
  

 

  

Energy formulation for flexural – torsional buckling of thin-walled column with open cross- section 
 

Charles Chinwuba Ike 

 

Department of Civil Engineering, Enugu State University of Science and Technology, Enugu 400001, Nigeria 

 

Corresponding Author Email: ikecc2007@yahoo.com 

 

https://doi.org/10.18280/mmep.050202 

  

ABSTRACT 

   

Received: 7 April 2018 

Accepted: 4 June 2018 

 In this work, the problem of flexural – torsional buckling analysis of thin-walled column 

with open cross-section has been formulated using energy methods. Thin-walled column 

with open cross-section of arbitrary slope was considered. The deformation taking place 

during elastic buckling was assumed to consist of a combination of twisting and bending 

about two axes of the cross-section. The total potential energy functional was derived as the 

sum of the strain energy and the potential energy of the loads. Euler – Lagrange differential 

equations were used to obtain the differential equations corresponding to the conditions for 

the minimization of the total potential energy functional. It was found that the integral 

formulation reduced to a boundary value problem represented by a system of three coupled 

differential equations in terms of three unknowns which were the three displacement 

variables, two translational displacements u(z), v(z) and one rotational displacement θ(z). 
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1. INTRODUCTION 

 

Thin-walled columns with open cross-sectional shapes such 

as , , ,  and  are frequently used in a variety of 

structures (such as buildings, bridges, aerospace, aeronautical 

and marine structures); and can be made with isotropic or 

anisotropic materials. The sections are called cruciform, ( ), 

tee ( ), angle ( ), cee ( ) and I ( ). The sections can be 

singly-symmetric, doubly-symmetric or unsymmetric. Such 

thin-walled columns with open cross-sections have low 

torsional stiffness, and hence are prone to torsional buckling 

and instabilities [1–5]. 

 

 
 

Figure 1. Flexural – torsional buckling mode of a  

shaped thin-walled column 

 

Thin-walled columns with open cross-sections can fail 

under compressive loads by buckling in the following modes: 

flexural (Euler) buckling about one of the principal axes, 

torsional buckling about the shear centre, or a combination of 

both flexural and torsional buckling called flexural–torsional 

buckling shown in Figure 1. Flexural (Euler) buckling shown 

in Figure 2 is the primary type of buckling where the column 

becomes unstable due to deflection about the axis with 

smallest radius of gyration (i.e. largest slenderness ratio) [5]. 

Torsional buckling shown in Figure 3 involves twisting of 

the cross-section. In such cases, the elastic critical buckling 

stress depends partly on the Saint Venant torsional rigidity and 

on the warping rigidity [4]. Torsional buckling can only 

properly take place when the shear centre and the geometrical 

centroid of the cross-section coincide, i.e. in symmetrical 

cross-sections. 

 

 
 

Figure 2. Flexural (Euler) buckling mode 

 

The modes of buckling failure do not always occur 

independently, and interaction of the buckling modes can 

occur. Flexural and torsional displacements of the thin walled 

column take place simultaneously when the shear centre and 

the geometrical centroid of the cross-section are not 

coincident. This results in a decrease of the critical buckling 

load in the flexural – torsional buckling problem as compared 

to the flexural (Euler) buckling load [4, 5]. Flexural–torsional 

buckling consists in failure of the axially compressed thin 
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walled column with open cross-section due to a combination 

of flexural buckling and torsional buckling as a result of 

simultaneous flexure (bending) and twisting of the cross-

section [6, 7]. This buckling mode is common in thin-walled 

columns with unsymmetrical cross-sections, including those 

with one-axis of symmetry such as channels, structural tees, 

double angles and those without any axis of symmetry and 

unequal legs single angle sections. 

 

 
 

Figure 3. Torsional buckling mode of a + shaped thin-walled 

column 

 

The flexural – torsional buckling problems of thin walled 

columns have been studied by Alsayad [8], Timoshenko and 

Gere [9], Chajes [10], Wang et al [11], and Athen and Bulson 

[12] and used in the formulation and development of design 

criteria for design in structural steel [13]. Ike et al [14] have 

used the Galerkin variational method to find the buckling loads 

and buckling modal shapes of thin walled columns with open 

cross-sections. 

Mama et al [15] have used the finite Fourier sine transform 

method to solve the flexural –torsional buckling problem of 

thin-walled columns with open cross-sections. Onah et al [16] 

used the Fourier series method to solve the flexural-torsional 

problem of thin-walled columns with open cross-sections. 

