑢, 𝑝)(8) 

 

Once the Hamiltonian function is defined, the first-order 

conditions necessary for optimal control is getting by calculus 

of variation as Euler Lagrange Equations (ELEs) [4]. 

 

𝑥𝜏
∗ = 𝑓(𝑥∗, 𝑢∗, 𝑝) (9) 

 

𝑥∗(0, 𝑡) = 𝑥(𝑡) (10) 

 

𝜆𝜏
∗ = −ℋ𝑥

𝑇(𝑥∗, 𝜆∗, 𝑢∗, 𝜇∗, 𝑝) (11) 

  

𝜆∗(𝑇, 𝑡) = 𝜑𝑥
𝑇(𝑥∗(𝑇, 𝑡), 𝑝(𝑡 + 𝑇)) (12) 

  

ℋ𝑢(𝑥
∗, 𝜆∗, 𝑢∗, 𝜇∗, 𝑝) = 0 (13) 

 

𝐶(𝑥∗, 𝑢∗, 𝑝) = 0 (14) 

 

where the argument of 𝑝  is 𝑡 + 𝜏  when absent. The ELEs 

describe a TPBVP, in which the value of initial state is known 

whereas the terminal costate is a function of the terminal state. 

Nonlinear TPBVP has to be solved within the sampling period 

for measured state 𝑥(𝑡)  at each sampling time, which 

represents a hard-computational load and is one of the major 

problems in NMPC. Now with discretizing these conditions 

for optimality on 𝜏-axis with forward difference by dividing 

the horizon into 𝑁 time steps as follows [4]. 

 

𝑥𝑖+1
∗ (𝑡) = 𝑥𝑖

∗(𝑡) + 𝑓(𝑥𝑖
∗(𝑡), 𝑢𝑖

∗(𝑡), 𝑝(𝑡 + 𝑖∆𝜏))∆𝜏 (15) 

  

𝑥0
∗(𝑡) = 𝑥(𝑡) (16) 

  

𝜆𝑖
∗ = 𝜆𝑖+1

∗ +ℋ𝑥
𝑇(𝑥𝑖

∗(𝑡), 𝜆𝑖+1
∗ (𝑡), 𝑢𝑖

∗(𝑡), 𝜇𝑖
∗(𝑡), 𝑝(𝑡 + 𝑖∆𝜏))∆𝜏

 (17) 

  

𝜆𝑁
∗ (𝑡) = 𝜑𝑥

𝑇(𝑥𝑁
∗ (𝑡), 𝑝(𝑡 + 𝑇)) (18) 

 

ℋ𝑢
𝑇(𝑥𝑖

∗(𝑡), 𝜆𝑖+1
∗ (𝑡), 𝑢𝑖

∗(𝑡), 𝜇𝑖
∗(𝑡), 𝑝(𝑡 + 𝑖∆𝜏)) = 0 (19) 

 

𝐶(𝑥𝑖
∗(𝑡), 𝑢𝑖

∗(𝑡), 𝑝(𝑡 + 𝑖∆𝜏)) = 0 (20) 

 

where time step ∆𝜏 = 𝑇/𝑁  and the real-time 𝑡  is kept 

continuous while fictitious time 𝜏  is discretized. The 

computed sequences of the state, costate, input, and Lagrange 

multiplier on the discretized horizon are represented by 

{𝑥𝑖
∗(𝑡)}𝑖=0

𝑁 , {𝜆𝑖
∗(𝑡)}𝑖=0

𝑁 ,  {𝑢𝑖
∗(𝑡)}𝑖=0

𝑁  and {𝜇𝑖
∗(𝑡)}𝑖=0

𝑁 , 

respectively. 

Consequently, NMPC is formulated as TPBVP in Equation 

(15-20) for measured state 𝑥(𝑡) at real time 𝑡. The Equations 

(15,16) are the system dynamic equations with its initial 

conditions. The next two Equations (17,18) are dynamic 

equations corresponding to the Lagrange multiplier costates 𝝀 

with its final conditions. The rest of equations are equality 

constraints on all the variables that include the partial 

derivative of the Hamiltonian with respect to vector 𝑢 , the 

vector of real and dummy inputs, and also the derivative of the 

Hamiltonian with respect to vector 𝜇  which lead to total 

equality constraints equation 𝐶 = 0. 

MPC is to solve an optimal control problem in each time step 

of a discrete time controller.  While the system is working the 

current states 𝑥𝑛 are measured or estimated then the optimal 

control problem is solved by computing the input 𝑢𝑖 for the 

next 𝑁 steps and only the first step of the sequence is returned 

and that is the computed input which should be applied to the 

system then this loop is repeated again and again. Therefore, 

MPC is an implementation of an optimal controller in a real 

time. 

 

 

3. C/GMRES METHOD 

 

The C/GMRES method proposed by Ohtsuka in [1] allows 

for solving optimization problem in a real-time. The method 

consists of two steps. In the first step, the dynamic of the 

system Equations (15,16)  are solved forward in time and then 

the dynamic equations of the costates Equations (17,18)  are 

solved backward in time in order to get all the states 𝑥𝑖 and the 

costates 𝜆𝑖 in terms of other variables 𝑢𝑖
∗ and 𝜇𝒊

∗. In the second 

step, all the remaining variables are put together in vector 

called 𝑈 that includes the inputs 𝑢′𝑠, which contains the real 

inputs, dummy inputs and Lagrange multipliers 𝜇′𝑠  for the 

time step from 0 to 𝑁 − 1 as: 

 

𝑈 = [𝑢0
𝑇 , … , 𝑢𝑁−1

𝑇 , 𝜇0
𝑇 , … , 𝜇𝑁−1

𝑇 ]𝑇 (21) 

 

Then rewriting the remaining optimality conditions as: 

 

𝐹(𝑈(𝑡), 𝑥(𝑡), 𝑡) = 0 (22) 

where  

 

𝐹(𝑈(𝑡), 𝑥(𝑡), 𝑡) =

[
 
 
 
 
 
 

ℋ𝑢
𝑇(𝑥0

∗, 𝜆1
∗ , 𝑢0

∗ , 𝜇0
∗ , 𝑝(𝑡))

𝐶(𝑥0
∗, 𝑢0

∗ , 𝑝(𝑡))
.
.
.

