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Explosives are used as a source of energy to break the rock mass. Majority of explosive 

energy is lost in the form of ground vibrations, noise, air blasts, etc. Blast-induced ground 

vibration is influenced by many parameters such as rock mass, explosive characteristics, 

blast design etc. The prediction of blast-induced ground vibration using regression analysis 

sometimes becomes too conservative leading difficulties in operating the mine efficiently 

and safely. Scaled distance approach to vibration prediction is still a very reliable predicting 

approach, but there are other alternative approaches which produce close results with a high 

value of correlation coefficient. There are modern tools for analysis and prediction which in 

many types of research proved to performed with more accuracy. ANN (Artificial Neural 

Network) is one which in fact is proved by many researchers in their papers to be an excellent 

prediction method of vibrations. Another method used is an ensemble learning method for 

classification, regression, and other tasks, that operate by constructing a multitude of 

decision trees at training time and outputting the class i.e. Random forest method.  

In this paper, it has been tried to predict the peak particle velocities for blasts at varying 

distances with different initiation system using Random forest, ANN, and scaled distance 

regression analysis approach. The correlation coefficients for each approach for different 

initiation system is obtained, higher values of correlation coefficients are obtained with 

increase in accuracy of initiation systems due to increase in actual charge per delay during 

blasting. Also, it has found that the prediction is more accurate while using ANN along with 

digital detonators. 
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1. INTRODUCTION

Despite the benefits of blasting as a reliable excavation 

technique, the main drawback of this approach lies in the 

induced ground vibration, which could occasionally affect 

structural safety during the excavation activities or it could 

initiate considerable rock damage and over break in 

underground construction. These adverse side effects of 

blasting may result in increased construction costs and in 

declining the structural stability [1]. Having in mind such an 

unfavorable outcome, it is of paramount importance to 

adequately predict the magnitude of blast-induced vibrations 

to avoid the possible occurrence of rock mass failure and 

support damage. The standard practice uses peak particle 

velocity (PPV) and spectrum of excitation frequency to 

estimate structural responses. In practice, PPV is usually 

estimated using various empirical relations, which are of 

significant interests for field engineers, since they enable them 

to predict the maximum ground vibration depending on the 

maximum charge per delay and distance from the blasting 

source [2]. In effect, these empirical equations represent 

various nonlinear relations between the values of PPV on one 

side, and scaled distance (distance from the explosion charge 

normalized by the amount of explosive used) [3], on the other 

side. Indeed, practical application has shown that this so-called 

''conventional predictors'' give reasonable predicting values 

for engineering purposes. However, these empirical relations 

are typically developed for specific site conditions with 

particular local geological settings and field morphology and 

cannot predict PPV value with satisfying accuracy at other 

blasting locations, mainly due to heterogeneous and 

anisotropic rock mass properties. This further implies that the 

suggested ground motion relations could not give reliable 

estimation of PPV, mainly due to fact that these models are 

approximate, treating blast-induced ground vibrations 

dependence only on maximum charge per delay or distance to 

the blasting source, neglecting a number of other influential 

parameters, like total charge, stemming, hole depth, physical 

and mechanical properties of rock mass or explosive 

characteristics. Since the number of affecting parameters is 

large and the relations among them could be very complicated 

and often unknown, empirical methods may not always be 

suitable for accurate prediction of PPV [4]. Numerical 

methods are used now a day to predict the vibration produced 

by blasting by many researchers [5]. 

As far as numerical methods are concerned, different 

numerical methods like Artificial neural network [6-8], 

Support vector machine [9-11], Adaptive neuro-fuzzy 

interface system(ANFIS) [12-13], Monte Carlo technique [14] 

and many more such methods have been used to predict and 
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control blast induced ground vibration. All these methods use 

multiple input parameters to get the most suitable relation 

between input and output parameters. More advanced 

numerical approaches are related to the analysis of block 

systems [15]. In such models, systems of simultaneous 

equations are formulated and solved minimizing the energy of 

the system to bring the system into equilibrium. [16], 

Khandelwal et al. and Khandelwal and Singh [17] made use of 

such useful factors as the rock type, blasting pattern, and 

explosive type (in addition to factors like the maximum weight 

of the explosive per delay and the distance between the 

measuring point and the center of the explosion block) as the 

input parameters to the ANN to determine the PPV and 

compared their results with those of similar methods available 

at the time. [8], studied the effects of the number of blast holes 

rows on the PPV using the ANN. Bahadori et al. employed GA 

to improve the correlation coefficient for empirical relations 

used in the prediction of the PPV. Utilizing the GA Hybrid 

method, Soltani et al. [8] also predicted the allowable charge 

weight per delay in blasting operations in the construction of 

underground structures in Gotvand Olya Dam. Longjun Dong 

et al. [18] has used random forest algorithm and support vector 

machine for predicting blast-induced ground vibration. 