Other researchers who have worked on torsion are Det [17] 

and Trahair [18]. 

The energy method was adopted in this study because it is a 

versatile mathematical and numerical tool for the formulation 

and solution of many problems in structures. It offers an 

alternative way of formulation of boundary value problems, by 

representing them as integral statements. It is also a basis for 

the approximate solutions of problems of elasticity and 

stability. It can also be used to obtain closed form analytical 

solutions to structural problems. The academic value of the 

present study is to derive from first principles considerations 

the governing equations for the linear elastic buckling problem 

of thin walled column with open cross-sections, and then to 

use a Ritz direct variational method to obtain expressions for 

the buckling loads and buckling moles. 

 

1.1 Research aim and objectives 

 

The general aim of this work is to use the energy method to 

formulate the problem of flexural – torsional buckling of thin-

walled columns with open cross-sections. The specific 

objectives are: 

(i) to determine the total potential energy functional  

of a thin-walled column with open cross-section 

undergoing flexural-torsional buckling. 

(ii) to use the Euler – Lagrange differential equations to 

find the conditions for the minimization of the total 

potential energy of the system. 

(iii) to obtain the differential equation for the flexural-

torsional buckling analysis of thin-walled columns 

with open cross-sections. 

(iv) to obtain elastic buckling solutions using energy 

formulation for thin-walled columns  with open 

cross-sections for the case of hinged ends z = 0, and 

z = l for (a) doubly-symmetric cross-sectional shapes, 

(b) singly-symmetric cross-sectional shapes, and (c) 

asymmetric cross-sections. 

 

 

2. THEORETICAL FRAMEWORK 

 

Assumptions of the formulation. 

The energy formulation is based on the following 

assumptions: 

(i) the thin-walled column considered undergoes 

flexural deformation about the two axes of the open 

cross-section. The shear centre of the open cross-

section and the other points on the open cross-section 

undergo translational displacements denoted by u and 

v, respectively, about the x and y axes of the cross-

section. 

(ii) the column considered undergoes twisting 

deformation. The open cross-section has a rotational 

displacement about the shear centre, which produces 

additional translational displacement components 

denoted by u1and v1 respectively, about the x and y 

axes of the cross-section. 

 

 

3. METHODOLOGY 

 

3.1 Total potential energy functional  

 

The total potential energy functional  for the thin-walled 

column with open cross-section under flexural-torsional 

buckling is the sum of the strain energy functional U and the 

potential energy due to the external compressive  load Ve. 

 

eU V = +                                          (1) 

 

The shear centre of the cross-section is chosen as the origin. 

The x and y coordinate axes are assumed to be coincident with 

the principal axes of the open cross-section, and the z 

coordinate axis is the longitudinal axis of the thin-walled 

column through the shear centre. 

 

3.2 Strain energy functional 

 

The strain energy functional U, for the column with open 

cross-section under flexural – torsional buckling is the sum of 

four component parts: the strain energy due to bending 

deformation in the x and y coordinate directions of the open 

cross-section of the column denoted by Ubx and Uby 

respectively, the strain energy due to Saint Venant shear stress 

deformation denoted by Usv, and the strain energy of the 

longitudinal stresses due to warping torsion denoted by Uwt. 

For the column with open cross-section considered, the 

longitudinal axis is defined as the z coordinates axis, and the 

open cross-section is on the xy coordinate plane, the strain 

energy functional, U, is given by 
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by bx sv wtU U U U U= + + +                            (2) 
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2 2

1 1
( ( )) ( ( ))

2 2

l l

xx yy

l l

t ww

U EI v z dz EI u z dz

GI z dz EI z dz 

 = +

 + +

 

 

                        (3) 

 

where, E is the Young’s modulus of the column material 

Ixx is the principal moment of inertia about the x – axis 

Iyy is the principal moment of inertia about the y – axis 

G is the shear modulus or modulus of rigidity of the column 

material 

It is the St Venant torsion constant or the torsional moment 

of inertia 

Iww is the principal warping constant or principal warping 

moment of inertia 

u(z) is the translational displacement in the x – direction 

v(z) is the translational displacement in the y direction 

(z) is the rotational displacement 

and the primes represent differentiation with respect to the 

space coordinate variable in the longitudinal axis of the 

member, (z). 