ℋ𝑢
𝑇(𝑥𝑁−1

∗ , 𝜆𝑁
∗ , 𝑢𝑁−1

∗ , 𝜇𝑁−1
∗ , 𝑝(𝑡 + (𝑁 − 1)∆𝜏))

𝐶(𝑥𝑁−1
∗ , 𝑢𝑁−1

∗ , 𝑝(𝑡 + (𝑁 − 1)∆𝜏)) ]
 
 
 
 
 
 

 (23) 

 

So, Equation (23) should be solved for 𝑈. The problem is 

that 𝐹 is nonlinear function and this equation cannot be solved 

easily in general.  C/GMRES method is used to solve this 

problem. The continuation method is simply instead of 

solving  𝐹(𝑈(𝑡), 𝑥(𝑡), 𝑡) = 0  , it selects  𝑈(0)  such that 

𝐹(𝑈(0), 𝑥(0), 𝑡) = 0 and then find 𝑈 so that [1]: 
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�̇�(𝑈(𝑡), 𝑥(𝑡), 𝑡) =  −𝜉 𝐹(𝑈(𝑡), 𝑥(𝑡), 𝑡), 𝜉 >  0 (24) 

 

where �̇� is the derivative of  𝐹 with respect to time and the 

right-hand side is actually added to stabilize 𝐹 = 0 . If 

Equation (24) is satisfied, regardless of where 𝐹  is started 

which can be nonzero, it will converge to zero because this is 

the dynamics of the stable linear system. The derivative of 𝐹 

with respect to time can be computed using partial derivative 

with respect to 𝑥 and 𝑈 as: 

 

𝐹𝑥�̇� + 𝐹𝑈�̇� + 𝐹𝑡 = −𝜉 𝐹(𝑈, 𝑥, 𝑡) (25) 

 

Equation (25) has a very interesting property which is its 

linearity in �̇�. Rewrite Equation (25) as: 

 

�̇� =  𝐹𝑈
−1(−𝜉 𝐹 − 𝐹𝑥�̇� − 𝐹𝑡) (26) 

 

Given the current states 𝑥, the current value of vector 𝑈 and 

the vector field of the system 𝑓(𝑥, 𝑢, 𝑝) or in other words �̇�,  

everything can be computed except �̇�. Since Equation (26) is 

linear in �̇�, a linear solver to compute �̇� is needed. Once �̇� is 

computed 𝑈(𝑡), update can be done to compute the new 𝑈 and 

in turn, compute the control signal. 

Unfortunately, Equation (26) still needs high computational 

operations represented in Jacobians 𝐹𝑈, 𝐹𝑥 and 𝐹𝑡 in addition 

to linear equation accompanied with 𝐹𝑈
−1 . To reduce these 

computational loads, two main devices are employed. First the 

forward difference approximation for products of Jacobians 

and vectors, and second the GMRES method for the linear 

equation. The approximation for the products of the Jacobian 

and some 𝑊 ∈ 𝑅𝑚𝑁, 𝑤 ∈ 𝑅𝑛and 𝜔 ∈ 𝑅 as: 

 

𝐹𝑈(𝑈, 𝑥, 𝑡)𝑊 + 𝐹𝑥(𝑈, 𝑥, 𝑡)𝑤 + 𝐹𝑡(𝑈, 𝑥, 𝑡) ≃

𝐷ℎ𝐹(𝑈, 𝑥, 𝑡:𝑊,𝑤, 𝜔) =
𝐹(𝑈+ℎ𝑑𝑖𝑟𝑊,𝑥+ℎ𝑑𝑖𝑟𝑤,𝑡+ℎ𝜔)−𝐹(𝑈,𝑥,𝑡)

ℎ𝑑𝑖𝑟
 (27) 

 

where ℎ𝑑𝑖𝑟 is a positive real number. So, Equation (25) can be 

approximated using forward difference approximation method 

as [1,4]: 

 

𝐷ℎ𝐹(𝑈, 𝑥, 𝑡: �̇�, �̇�, 1) = −𝜉 𝐹(𝑈, 𝑥, 𝑡) (28) 

 

which can be written in an equivalent form as: 

𝐷ℎ𝐹(𝑈, 𝑥 + ℎ�̇�, 𝑡 + ℎ: �̇�, 0,0) = 𝑏(𝑈, 𝑥, �̇�, 𝑡) (29) 

 

where 

𝑏(𝑈, 𝑥, �̇�, 𝑡) == −𝜉 𝐹(𝑈, 𝑥, 𝑡) − 𝐷ℎ𝐹(𝑈, 𝑥, 𝑡: 0, �̇�, 1) (30) 

 

It is clear that the forward difference approximation of the 

products of the Jacobians and vectors can be estimated with 

only an additional calculation of the function, which needs 

particularly less computational load than approximation of the 

Jacobians themselves.  

As Equation (29) approximates a linear equation in �̇� , a 

linear solver algorithm GMRES is applied with slight 

modification to include a certain initial guess of  �̂̇� [1]. The 

algorithm is employed with applying forward difference 

approximation so it is called FDGMRES [2] as follows: 

 

Algorithm 1. �̇� ∶= FDGMRES (𝑈, 𝑥, �̇�, 𝑡, �̂̇�, ℎ, 𝑘𝑚𝑎𝑥)  

(1) �̂�  ≔ 𝑏(𝑈, 𝑥, �̇�, 𝑡) − 𝐷ℎ𝐹(𝑈, 𝑥 + ℎ�̇�, 𝑡 + ℎ: �̇�, 0,0), 

𝑣1 ≔ �̂� ‖�̂�‖⁄ , 

        𝜌 ≔ ‖�̂�‖, 

        𝛽 ∶= 𝜌, 
        𝑘 ∶= 0. 

