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The purpose of this paper mainly explores the vibration resonance of the biological 

enzyme system with time delay, velocity feedback, and displacement feedback, under the 

excitation of signals with different frequencies and periods. Under approximate 

conditions, the fast and slow variables were separated to obtain the analytical solution of 

the system. the approach were theoretical analysis and numerical analysis show that the 

response amplitude gain of the biological enzyme system to low-frequency signal has two 

periodical relationships with the time delay: the period of low-frequency signal and that of 

high-frequency signal. The numerical results indicated that, the response amplitude gain 

is greatly affected by the symmetry and scale of the amplitudes, displacement response 

strengths, velocity response strengths of low- and high-frequency signals. For example, 

when the nonlinear term of the system μ=0.001, the response amplitude gain Q first 

increases, then decrease, and finally rebounds, with the growth of the frequency f of low-

frequency signal; when μ=0, Q increases significantly with the growth of f, and the 

increasing rate grows proportionally; When the strength of displacement feedback u=0.08 

and that of velocity feedback v=0.01 (that is, u and v are unequal), the change scope of 

amplitude gain Q widens. The research results shed important new light on vibration 

resonance of biological enzyme systems. 
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1. INTRODUCTION

With the rapid development of modern engineering 

technology, nonlinear systems have attracted much attention 

in the academia, thanks to their application value in such fields 

as brain dynamics, laser physics, acoustics, communication, 

and system vibration [1-4]. 

As a typical nonlinear system, the van der Pol equation 𝑦̈ −
𝜇(1 − 𝑦2)𝑦̇ + 𝑦 = 0  was originally used to study the

oscillation effect of transistors in the circuit. If added with cx6 

and the excitation signal Fcos(wt), the equation will become a 

van der Pol oscillator with three limit cycles, and suffer from 

resonance, bifurcation and chaos [5-8]. 

If feedback term ux(t-τ) and time lag 𝑣𝑥̇(𝑡 − 𝜏) are added, 

the van der Pol oscillator with three limit cycles can be used to 

simulate the response of enzymatic substrate in brain wave 

activity and the heart beat circuit [9-14]. 

Coupled with restoring force 2𝐾2 (1 −
𝐿

√𝑋2+𝑎2
) , velocity 

feedback 𝛾𝑣𝑋̇(𝑇 − 𝛿) , and displacement feedback 𝛾𝑑𝑋(𝑇 −
𝛿)  and damping, the van der Pol equation is capable of 

simulating the quasi-zero stiffness vibration problem in 

mechanical systems [15-20]. 

This paper introduces time-delay feedback and high- and 

low-frequency excitation signals to Q.Guo model, and 

explores how the vibration resonance of biological enzyme 

system varies with time delays, velocity feedback, and 

displacement feedback, under the excitation signals of 

different frequencies and periods. Next, the biological enzyme 

system was numerically analyzed by the Runge–Kutta method, 

aiming to disclose the effect of each parameter on the 

amplitude gain of the system response. 

2. MODEL ANALYSIS

The biological enzyme system was simulated by a van der 

Pol equation with displacement feedback, velocity feedback, 

time delay, and high- and low-frequency excitation signals: 

( )2 41

( ) ( ) w

x x x x x

ux t vx t F

 

 

= − + −

+ − + − +
(1) 

where, μ is a positive parameter that regulates the nonlinearity 

of the system; α is a positive parameter that measures the 

degree of ferroelectric instability of the system; u and v are the 

strength of the displacement feedback and the velocity 

feedback, respectively; x is proportional to the number of 

enzyme molecules in the excited polar state; 𝑥̇ is the change 

rate of the number of excited enzyme molecules; 𝐹𝑤 =
𝑓 𝑐𝑜𝑠(𝑤𝑡) + 𝐹 𝑐𝑜𝑠(𝛺𝑡) is the external excitation signal, with 

f being the amplitude of low-frequency excitation signal, w 

being the frequency of low-frequency excitation signal, F 

being the amplitude of high-frequency excitation signal, and 

Ω being the frequency of high-frequency excitation signal. 