Equation (3) is simplified to: 

 
2 2

2 2
0

( ( )) ( ( ))1

2 ( ( )) ( ( ))

l
xx yy

t ww

EI v z EI u z
U dz

GI z EI z 

  + 
=  

 + +  
             (4) 

 

3.3 Potential energy due to the external axial compressive 

loads, Ve 

 

The potential energy expression due to the external loads is 

found from the consideration of the work done by the external 

loads as the thin-walled column deforms under the axial 

compression. This is given by the work integral over the cross-

sectional area of the thin-walled column given by the double 

integral: 

 

e z

A

V P= −                (5) 

 

where A the domain of the double integral, is the cross-

sectional area of the column. 

 

e zz z

A

V dA = −               (6) 

 

where zz

P

A
 =                             (7) 

 

z is the differential between the arc length and the chord 

length of a longitudinal fibre of the thin-walled column after 

deformation due to the axial compressive load, P. 

From a consideration of an arbitrary element dz of the thin-

walled column member, we can find the elemental length ds 

of the deformed thin-walled column element using vector 

calculus/geometry as: 

 
2 2 2 1/2( )dr ds dz du dv= = + +              (8) 

where the x and y components of the displacements of the 

upper and lower ends of the thin-walled column element are 

,u v  and ,u du+  v dv+  

 

dr dui dvj dzk= + +               (9) 

 

where i, j, k are unit vectors of the three dimensional Cartesian 

coordinate system. 

Applying the dot product, 

 
22 2 2 2ds dr dr dr du dv dz= =  = + +           (10) 

or 

 
2 2 2 2ds dz du d v= + +             (11) 
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ds du dv
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            (12) 
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du d v
ds dz

dz dz
          (14) 
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du dv
ds dz

dz dz

    
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By integration, 
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= + +    

    
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2 2

0

1

2

l

z

du dv
s l dz

dz dz


    
= − = +    

    
           (20) 

 

The translational displacement components u  and v  of the 

differential longitudinal element is the sum of the translational 

displacement of the shear centre, u and v and the translational 

displacement components u1, v1 due to the rotation of the 

element about the shear centre. 

 

1 sinu r =              (21) 

 

1 cosv r =              (22) 
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1 0u y =              (23) 

 

1 0v x =              (24) 

 

where 
0sinr y =                          (25) 

 

0cosr x =              (26) 

 

Hence, 

 

1 0u u u u y = − = −             (27) 

 

1 0v v v v x = + = +             (28) 

 

Thus, 
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2

l

z

d d
dzu y v x

dz dz
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          (29) 
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Then, 

 

e xx z

A

V dA = −             (33) 
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We employ the geometrical properties of cross-sections, 

thus: 
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2 2 2
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A

x y dA i A+ =                                      (38) 

where x0 and y0 are the centroidal coordinates of the open 

cross-section of the thin-walled column, i0 is the polar radius 

of gyration of the thin-walled column cross-section with 

respect to the shear centre. 
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4. RESULTS 

 

The total energy functional is of the general integral form: 

 

( )
0

1
( ), ( ), ( ), ( ), ( ), ( )

2

l

F u z v z z u z v z z dz       =          (45) 

 

where the integrand is given by: 
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From the principle of minimization of the total potential 

energy functional, the condition for extremization 

(minimization) of the total potential energy functional given 

generally by Equation (45) is obtained from the Euler – 

Lagrange equations. 

For the first variation of the total potential energy  to 

vanish, 

 

0 =               (47) 

 

We obtain the system of Euler – Lagrange differential 

equations: 
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From Equation (46), we obtain by differentiation: 
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Thus, the Euler – Lagrange equations of flexural-torsional 

buckling problem of thin-walled columns with open cross-

sections become: 
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For prismatic cross-sections, and homogeneous thin-walled 

column materials we obtain the system of coupled differential 

equations: 
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The system of coupled differential equations in terms of the 

unknown displacement functions u(z), v(z) and (z) are called 

the Timoshenko equations for the flexural lateral – torsional 

buckling of thin walled columns. 