(2) While 𝑘 < 𝑘𝑚𝑎𝑥 , do 
a. 𝑘 = 𝑘 + 1 

b. 𝑣𝑘+1 ∶= 𝐷ℎ𝐹(𝑈, 𝑥 + ℎ�̇�, 𝑡 + ℎ: 𝑣𝑘, 0,0) 
c. For 𝑗 = 1: 𝑘   ℎ𝑗𝑘 ∶= 𝑣𝑘+1

𝑇 𝑣𝑗 

d. 𝑣𝑘+1 ∶= 𝑣𝑘+1 − ℎ𝑗𝑘𝑣𝑗 

e. ℎ𝑘+1,𝑘 ∶= ‖𝑣𝑘+1‖ 
f. 𝑣𝑘+1 ∶= 𝑣𝑘+1/‖𝑣𝑘+1‖ 
g. For 𝑒1 = [1 0 . . .  0]

𝑇 ∈ ℝ𝑘+1 𝑎𝑛𝑑 𝐻𝑘 = (ℎ𝑖𝑗)  ∈

ℝ(𝑘+1)×𝑘 
(ℎ𝑖𝑗 = 0 𝑓𝑜𝑟 𝑖 > 𝑗 + 1),  

Minimize ‖𝛽𝑒1 − 𝐻𝑘𝑦
𝑘‖ 

Determine 𝑦𝑘 ∈ ℝ𝑘 𝜌 ≔ ‖𝛽𝑒1 −𝐻𝑘𝑦
𝑘‖. 

(3) �̇� ∶=  �̂̇� + 𝑉𝑘𝑦
𝑘  where 𝑉𝑘 = [𝑣1… 𝑣𝑘] ∈ ℝ

𝑚𝑁×𝑘 
 

For a linear equation 𝐴𝑥 =  𝑏 with a nonsymmetric matrix 

A, the GMRES algorithm minimizes the residual 𝜌 ≔
‖𝑏 − 𝐴𝑥‖ at the kth  iteration with 𝑥 ∈ 𝑥0 +𝒦𝑘 , where 𝑥0 

vector is the initial guess and 𝒦𝑘 denotes the Krylov subspace 

expressed by 𝒦𝑘 ≔ span {𝑟0, 𝐴𝑟0, … , 𝐴
𝑘−1𝑟0}  and 𝑟0 ≔ 𝑏 −

𝐴𝑥0 . GMRES creates an orthonormal basis {𝑣𝑗}𝑗=1
𝑘  for 𝒦𝑘 . 

Givens rotations is used for efficient minimization in step 2e 

shown in algorithm steps. Theoretically, GMRES has the 

ability to reduce the residual 𝜌  for a large linear equation 

monotonically and converges rapidly to an accurate solution 

with specified error tolerance within number of iterations 

equal to the dimension of the equation as maximum [1].  

The product of the Jacobian matrix and a vector, 

𝐹𝑈(𝑈, 𝑥, 𝑡)𝑣𝑗  in FDGMRES algorithm is computed using 

forward difference approximation, 𝐷ℎ𝐹(𝑈, 𝑥 + ℎ�̇�, 𝑡 +
ℎ: 𝑣𝑘, 0,0). Since the orthonormal basis {𝑣𝑗}𝑗=1

𝑘 , 𝑘 vectors in 

ℝ𝑚𝑁, must be saved during the implementation of FDGMRES, 

a massive amount of data storage may be required for a large-

scale problem. Additionally, several iterations may need larger 

execution time which cannot be available in a real-time 

implementation. Therefore, the maximum number of iterations 

𝑘𝑚𝑎𝑥 should be carefully selected as small as possible to avoid 

excessive processing. Fortunately, both warm start at which 

the solution �̇�  at the previous sampling time is used as a 

consecutive initial guess for FDGMRES and selection of a 

small 𝑘𝑚𝑎𝑥 often guarantee an accurate performance in a real-

time application. On the other hand, in case of the need for a 

large number of iterations 𝑘𝑚𝑎𝑥 while a limited amount of data 

storage is available, restart FDGMRES from the current iterate 

can efficiently handle this case. In restart technique, the 

orthonormal basis is reset with the latest obtained basis.  

Once �̇�  is computed using FDGMRES algorithm, the 

update of the solution curve 𝑈(𝑡) of 𝐹(𝑈, 𝑥, 𝑡) = 0 is traced 

simply without iterative optimization methods by integrating 

this �̇� with the Euler method in real time [6]. This approach is 

typical continuation method. Although the computational load 

of updating 𝑈(𝑡)  for the explicit Euler technique related to 

only one iteration in Newton’s method, it realizes higher 

accuracy by taking the time dependence of the equation into 

account [4]. As the continuation method is combined with 

GMRES, this algorithm is named C /GMRES. The Ohtsuka’s 

suggestion of warm start in [1] which considers the solution 

for �̇� in previous sampling time as the initial guess for current 

timestep's first inner iteration is used in this paper. The vector 

 �̇� in FDGMRES algorithm is computed through vector field 
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equations  𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑝(𝑡))  or approximated by finite 

difference in practical implementation as: 

 

�̇�(𝑡) ≈ (𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡))/∆𝑡 (31) 

 

For designed sampling period ∆𝑡 and using the suffix (𝑙) to 

express different variables at time 𝑙∆𝑡 , the C/GMRES 

algorithm for receding horizon control can be concluded as 

follows [1]. 

 

Algorithm 2. C /GMRES 

(1) Initialization    
𝑡 ∶= 0, 
 𝑙 ≔ 0, 
Measure the initial state and set 𝑥(0) ≔ 𝑥(0)  

find  𝑈(0)  analytically such that ‖𝐹(𝑈(0), 𝑥(0), 0)‖ ≤ 𝛿  for 

some positive  𝛿 
(2) For  𝑡̀ ∈ [𝑡, 𝑡 + ∆𝑡], set 𝑈(𝑡̀) ≔ 𝑃0(𝑈(𝑙)). 

(3) At time 𝑡 + ∆𝑡, 
set the state  𝑥(𝑙+1) ≔ 𝑥(𝑡 + ∆𝑡)  

 set  ∆𝑥(𝑙) ≔ 𝑥(𝑙+1) − 𝑥(𝑙) . 

(4) compute  �̇�(𝑙) ≔  FDGMRES  (𝑈(𝑙), 𝑥(𝑙), ∆𝑥(𝑙)/

∆𝑡, 𝑡, �̂̇�(𝑙), ℎ, 𝑘𝑚𝑎𝑥)  where the initial guess of  �̂̇�(𝑙)  is 

appropriately chosen; e.g., �̂̇�(𝑙) ≔ 0  or   �̂̇�(𝑙) ≔ �̇�(𝑙−1) with 

 �̂̇�(−1) ≔ 0. 

(5) Set ∆𝑈(𝑙) ≔ �̇�(𝑙)∆𝑡   

(6) Set  𝑈(𝑙+1) ≔ 𝑈(𝑙) + ∆𝑈(𝑙). 