Without considering external excitation and feedbacks 

(u=v=0, and F=f=0), Eq. (1) can be rewritten as: 
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( )2 41x x x x x = − + −
 

(2) 

 

Eq. (2) has a fixed point (𝑥, 𝑥̇) = (0,0) , whose stability 

depends on eigenvalues 𝑑𝑒𝑡 (
𝜆 1
1 𝜆 − 𝜇

) = 𝜆2 − 𝜇𝜆 − 1 =0 

and 𝜆 =
𝜇±√𝜇2+4

2
. According to the Routh-Hurwitz stability 

criterion, when μ<0, the characteristic equation has a pair of 

conjugate complex roots with negative real parts. Therefore, 

the system converges μ<0 and diverges at μ>0. 

When μ=-0.025 (Figure 1a), x gradually approaches and 

eventually stabilizes at the fixed point (0,0). When μ=0.025 

(Figure 1c), x gradually deviates from the fixed point, 

indicating that the system is unstable.  

Comparing Figures 1b and 1d, it can be seen that when the 

system is discrete and converged, the cluster degree of Figure 

1b differs greatly from that of Figure 1d. In Figure 1b, after 

the phase point deviated from the limit cycle under disturbance, 

the new phase trajectory still gradually approaches the limit 

cycle; In Figure 1d, after the phase point deviated from the 

limit cycle under disturbance, the new phase trajectory 

gradually deviates from the limit cycle. Therefore, the limit 

cycle in Figure 1b corresponds to a stable system, while that 

in Figure 1d corresponds to an unstable system. 

If added with feedbacks and excitation signals, the system 

will become more complex. Taking 𝑦 = 𝑥̇ and x in equation 

(1) as the vertical and horizontal axes, the feedbacks and 

excitation signals can be introduced simultaneously. The 

phase trajectory curves of the system at v=0.01 and v=0 can be 

displayed in Figures 2a and 2b, respectively. Obviously, the 

simultaneous addition of feedbacks and excitation signals has 

a great impact on the phase trajectory curves of the original 

system. 

 

 
 

Figure 1. Time history and phase trajectory curves (𝑢 =
0.01, 𝑣 = 0.01, 𝑦 = 𝑥̇,) 

 

 

 
 

Figure 2. Phase trajectory curves of system (1) (𝜏 = 0, 𝛼 = 0.14, 𝑢 = 0.01) 

 

 

3. SIMULATION WITH HIGH-FREQUENCY 

EXCITATION SIGNAL 

 

If μ is very small, only high-frequency signal was 

considered (f=0). Then, Eq. (1) can be simplified as: 

 

( ) ( ) cos( )x x ux t vx t F t = − + − + − + 
 

(3) 

 

According to T.Yang, 𝑥(𝑡 − 𝜏) and 𝑥̇(𝑡 − 𝜏) in Eq. (3) can 

be approximated by Eqns. (4) and (5), resulting in Eq. (6): 
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sin( )
[ cos( ) ] [ sin( ) cos( )] cos( )

x
x x u x v x x F t


  


= − +  − +   +  + 

  
(6) 

The analytical solution of Eq. (6) can be obtained or the 

numerical solution of that equation can be solved by the 

Runge–Kutta method, which produces the relationship 

between time delay τ and high-frequency time series. As 

shown in Figure 3, when the time delay τ=0, the amplitude of 

the time curve increases with the elapse of time, and the curve 

tends to diverge; when the time delay τ=0.5, the amplitude of 

the time curve increases slowly with the elapse of time, and 

the curve shows a periodic feature; when the time delay τ=1.2, 

the amplitude of the time curve attenuates with the elapse of 

time, and the curve tends to converge; when the time delay τ=2, 

the amplitude of the time curve attenuates with the elapse of 

time, and the curve tends to converge and shows a periodic 

feature. 

 

 
 

Figure 3. Influence of time delay τ on high-frequency time 

series 

 

According to Eq. (6), the system response is mainly caused 

by the high-frequency signal. Considering the influence of 

nonlinear terms, the solution of Eq. (6) can be defined as: 

 

1

1

( ) [ sin( ) cos( )]

sin( )

i i

i

i i

i

x t m i t n i t

C i t 



=



=

=  + 

=  +





 (7) 