 

4.1 Elastic buckling solutions for simply supported thin-

walled columns 

 

For thin-walled columns simply supported at the ends z =0 

and z = l, the translational displacements in the x and y 

coordinate directions, and the bending moment about these 

axes vanish. The boundary conditions are 

 

( 0) 0u z = =              (66) 

 

( ) 0u z l= =              (67) 
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2
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( ) ( ) 0

d v
z l v z l

dz
= = = =            (73) 

 

The boundary conditions corresponding to the zero rotation 

and zero warping restraint at the hinged ends z = 0, and z = l 

are: 

 

( 0) 0z = =              (74) 

 

( ) 0z l = =              (75) 
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A suitable buckling shape function that satisfies the 

boundary conditions is the sinusoidal function. The buckling 

modal functions are thus: 

1( ) sinm
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3( ) sinm
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
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where c1m, c2m and c3m are the undetermined parameters of the 

buckling modal functions. 

The total strain energy functional is thus from Equation (3), 
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Simplifying, 
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The potential energy due to the axial compressive force P 

is: 
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The total potential energy functional of the thin-walled 

column is: 
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But 
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where 
yyEP  is the Euler (flexural) buckling load in the yy axis 

xxEP  is the Euler (flexural) buckling load in the xx direction 

and P in the torsional buckling load. 

Then, 
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where 
1 2 3( , , )m m mf c c c =            (93) 

 

It is observed that the total potential energy functional in 

this case depends upon three sets of unknown generalised 

modal displacement parameters c1m, c2m and c3m, where m = 1, 

2, 3,.... 

The total potential energy functional will assume a 

minimum or stationary value when it is made to vanish with 

respect to each of these three sets of unknown modal 

displacement parameters. Thus for, 
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We require three sets of equations: 
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In matrix form, we obtain a system of three homogeneous 

equations in c1m, c2m and c3m as follows: 
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The represents an eigenvalue eigenvector problem. For non-

trivial solutions, the characteristic buckling equation is given 

by making the determinant of the coefficient matrix to vanish. 

Thus, 
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Expanding, we have; 
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Hence, the characteristic buckling equation is given by: 
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The critical buckling load is found as the lowest buckling 

load which occurs when m = 1, and 
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where ,
cryyP  

crxxP  are the critical flexural buckling loads, and 

cr
P is the critical torsional buckling load. 

So, for the critical buckling load,  
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4.2 Case of thin-walled column with doubly-symmetric 

open cross-section 

 

For thin-walled columns with doubly-symmetric open 

cross-sections, the geometrical centre coincides with the shear 

centre, and x0 = 0, y0 = 0. 

The critical buckling equation simplifies to become: 
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The three roots are the three critical buckling loads, given 

by: 

 
2

2cr

xx

xx

EI
P P

l


= =           (110) 

 
2

2cr

yy

yy

EI
P P

l


= =           (111) 

 
2

2 2

0

1
cr

ww

t

EI
P P GI

i l


 
= = + 

 
         (112) 

 

The lowest value of P would govern the buckling behaviour 

of the thin-walled column. 
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4.3 Case of thin walled column with singly-symmetric open 

cross-section 

 

For thin-walled columns with singly-symmetric open cross-

sections, one of the centroidal coordinates will be zero since 

the shear centre will lie on one of the axes of the cross-section. 

When the y axis is the axis of symmetry, the shear centre will 

lie on the y axis, and x0 = 0, and the buckling equations 

become: 
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This yields: 
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Equation (116) is a quadratic equation in P. It has two 

buckling values corresponding to the two roots (zeros) of the 

quadratic equation. The equation represents the flexural-

torsional buckling equation. When the x axis is the only axis 

of symmetry, the shear centre will be found on the x axis, y0 = 

0, and the characteristic buckling equation becomes: 
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The buckling equations become: 
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The governing flexural-torsional buckling load is the 

smaller root of the flexural-torsional buckling equation, and is 

obtained as: 
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If the x axis is the only axis of symmetry, and  
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if the y axis is the only axis of symmetry. 

 

 

5. DISCUSSION 

 

The energy method has been successfully used in this study 

to derive the governing differential equations for the flexural 

– torsional buckling problem of thin-walled columns with 

open cross-sections. The total potential energy functional  

for the problem was derived as Equation (44) from 

fundamental considerations as the sum of the strain energy of 

bending deformation about the x and y axes of the open cross-

section, the strain energy of St Venant torsion, the strain 

energy of warping torsion and the potential energy of the 

applied compressive load. Euler – Lagrange differential 

equations, which are equivalent statements of the conditions 

for the minimization of the total potential energy functional 

were used to find the governing differential equations of 

flexural – torsional buckling of thin-walled columns with open 

cross-sections as Equations (60 – 62) for the general case of 

non prismatic cross-sections and non homogeneous materials. 