(7) Update  
 𝑡 ∶= 𝑡 + ∆𝑡  
 𝑙 ≔ 𝑙 + 1 
Go back to step 2. 

 

It is clear from the C/GMRES algorithm that the usage of 

this iterative methodology is limited only in solving the linear 

Equation (26) with respect to �̇�. Then using this solution, the 

solution of the original nonlinear equation, 𝐹(𝑈, 𝑥, 𝑡) = 0, is 

traced easily with no line search or further Newton iteration. It 

means that the C/GMRES solves the linear Equation (26) only 

once per sampling time and, consequently, needs much less 

computational load than other standard iterative methods such 

as Newton’s method which needs to solve the linear equation 

many times to find search directions. Additionally, the 

C/GMRES algorithm doesn’t need line search, which is also a 

major difference from other regular optimization methods. 
A simple way of initializing 𝑈(0)  is to select a time-

dependent horizon, 𝑇(𝑡) , as a smooth function satisfying 

(𝑇(0) = 0) and (𝑇(𝑡) → 𝑇𝑓) at ( 𝑡 = ∞) as [1]: 

 

𝑇(𝑡) = 𝑇𝑓(1 − 𝑒
−𝜶𝑡) (32) 

 

where 𝑇𝑓 and 𝜶  are positive numbers. Since the horizon has a 

zero length at ( 𝑡 = 0) , this leads to the following initial 

optimal parameters: 

 
𝑢𝑖
∗(0) = 𝑢(0)        (𝑖 = 0:𝑁 − 1)

𝜇𝑖
∗(0) = 𝜇(0)        (𝑖 = 0:𝑁 − 1)

𝑥𝑖
∗(0) = 𝑥(0)                (𝑖 = 0:𝑁)

𝜆𝑖
∗(0) = 𝜑𝑥

𝑇(𝑥(0))        (𝑖 = 0:𝑁)

 (33) 

 

The 𝑈(0) initialization reduces to finding only 𝑚𝑢   + 𝑚𝑐 

unknown quantities, 𝑢(0) and 𝜇(0), such that [1]: 

‖[
ℋ𝑢

𝑇(𝑥(0), 𝜑𝑥
𝑇(𝑥(0)), 𝑢(0), 𝜇(0), 𝑝(0))

𝐶(𝑥(0)), 𝑢(0), 𝑝(0))
]‖ ≤

𝛿

√𝑁
 (34) 

 

where 𝛿 is a positive number. Equation (34) has a much-

reduced size than the original Equation (23) and can be solved 

with Newton’s method off line or within the sampling period 

directly after initial state 𝑥(0) has been estimated.  The error 

in optimality, ‖𝐹‖, is guaranteed to be limited under several 

assumptions if the parameter 𝜉  is selected such that (0 <
𝜉∆𝑡 ≤ 𝜉̅∆𝑡) for assumed sampling period ∆𝑡 and some 𝜉̅ such 

that (1 < 𝜉̅∆𝑡 ≤ 2) [1]. 

Even if the problem of real-time optimization becomes a 

realistic option in implementing NMPC, another vital problem 

for practical application remains how to properly tune an 

NMPC performance index. Since it is problematic to have an 

explicit solution for a nonlinear optimal control problem, it is 

really difficult to relate the closed-loop response clearly to 

design parameters setting in a performance index such as 

weighting matrices and horizon length. Thus, tuning the 

performance index to realize a desired closed-loop 

performance is very effortful, not systematic and is considered 

as one of the major drawbacks of this approach.  

An extensive search involving performance impact of 

numerous trials and modification of the free parameters is an 

alternative solution to overcome this drawback. This search is 

used here by randomly select the tuned parameters and hence 

their effect on the performance of the proposed NMPC 

controller is studied. This effect is used as a guide for optimum 

parameters selection. 

 

 

4. CONTROL ORINTED MODEL 

 

In fact, the efficient control performance of the NMPC 

scheme is always obstructed by the limited model precision. 

As for the complicated satellite dynamics with time-varying 

parameters and nonlinear characteristics, the used model may 

have some errors in addition to unexpected disturbance. 

Moreover, for the optimal tracking problem, the error dynamic 

model is crucial for the robust control design. Therefore, a new 

control-oriented model based on the attitude and rate errors is 

designed in this paper. Doing that allows handling the tracking 

task as a simple regulation task.  

In this section, the main tracking problem is converted into 

a well-formulated global and simple regulation problem. The 

simple regulation problem is a more traceable problem and has 

a great potential dealing with disturbance and uncertainty. The 

attitude kinematic equation using quaternion error 

representation is described in [7] considering the inertial frame 

as a reference frame. The satellite is assumed to start GTT task 

from nadir pointing attitude and hence the orbital frame is used 

as a reference frame instead of the inertial frame for simplicity 

purposes. Thus, the attitude kinematic equation using 

quaternion error representation can be reformulated as: 

 

𝛿�̇̅� = 0.5𝜴(𝛿𝜔)𝛿�̅� (35) 

 

where 

 

𝛿𝜔 = 𝜔𝑆𝐵𝐶
𝑂𝑅𝐶 − 𝐴𝑑

𝑆𝐵𝐶𝜔𝑑
𝑂𝑅𝐶 (36) 
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𝛿�̅� = [
𝒒𝒆
𝑞4𝑒

] =  [

𝑞4𝑑 𝑞3𝑑 −𝑞2𝑑 −𝑞1𝑑
−𝑞3𝑑 𝑞4𝑑     𝑞1𝑑 −𝑞2𝑑
𝑞2𝑑
𝑞1𝑑

−𝑞1𝑑
𝑞2𝑑

    𝑞4𝑑
    𝑞3𝑑

−𝑞3𝑑
𝑞4𝑑

] [

𝑞1
𝑞2
𝑞3
𝑞4

] (37) 

 

The subscript 𝑑  represents the desired frame,  𝛀(𝛿𝜔)  is 

4 × 4 skew matrix function, the  𝛿�̅�  represents the quaternion 

error from the desired to the body frame, 𝑞𝑑 represents desired 

quaternion, 𝑞 represents the current attitude, 𝛿𝜔 is the error in 

angular rate represented in the body frame, 𝜔𝑆𝐵𝐶
𝑂𝑅𝐶 is the orbital 

referenced body angular rate in body frame, 𝜔𝑑
𝑂𝑅𝐶   is the 

orbital referenced desired angular rate in the desired frame and 

𝐴𝑑
𝑆𝐵𝐶 is the transformation matrix from desired to body frame. 