 

where, 𝐶𝑖 = √𝑚𝑖
2 + 𝑛𝑖

2, 𝜙𝑖 = 𝑎𝑟𝑐𝑡 𝑡𝑎𝑛
𝑛𝑖

𝑚𝑖
. Assuming that 

i=1, the equations of m1 and n1 can be obtained by substituting 

the hypothetical solution of Eq. (7) into Eq. (6). Through 

analysis, it is easy to learn that the solutions of coefficients m1 

and n1 are both functions about 𝑓[𝛺, 𝐹, 𝑠𝑖𝑛(𝛺𝑡), 𝑐𝑜𝑠( 𝛺𝑡)]. 
Then, the coefficient C1 determined by m1 and n1 must be a 

function about 𝑓[𝛺, 𝐹, 𝑠𝑖𝑛(𝛺𝑡), 𝑐𝑜𝑠( 𝛺𝑡)].  
Hence, 𝐶1 = 𝑓[𝛺, 𝐹, 𝑠𝑖𝑛(𝛺𝑡), 𝑐𝑜𝑠( 𝛺𝑡)] holds. Then, it is 

not difficult to prove that: 

1

1
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 (8) 

 

In other words, the solution determined by Eq. (7) is a 

function about 
2𝜋

𝑖𝛺
, with the minimum positive period of 

2𝜋

𝛺
. 

To verify the above result, it is assumed that u=v=0.01, F=2, 

Ω=5, x1=x and 𝑥2 = 𝑥̇, in Eq. (6). Then, we have 𝑋 = (
𝑥1
𝑥2
) =

(
𝑥
𝑥̇
). Reducing the second-order derivative to the first order, 

we have:  
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Under the initial condition of 𝑋0 = (
𝑥1(0)

𝑥2(0)
) = (

0
−1

), the 

above analysis result can be verified by solving the numerical 

solution of differential Eq. (6) with the fourth-order Runge-

Kutta method (9): 
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(9) 

 

Using the Fourier coefficient at the high-frequency signal to 

measure the degree of vibration resonance, the amplitude gain 

can be defined as: 
 

( ) 2 2

cQ = B +B /s 
 

(10) 

 

where, 𝐵𝑠 =
2

𝑚𝑇
∫ 𝑥(𝑡) 𝑠𝑖𝑛(𝛺𝑡)
𝑚𝑇

0
𝑑𝑡 ; 𝐵𝑐 =

2

𝑚𝑇
∫ 𝑥(𝑡) 𝑐𝑜𝑠(𝛺𝑡)
𝑚𝑇

0
𝑑𝑡; m is a positive integer. 
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4. SIMULATION WITH LOW- AND HIGH-

FREQUENCY EXCITATION SIGNALS 

 

When System (1) contains both low- and high-frequency 

excitation signals, there is a periodic relationship between the 

response amplitude gain and the time delay. This analysis 

result can be verified by solving the numerical solution of 

system (1) with the fourth-order Runge-Kutta method (9). The 

numerical results (Figures 4 and 5) show that, for the high-

frequency signal, when F and Ω are different, the minimum 

positive periods of the response amplitude gain and the time 

delay are both 
2𝜋

𝜔
=

2𝜋

0.1
= 62.8; for the low-frequency signal, 

when f and ω are different, the minimum positive periods of 

the response amplitude gain and the time delay are both 
2𝜋

𝛺
=

2𝜋

5
= 1.256. 

 

 
 

Figure 4. Periodic relationship between amplitude gain Q 

and time delay with high-frequency signal τ (ω=0.1, Ω=5, 

F=2, f=0.1) 

 

 
 

Figure 5. Periodic relationship between amplitude gain Q 

and time delay with low-frequency signal (ω=0.1, Ω=5, F=2, 

f=0.1) 

 

 
 

Figure 6. Analytical solution and numerical solution (F=2, 

u=0.01, v=0.01, Ω=2, f=0, τ=0) 

 

Figure 6a presents the numerical solution obtained by the 

fourth-order Runge-Kutta method (9), while Figure 6b 

provides the analytical solution obtained by approximation. 

Figures 6a and 6b agree in the curve trend and periodic 

position. The only difference is that Figure 6a features the 

alternation between high and low amplitudes, while Figure 6b 

does not have this feature. The main reason is that the 

approximation method overlooks the nonlinear terms. 

 

 

5. DISCUSSION 

 

This section further explores the effects of each parameter 

in system (1) on the amplitude gain Q. Let F=2, u=v=0.01, 

Ω=5, and ω=0.1 in equation (1). The correlations of amplitude 

gain Q and the amplitude f and time delay τ of low-frequency 

signal can be obtained as Figure 7.  