For the case of prismatic cross-sections and homogeneous 

materials, the governing differential equations were found as 

Equations (63 – 65). 

The governing equations were found to be a system of three 

coupled differential equations in terms of three unknown 

displacement functions – two translational displacements u(z), 

v(z) and a rotational displacement (z). 

Elastic buckling solutions for thin-walled columns with 

open cross-sectional shapes were obtained using the energy 

formulation for the case of hinged (simply supported) ends z = 

0 and z = l. The buckling modal functions where chosen to 

apriori satisfy the boundary conditions as Equations (78 – 80) 

which were functions of three sets of unknown generalized 

modal displacement parameters. The total potential energy 

functional was evaluated as Equation (88) and found to depend 

on the three sets of unknown generalized displacement 

parameters. The condition of minimization of the potential 

energy functional was used to generate a set of three buckling 

equations, namely Equations (98 – 100). The buckling 

equations were expressed in matrix form and found to 

represent an algebraic eigenvalue eigenvector problem. The 

characteristic buckling equation was obtained as Equation 

(102) from the requirement of vanishing of the coefficient 

matrix in the homogeneous eigenvalue problem. Expansion of 

the characteristic buckling equation yielded the characteristic 

buckling equation as Equation (104). The equation for the 

critical buckling load was found in general as Equation (108). 

The critical buckling equation was found to simplify to 

Equation (109) for cases of thin-walled columns with doubly-

symmetric open cross-sections. The buckling modes are 

uncoupled for doubly-symmetrical sections, and the buckling 

equations are similarly uncoupled. The buckling loads were 

found for doubly-symmetric sections as Equations (110 – 

112); with the lowest buckling load governing the behaviour.  

For singly-symmetric open cross-sections, the buckling 

equations were found to simplify to Equation (113) for the 

case of the y axis as the only axis of symmetry and to Equation 

(117) if the x axis is the only axis of symmetry. The buckling 

equations in this case become Equations (115) and (116) for 
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open cross-sections with y axis as the only axis of symmetry 

and Equations (119) and (120) for open cross-sections with x 

axis as the only axis of symmetry. 

 

 

6. CONCLUSION 

 

The conclusions of the study are as follows: 

(i) The energy method can be used to formulate the 

flexural – torsional buckling problem of thin-walled 

columns with open cross-sections in variational form 

as a functional to be minimized. 

(ii) The total potential energy functional for the flexural 

– torsional buckling problem of thin-walled columns 

with open cross-sections is a function of three 

unknown displacement functions and their 

derivatives, with respect to the column longitudinal z 

coordinate variable (namely u(z), v(z), (z), u(z), 

v(z) and (z)). 

(iii) The differential equations governing the flexural – 

torsional buckling of thin-walled columns with open 

cross-sections are derived from the total potential 

energy functional by the application of the Euler – 

Lagrange conditions for the extremization 

(minimization) of the total potential energy 

functional. 

(iv) The governing equations of flexural – torsional 

buckling of thin-walled columns with open cross-

sections are a system of three coupled differential 

equations in terms of the three unknown 

displacements, namely u(z), v(z) and (z) where u(z) 

and v(z) are translational displacements, and (z) is 

the rotational displacement function. 

(v) For thin-walled columns with doubly-symmetric 

open cross-sections, and with hinged (simply 

supported) conditions at the ends z = 0, and z = l, the 

system of governing differential equations are 

uncoupled. The buckling modes and buckling loads 

are similarly uncoupled. 

(vi) For thin-walled columns with open cross-sections 

that are singly-symmetric (mono-symmetric), and the 

axial compressive load is applied through the 

centroid, the buckling behaviour is described by a 

system of three homogeneous differential equations, 

two of which are uncoupled. If the thin-walled 

column in this case is hinged at both ends z = 0 and z 

= l, the solution of the one uncoupled buckling 

equation gives the expression for the critical buckling 

load in the direction of the axis of symmetry. 

(vii) For thin-walled columns with open cross-sections 

that are doubly-symmetric or point symmetric, the 

buckling equations become uncoupled. The buckling 

modes are flexural buckling about the x axis, flexural 

buckling about the y axis of the cross-sections and 

torsional buckling. Thin-walled columns with 

doubly-symmetric open cross-sections are thus not 

subject to flexural – torsional buckling. 
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