The dynamic model of an Earth-pointing satellite using 

reaction wheels (RWs) only as active actuators is given by: 

 

𝐽�̇�𝑆𝐵𝐶
𝑂𝑅𝐶 = 𝑁𝜔𝑜 +𝑁𝐺𝐺 − 𝜔𝑆𝐵𝐶

𝐸𝐼𝐶 × (𝐽𝜔𝑆𝐵𝐶
𝐸𝐼𝐶 + ℎ𝑤) − ℎ̇𝑤 (38) 

 

Using Equation (36) to express the body angular rate 𝜔𝑆𝐵𝐶
𝑂𝑅𝐶 as: 

 

𝜔𝑆𝐵𝐶
𝑂𝑅𝐶 = 𝛿𝜔 + 𝐴𝑑

𝑆𝐵𝐶𝜔𝑑
𝑂𝑅𝐶 (39) 

 

Differentiating Equation (39) to get 

 

�̇�𝐵
𝑂𝑅𝐶 = 𝛿�̇� − 𝛺(𝛿𝜔)𝐴𝑑

𝑆𝐵𝐶𝜔𝑑
𝑂𝑅𝐶 + 𝐴𝑑

𝑆𝐵𝐶�̇�𝑑
𝑂𝑅𝐶 (40) 

 

where Ω(𝛿𝜔) is 3 × 3 skew matrix. Multiplying Equation (40)   

by  𝐽 leads to 

 

𝐽�̇�𝑆𝐵𝐶
𝑂𝑅𝐶 = 𝐽𝛿�̇� − 𝐽[𝛺(𝛿𝜔)𝐴𝑑

𝑆𝐵𝐶𝜔𝑑
𝑂𝑅𝐶 − 𝐴𝑑

𝐵�̇�𝑑
𝑂𝑅𝐶] (41) 

 

Substituting 𝐽�̇�𝐵
𝑂𝑅𝐶 from Equation (41) in Equation (38) gives:  

 

𝐽𝛿�̇� = 𝑁𝜔𝑜 +𝑁𝐺𝐺 + 𝐽 [ 𝛺(𝛿𝜔) 𝐴𝑑
𝑆𝐵𝐶𝜔𝑑

𝑂𝑅𝐶 −

             𝐴𝑑
𝑆𝐵𝐶  �̇�𝑑

𝑂𝑅𝐶  ] − 𝜔𝑆𝐵𝐶
𝐸𝐼𝐶 × (𝐽𝜔𝑆𝐵𝐶

𝐸𝐼𝐶 + ℎ𝑤) − ℎ̇𝑤 (42) 

 

Generally, the terms 𝑁𝐺𝐺  and 𝑁𝜔𝑜  and  𝜔𝑆𝐵𝐶
𝐸𝐼𝐶 × (𝐽𝜔𝑆𝐵𝐶

𝐸𝐼𝐶 +
ℎ𝑤), are not significant for many practical rotation maneuvers 

[8]. The term �̇�𝑑
𝑂𝑅𝐶 can also be neglected as it is lower several 

orders of magnitude than other terms for nearly circular orbit. 

All the omitted terms can be considered as some types of 

uncertainty which can be handled effectively using such 

presented model. Robustness check in the simulation is also 

used to confirm the validity of NMPC with the presented 

model in general. Rewriting Equation (42) in more simple and 

efficient form after neglecting the smaller terms yields: 

 

𝐽𝛿�̇� = 𝐽𝛺(𝛿𝜔)𝐴𝑑
𝑆𝐵𝐶𝜔𝑑

𝑂𝑅𝐶 + 𝑢𝑤    

ℎ̇𝑤 = −𝑢𝑤 (43) 

 

where 𝑢𝑤  represents the RWs torque. Equation (35) and 

Equation (43) are the control-oriented model or in other words, 

the tracking error dynamic model used in this paper. This 

model has 10 states represented in attitude quaternion error, 

rate error, and RWs momentum. The model also includes time-

varying parameter represented in 𝐴𝑑
𝑆𝐵𝐶𝜔𝑑

𝑂𝑅𝐶 which add a little 

bit difficulty in implementation. The desired rate 𝜔𝑑
𝑂𝑅𝐶 is [8]: 

 

𝜔𝑑
𝑂𝑅𝐶 = 𝑢𝑆/𝑇

𝑂𝑅𝐶 × �̇�𝑆/𝑇
𝑂𝑅𝐶 (44) 

 

where 𝑢𝑆/𝑇
𝑂𝑅𝐶  is unit direction vector of the direction from 

satellite to the target represented in orbit frame, 𝑋𝑆/𝑇
𝑂𝑅𝐶 

computed by [8]: 

 

𝑋𝑆/𝑇
𝑂𝑅𝐶 = 𝐴𝐸𝐼𝐶

𝑂𝑅𝐶 (𝐴𝐸𝐹𝐶
𝐸𝐼𝐶 𝑋𝑇

𝐸𝐹𝐶 − 𝑟𝑠𝑎𝑡) (45) 

 

as 𝑟𝑠𝑎𝑡 is the satellite position in Earth-centered inertial frame, 

𝑋𝑇
𝐸𝐹𝐶 is the target location in Earth-centered fixed frame and 

the transformation matrix 𝐴𝐸𝐹𝐶
𝐸𝐼𝐶  from the fixed frame to the 

inertial is time-dependent matrix can be estimated considering 

constant Earth angular rate around its rotation axis, 𝜔𝐸 in the 

tracking maneuver period and knowing the initial phase , 𝛼𝐺 

between the x-axes of both EFC and EIC frames at 𝑡 = 0  as:  

 

𝐴𝐸𝐹𝐶
𝐸𝐼𝐶 = [

𝑐𝑜𝑠 (𝜔𝐸𝑡 + 𝛼𝐺) −𝑠𝑖𝑛 (𝜔𝐸𝑡 + 𝛼𝐺) 0
𝑠𝑖𝑛 (𝜔𝐸𝑡 + 𝛼𝐺) 𝑐𝑜𝑠 (𝜔𝐸𝑡 + 𝛼𝐺) 0

0 0 1

] (46) 

 