It can be seen that, along the axis of time delay τ, the 

periodic relationship between time delay τ and amplitude gain 

Q still exists. Along the axis of frequency f of low-frequency 

signal, when μ=0.001, Q first increases, then decrease, and 

finally rebounds, with the growth of f, along the axis of 

frequency f of low-frequency signal; when μ=0, the 

correlations of amplitude gain Q and the amplitude f and time 

delay τ of low-frequency signal can be obtained as Figure 8, Q 

increases significantly with the growth of f, and the increasing 

rate grows proportionally. 
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Figure 7. The correlations of amplitude gain Q and the 

amplitude f and time delay τ of low-frequency signal 

(μ=0.001, u=v=0.01) 

 
 

Figure 8. The correlations of amplitude gain Q and the 

amplitude f and time delay τ of low-frequency signal (μ=0, 

u=v=0.01) 

 

 
 

Figure 9. The correlations of amplitude gain Q and the 

amplitude F and time delay τ of high-frequency signal 

(μ=0.001, u=0.08, v=0.01) 

 
 

Figure 10. The correlations of amplitude gain Q and the 

amplitude F and time delay τ of high-frequency signal 

(μ=0.5, u=v=0.01) 

 

 
 

Figure 11. The correlations of amplitude gain Q and the 

amplitude F and time delay τ of high-frequency signal 

(μ=0.001, u=v=0.01) 

 

Let f=0.1, u=v=0.01, Ω=5, and ω=0.1 in equation (1). The 

correlations of amplitude gain Q and the amplitude F and time 

delay τ of high-frequency signal can be obtained as Figure 9. 

It can be seen that, along the axis of time delay τ, the 

periodic relationship between time delay τ and amplitude gain 

Q still exists. The amplitude gain Q increases linearly with the 

growth of the frequency F of high-frequency signal. When the 

strength of displacement feedback u=0.08 and that of velocity 

feedback v=0.01 (that is, u and v are unequal), the change 

scope of amplitude gain Q widens, while the periodicity of the 

time delay’s τ direction is not affected. 

Comparing Figures 10 and 11, it can be seen that, along the 

axis of time delay τ, the periodic relationship between time 

delay τ and amplitude gain Q still exists. When μ increases, the 

amplitude gain Q increases linearly with the growth in the 

frequency F of high-frequency signal; when μ=0.001, the 

change scope of Q is greater at μ=0.001 than at μ=0.5, 

provided that F values are the same. 

Comparing Figures 12 and 13, it can be seen that, when the 
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strength of displacement feedback u=0.01 and that of velocity 

feedback v=0.1 (that is, u and v are unequal), the change scope 

of amplitude gain Q widens, while the periodicity of the time 

delay’s τ direction is not affected. 

 

 
 

Figure 12. The correlations of amplitude gain Q and the 

amplitude F and time delay τ of high-frequency signal 

(μ=0.1, u=v=0.01) 

 

 
 

Figure 13. The correlations of amplitude gain Q and the 

amplitude F and time delay τ of high-frequency signal 

(μ=0.1, u=0.01, v=0.1) 

 

 

6. CONCLUSIONS 

 

This paper discusses the vibration resonance of the 

biological enzyme system with damping terms under the 

excitation of signals with different frequencies and periods. 

Through theoretical analysis and numerical analysis, the 

authors probed into the time series and response amplitude 

gain of the biological enzyme system, and examined the 

factors affecting the response amplitude gain. The numerical 

analysis was carried out by the fourth-order Runge-Kutta 

method. The results show that there are two different periods 

in the time series of the biological enzyme system: The period 

of low-frequency excitation signal, and that of high-frequency 

excitation signal. Further analysis shows that the response 

amplitude gain is greatly affected by the amplitudes, nonlinear 

parameters, and instabilities of high- and low-frequency 

signals: 

When the strength of displacement feedback u=0.08 and 

that of velocity feedback v=0.01 (that is, u and v are unequal), 

the change scope of amplitude gain Q widens, while the 

periodicity of the time delay’s τ direction is not affected. 

When μ increases, the amplitude gain Q increases linearly 

with the growth in the frequency F of high-frequency signal. 

When μ=0.001, the change scope of Q is greater at μ=0.001 

than at μ=0.5, provided that F values are the same. 

When the strength of displacement feedback u=0.01 and 

that of velocity feedback v=0.1 (that is, u and v are unequal), 

the change scope of amplitude gain Q widens, while the 

periodicity of the time delay’s τ direction is not affected. 
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