The transformation matrix 𝐴𝐸𝐼𝐶
𝑂𝑅𝐶 from the inertial frame to 

orbital frame can be deduced by using the satellite position 

𝑟𝑠𝑎𝑡 and velocity 𝑣𝑠𝑎𝑡 in the inertial frame as [8]: 

 

𝐴𝐸𝐼𝐶
𝑂𝑅𝐶 = [�̂� �̂� �̂�]𝑇 (47) 

 

where the unit vectors �̂�,  �̂� and �̂� are: 

 

�̂� =  −
𝑟𝑠𝑎𝑡

∥𝑟𝑠𝑎𝑡∥

�̂� = −
𝑟𝑠𝑎𝑡×𝑣𝑠𝑎𝑡

∥𝑟𝑠𝑎𝑡×𝑣𝑠𝑎𝑡∥

�̂� = �̂� × �̂�

} (48) 

 

The vector �̇�𝑆/𝑇
𝑂𝑅𝐶 can be calculated as following [8]: 

 

�̇�𝑆/𝑇
𝑂𝑅𝐶 =

1

∥𝑋𝑆/𝑇
𝑂𝑅𝐶∥

[𝐼3 − 𝑢𝑆/𝑇
𝑂𝑅𝐶(𝑢𝑆/𝑇

𝑂𝑅𝐶)𝑇] �̇�𝑆/𝑇
𝑂𝑅𝐶 (49) 

 

where the time derivative �̇�𝑆/𝑇
𝑂𝑅𝐶 is calculated by differentiating 

Equation (45) to get the following [8]: 

 

 

�̇�𝑆/𝑇
𝑂𝑅𝐶 = �̇�𝐸𝐼𝐶

𝑂𝑅𝐶(𝐴𝐸𝐹𝐶
𝐸𝐼𝐶  𝑋𝑇

𝐸𝐹𝐶 − 𝑟𝑠𝑎𝑡) + 𝐴𝐸𝐼𝐶
𝑂𝑅𝐶(�̇�𝐸𝐹𝐶

𝐸𝐼𝐶 𝑋𝑇
𝐸𝐹𝐶 −

𝑣𝑠𝑎𝑡)   (50) 

 

The time derivative of transformation matrices 𝐴𝐸𝐼𝐶
𝑂𝑅𝐶  and  

𝐴𝐸𝐹𝐶
𝐸𝐼𝐶  in Equation (50) are calculated as following [8]: 

 

�̇�𝐸𝐼𝐶
𝑂𝑅𝐶 = [�̂̇� �̂̇� �̂̇�]

𝑇 (51) 

 

where 

 

�̂̇� =  −
1

∥𝑟𝑠𝑎𝑡∥
(𝐼3 − �̂��̂�

𝑇)𝑣𝑠𝑎𝑡          

�̂̇� = 0                                                     

�̂̇� =
1

∥𝑟𝑠𝑎𝑡∥
�̂� × [(𝐼3 − �̂��̂�

𝑇)𝑣𝑠𝑎𝑡] }
 

 

 (52) 

 

 

�̇�𝐸𝐹𝐶
𝐸𝐼𝐶 = 𝜔𝐸 [

−𝑠𝑖𝑛 (𝜔𝐸𝑡 + 𝛼𝐺) −𝑐𝑜𝑠 (𝜔𝐸𝑡 + 𝛼𝐺) 0
𝑐𝑜𝑠 (𝜔𝐸𝑡 + 𝛼𝐺) −𝑠𝑖𝑛 (𝜔𝐸𝑡 + 𝛼𝐺) 0

0 0 0

] (53) 

 

The transformation matrix 𝐴𝑑
𝑆𝐵𝐶 in Equation (43) can be 

extracted easily from the quaternion error 𝛿�̅�  given in 
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Equation (37). The desired quaternion 𝑞𝑑 can be estimated as 

following [8]: 

 

𝑞𝑑 = [
𝑢𝑐𝑠𝑖𝑛

𝛿

2

𝑐𝑜𝑠
𝛿

2

] (54) 

 

where 𝛿 is the angle between the time-dependent vector 𝑢𝑆/𝑇
𝑂𝑅𝐶 

and commissioned axis or payload axis represented in body 

frame 𝑢𝑐𝑜𝑚
𝑆𝐵𝐶  while 𝑢𝑐  define the axis of rotation needed for 

constructing 𝑞𝑑 given by [8]: 

 

𝑢𝑐 =
𝑢𝑐𝑜𝑚
𝑆𝐵𝐶  ×𝑢𝑆/𝑇

𝑂𝑅𝐶

∥𝑢𝑐𝑜𝑚
𝑆𝐵𝐶  ×𝑢𝑆/𝑇

𝑂𝑅𝐶∥
 (55) 

 

The tracking error can be examined by calculating 𝜃𝑒𝑟𝑟 to 

define the angle between 𝑢𝑆/𝑇
𝑆𝐵𝐶 and 𝑢𝑆/𝑇

𝑂𝑅𝐶 vectors as [8]: 

 

𝜃𝑒𝑟𝑟 = 𝑐𝑜𝑠
−1(𝑢𝑆/𝑇

𝑆𝐵𝐶  ∙ 𝑢𝑆/𝑇
𝑂𝑅𝐶  ) (56) 

 

where the unit vector 𝑢𝑆/𝑇
𝑆𝐵𝐶  defined for the current attitude 

matrix 𝐴𝑂𝑅𝐶
𝑆𝐵𝐶   as: 

 

𝑢𝑆/𝑇
𝑆𝐵𝐶 = 𝐴𝑂𝑅𝐶

𝑆𝐵𝐶 ∙ 𝑢𝑆/𝑇
𝑂𝑅𝐶 (57) 

 

 

5. IMAGE QUALITY REQUIREMENTS 

 

The image quality enhancement is directly linked to 

accurate and low distortion images. To obtain low distortion 

images during tracking mode, the shooting conditions should 

guarantee stability requirements. Moreover, to ensure accurate 

shooting of definitely targeted area, minimum permissible 

geo-location error should be kept. For a given GSD (i.e. one 

pixel) capability of a certain payload its corresponding angular 

distance 𝜃𝑝𝑖𝑥𝑒𝑙 should be obtained as [9,10].  

 

𝜃𝑝𝑖𝑥𝑒𝑙 = 𝑡𝑎𝑛
−1(

𝐺𝑆𝐷

ℎ
) (58) 

 

where ℎ is orbit altitude. The exposure time 𝑡𝑒𝑥𝑝 of a single 

pixel (or a single row of pixels) is a function of the effective 

ground speed 𝑣𝑔𝑒𝑓𝑓  as follows [9]: 

 

𝑡𝑒𝑥𝑝 =
𝐺𝑆𝐷

𝑣𝑔𝑒𝑓𝑓
 (59) 

 

𝑣𝑔𝑒𝑓𝑓 =
𝑣𝑔

𝑛𝑓𝑚𝑐
 (60) 

 

as 𝑛𝑓𝑚𝑐  is the forward motion compensation (FMC) factor; 

reducing the effective ground speed of the image sensor 

boresight, 𝑣𝑔 is the satellite ground speed defined,  𝜇𝐸 is the 

Earth gravitational constant and 𝑅𝐸 is the Earth radius. 

The permissible safe variation in angular rate around the 

image sensor’s boresight, 𝜔𝑠𝑧 , during shooting can be 

determined [9]: 

 

𝜔𝑠𝑧 ≈ 
𝑡𝑎𝑛−1(

𝑚𝑎𝑥_𝑠𝑚𝑒𝑎𝑟×𝐺𝑆𝐷

0.5×𝐿𝑠𝑤𝑎𝑡ℎ
)

𝑡𝑒𝑥𝑝
 (61) 

 

where 𝐿𝑠𝑤𝑎𝑡ℎ is the image swath width while 𝑚𝑎𝑥_𝑠𝑚𝑒𝑎𝑟 is 

the maximum pixel smear in percentage. The permissible safe 

variation in angular rate across the image sensor’s 

boresight, 𝜔𝑠𝑥𝑦, can similarly be computed via [9]: 

 

𝜔𝑠𝑥𝑦 ≈
𝑚𝑎𝑥_𝑠𝑚𝑒𝑎𝑟 ×𝐺𝑆𝐷

𝑡𝑒𝑥𝑝
 (62) 

 

The stability requirement is selected to be the minimum of 

the calculated angular rate variation around the image sensor’s 

boresight, 𝜔𝑠𝑧, and the calculated angular rate variation across 

the image sensor’s boresight,  𝜔𝑠𝑥𝑦 .On the other hand, the 

payload integration time during which data is collected by the 

image sensor is another issue that directly affects the image 

quality. The higher the integration time, the more data can be 

acquired and consequently the more enhancement in the image 

quality. 

 

 

6. CASE STUDY 

 

In order to evaluate the performance of using algorithm 

C/GMRES in solving a ground target tracking problem, the 

configuration UoSAT-12 satellite with higher RWs 

capabilities is used in the simulation. The inertia matrix 𝐽 of 

the satellite in 𝑘𝑔𝑚2 is  𝑑𝑖𝑎𝑔(40,40,32). 
 

Table 1.  Controller and simulation parameters 

 

Setting parameters 

Symbol Description Setting 

𝑑𝑖𝑚𝑥 Dimension of state vector 10 

𝑢 Number of real input (actuators) 3 

𝑑𝑖𝑚𝑐 Number of constraints 6 

𝑑𝑖𝑚𝑢 Dimension of control input vector 15 

𝑑𝑖𝑚𝑝 Dimension of Time-Variant Parameters 3 

𝑇𝑓 final horizon length (sec.) 10 

𝜶 For defining variable prediction horizon 0.8 

𝜉 For Stabilization of Continuation Method 5 

ℎ𝑑𝑖𝑟 Step in forward difference approximation 0.0001 

𝑟𝑡𝑜𝑙 Error tolerance in control input vector 1e-06 

𝑘𝑚𝑎𝑥 Number of iteration in GMRES 60 

𝑑𝑣 Number of grids on the horizon 10 

𝑟1 𝑡𝑜 𝑟6 For keeping boundary limit of feasible set 0.0028 

𝑡𝑠𝑖𝑚 Simulation time (sec.) 800 

ℎ𝑡 Simulation step (sec.) 0.2 

𝑑𝑠𝑡𝑒𝑝 time step for saving data (sec.) 5 

Weighting matrices and initial input vector 

Symbol Description and setting 

𝑈(0) Initial guess for initial control input vector 

0.0001 ∗ 𝑑𝑖𝑎𝑔(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 
𝑆𝑓 Weighting values for terminal state 

103 ∗ 𝑑𝑖𝑎𝑔(1,1,1,1,1,1,1,0.00001,0.00001,0.00001) 
𝑄 Weighting values for trajectory impact 

𝑑𝑖𝑎𝑔(50,50,50,50,50,50,50,0.01,0.01,0.01) 
𝑅 Weighting values for control input 

𝑑𝑖𝑎𝑔(77,77,77,0.01,0.01,0.01,0.01,0.01,0.01,0.01) 
 

 

Three reaction wheels installed in a three-axis configuration 

to allow full control of the satellite attitude orientation with 

maximum torque ±0.2 𝑁𝑚  and momentum capacity 

±6 𝑁𝑚𝑠𝑒𝑐. The working orbit is almost circular with altitude 

650 𝑘𝑚 ,  inclination angle 64.5 𝑑𝑒𝑔 , right ascension of 

ascending node 10 𝑑𝑒𝑔 , initial mean anomaly 0 𝑑𝑒𝑔  and 

initial mean phase 0 𝑑𝑒𝑔. The tracked fixed ground-target in 

EFC frame is [4021.9 −35.1 4933.6]𝑇 .  The satellite 
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commissioned axis is [1 −1 9]𝑇 and the satellite attitude 

is assumed initially aligned with orbit frame.  

During simulation perfect attitude knowledge and 

measurements of the vectors 𝑟𝑠𝑎𝑡  and 𝑣𝑠𝑎𝑡  are assumed. The 

developed code of C/GMRES method is outputted as an 

ANSI/C standard source code for simulation purposes in this 

paper. In Table  1 a list of all the controller variable and 

simulation parameters used during simulation for GTT task. 

Since the clear desired states for reformulated regulation 

problem represented in the attitude quaternion and angular rate, 

it is planned to lightly punish the deviation between the desired 

zero angular momentum and realized momentum during 

optimum solution searching. 

Actually, the restrict requirements concern the trajectory of 

angular momentum change is considered in the limits put on 

the input vector real elements (the first three elements in the 

input vector). All parameters which have no real physical 

limits are allowed to be changed freely that is why their 

corresponding weighting values are relatively too low.  

UoSAT -12 conveys two redundant 32 𝑚 ground sampling 

distance (GSD) multi-spectral cameras to provide 64 𝐾𝑚 

wide swath width [11]. Furthermore, UoSAT-12 also carries a 

high-resolution narrow-angle panchromatic camera with 10 𝑚 

GSD and 10 𝐾𝑚 swath [11]. The stability requirement during 

imaging to obtain acceptable image quality with relaxed 

maximum pixel smear in percentage 17%  as explained in 

section (5) is computed and found to be better than 

0.1 𝑑𝑒𝑔/𝑠𝑒𝑐.  It can be realized from Figure 1 and Figure 2 

that the satellite needs only (≈ 200 sec) to be kept in a stable 

tracking mode with a very small tracking error defined in 

Equation (56), 𝜃𝑒𝑟𝑟 ≈ 0.0045 𝑑𝑒𝑔.  

The supreme advantage here is that the proposed controller 

succeeded to maintain this precise tracking error during the 

overpass flight simulation time. Normally this accuracy is 

deteriorated whenever the satellite position becomes closer to 

the target. The resultant bell-shaped figure with maximum 

satellite angular slew rate at a closer position to the target 

violate the stability conditions needed for shooting with 

accepted image quality. The proposed tracking controller here 

can react as fast as the kinematic of the target. Keeping the 

tracking error within this precise limit during the overpass 

flight of the target allows shooting this target at any time. 

Hence, an additional shooting mode covering stereo triplets 

imaging and video surveillance can be carried out. 

 

 
 

Figure 1. Tracking error 

 
 

Figure 2. Tracking error zoom in 

 

The Euler angles representing the satellite attitude change 

related to the desired frame is shown in Figure 3. The initial 

attitude mismatch is diminished fast.  

 

 
 

Figure 3. Current attitude in Euler angles 

 

The angular rate error of the satellite body is shown in 

Figure 4 during the tracking control. It is seen that the that the 

orbit-referenced angular velocity of the satellite body 𝜔𝐵
𝑂𝑅𝐶  

follows the desired angular rate command 𝜔𝑑
𝑂𝑅𝐶  without a 

noticeable error during the tracking period.  

The stability requirement (better than 0.1 𝑑𝑒𝑔/𝑠𝑒𝑐) during 

imaging to obtain acceptable image quality is initially 

guaranteed after only 57 𝑠𝑒𝑐  as cleared from Figure 5. 

Fortunately, this stability guarantee is kept through over the 

target overpass flight simulation time.  From  Figure 2 and 

Figure 5,  the shooting conditions with minimum geo-location 

error is guaranteed after 200 𝑠𝑒𝑐 of starting tracking process 

with tracking error 0.0045 deg. 

 

 
 

Figure 4. Satellite angular rate error 
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Figure 5. Current angular rate 

 

The geo-location error due to this error will be 0.05 𝑘𝑚.  

Therefore, the high-resolution narrow-angle panchromatic 

camera which offers 10 𝑘𝑚 swath (i.e. image size 10 × 10) 

can be used efficiently while tracking with the proposed 

intelligent tracking controller. The steady-state quaternion 

error 𝑞𝑒 = [0 0 0 1]
𝑇 represented in Figure 6 means that body 

attitude is totally aligned with the desired attitude.  

 

 
 

Figure 6. Quaternion error 

 

Since the UoSAT-12 satellite is equipped with body-fixed 

imager, aligning the body attitude with the desired attitude 

means that this imager (payload) pointing at the target.  

The activity of the three-axis RWs is shown in Figure 7  and 

Figure 8. Figure 7 confirms that the torques of the three-axis 

RWs are generally far from saturation limits (0.2 𝑁𝑚) during 

the duration needed for tracking the ground target. A wheel 

torque transient, in general, happens at the beginning of the 

tracking maneuver due to initial attitude error between the 

satellite payload axis and the desired target direction. The max 

torque provided by the RW of Y-axis and it is almost 

( 0.19 𝑁𝑚 ) with very limited duration time. Once the 

controller starts to respond to the desired command, this 

attitude error starts to be reduced and hence the torques needed 

from RWs are decreased. 

The angular momentums of the three-axis RWs in Figure 8 

are far from angular momentum capacity  ℎ𝑤_𝑚𝑎𝑥 

( 6.0 𝑁𝑚 𝑠𝑒𝑐 ) during tracking task with the proposed 

controller. This safe working momentum region allows the 

RWs to further compensate for any disturbance easily and 

increase the robustness of the system as whole. It is also 

noticed that for this specific target and selected commissioned 

axis the effort needed from RW of Z-axis is minor however 
the other RWs provide the main effort for carrying out the 

required tracking maneuver. Since the disturbance is not 

considered during simulation, it is logic to note that the angular 

momentums of the RWs are kept unchangeable after achieving 

the tracking task. 

 
 

Figure 7. Wheel torque 

 

 
 

Figure 8. Wheel momenta 

 

 
 

Figure 9. Robustness check against uncertainty in MOI 

 

Because of the feedback nature of the proposed C/GMRES 

controller, the robustness of this controller against model 

uncertainties is guaranteed. Simulations were also done to 

examine the robust performance of the proposed tracking 

controller against a ±20% error in the moment of inertia of the 

satellite. These simulations demonstrate that the precise 

tracking error can still be preserved to designed values ± 0.003 

degree as shown in Figure 9. However, in practice, the TE will 

ultimately be impacted by the attitude determination accuracy 

as well as the orbital measurements of the position and 

velocity vectors from the GPS receiver which have been not 

considered in this study. 

 

 

7. CONCLUSION 

 

In this paper, a feasible solution to enhance the UoSAT-12 

satellite shooting capabilities in GTT task is proposed. 

Employing the C/GMRES, as fast RTO methods of NMPC 

approach, along with a proposed control-oriented model, that 

converts the main tracking problem into a well-formulated 

simple regulation problem, is presented in details.  The 
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simulation results show that proposed algorithm succeeds to 

track a fixed-ground target robustly through a large angle 

maneuver with a precise tracking error of 0.0045 𝑑𝑒𝑔, while 

maintaining the stability requirements within 0.1 𝑑𝑒𝑔/𝑠𝑒𝑐 

throughout the overpass flight. Therefore, the shooting mode 

capabilities are significantly enhanced.  
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