Here in this paper out of different numerical methods, random 

forest algorithm, Artificial neural network (ANN) were taken 

in consideration with the Scaled distance regression analysis 

approach. All these three methods are applied to predict the 

blast-induced ground vibration in terms of peak particle 

velocities. The correlation coefficients for each approach for 

different initiation system is obtained, based on the values of 

the correlation coefficients for different initiating system it is 

found that the use of most precise digital/ electronic detonators 

in blasting with ANN as predicting tool is most suitable to 

enhance safety in blasting operations.  
 

 

2. INITIATION SYSTEMS USED 

 

The most frequently used initiation systems were 

considered in this study. They were namely Detonating cord 

with cord relay, Non-electric (NONEL) detonators, Electronic 

detonators Initiation system: 

 

2.1 Detonating cord with cord relay 

 

Detonating cord is a thin, flexible plastic tube usually filled 

with pentaerythritol tetranitrate (PETN). With the PETN 

exploding at a rate of approximately 6400 m/s, any common 

length of detonation cord appears to explode instantaneously. 

It is a high-speed fuse which explodes, rather than burns, and 

is suitable for detonating high explosives. The pyrotechnic 

detonators used with detonating cord shows a high cap scatter 

percentage and also high blast-induced ground vibrations. 

 

2.2 Non-electric (nonel) initiation system 

 

A non-electric detonator is a shock tube detonator designed 

to initiate explosions, generally for the the demolition of 

buildings and use in the blasting of rock in mines and quarries. 

Instead of electric wires, a hollow plastic tube delivers the 

firing impulse to the detonator, making it immune to most of 

the hazards associated with stray electric current. It consists of 

a small diameter, three-layer plastic tube coated on the 

innermost wall with a reactive, explosive compound, which, 

when ignited, propagates a low energy signal, similar to a dust 

explosion. The reaction travels at approximately 6,500 ft/s 

(2,000 m/s) along the length of the tubing with a minimal 

disturbance outside of the tube. The design of non-electric 

detonators incorporates a patented technology, including the 

Cushion Disk (CD) and Delay Ignition Buffer (DIB) to 

provide reliability and accuracy in all blasting applications. 

Non-electric detonators were invented by the Swedish 

company Nitro Nobel in the 1960s and 1970s, under the 

leadership of Per-Anders Persson, and launched to the 

demolitions market in 1973. Nonel is a contraction of "Non-

electric detonators". The shock wave travels inside the shock 

tube initiates the pyrotechnic detonator. The pyrotechnic delay 

detonators with NONEL initiation system show a significant 

cap scatter. 

 

2.3 Electronic initiation system 

 

In mining, electronic detonators have a better precision for 

delays. Electronic detonators are designed to provide the 

precise control necessary to produce accurate and consistent 

blasting results in a variety of blasting applications in the 

mining, quarrying, and construction industries. Electronic 

detonators may be programmed in 1-millisecond increments 

from 1 millisecond to 10,000 milliseconds using the dedicated 

programming device called the logger. Due to high precision 

in its timing the cap scatter is too low [19]. 

 

 

3. RANDOM FOREST ALGORITHM 

 

Random forest algorithm is a supervised classification 

algorithm. As the name suggests, this algorithm creates the 

forest with a number of trees. In general, the more trees in the 

forest, the more robust the forest looks like. In the same way 

in the random forest classifier, the higher the number of trees 

in the forest gives the high accuracy results. Decision tree 

concept is more to the rule-based system. Given the training 

dataset with targets and features, the decision tree algorithm 

will come up with some set of rules (Figure 1). The same set 

rules can be used to perform the prediction on the test dataset 

[20].  

 

Advantages: 

• The same random forest algorithm or the random forest 

classifier can use for both classification and the regression 

task. 

• Random forest classifier will handle the missing values. 

• When we have more trees in the forest, random forest 

classifier won’t overfit the model. 

• Can model the random forest classifier for categorical 

values also. 

 

 
 

Figure 1. Pictorial representation of random forest algorithm 
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4. ARTIFICIAL NEURAL NETWORK 

 

Artificial neural networks can be used to extract patterns 

and detect trends that are too complex to be noticed by humans 

or computer techniques. They can be used to provide 

projections of given new situations and answer "what if" 

questions. ANNs have some other advantages, which include: 

• Adaptive Learning, which is the ability to do tasks, based 

on given data used for training. 

• Self-Organization in which ANNs can create their 

organization or representation of the information during 

learning time. 

• Real-Time Operation in which ANNs computations may 

be carried out in parallel. 

• Fault Tolerances in which some network capabilities may 

be retained even with major network damage; as a partial 

destruction of a network leads to the corresponding 

degradation of performance. 

There is a broad range of applications that can be found for 

artificial neural networks (Figure 2). The applications are 

expanding because artificial neural networks are good at 

solving problems, not just in  

engineering, science, and mathematics, but in medicine, 

business, finance, and literature as well. Their application to a 

wide variety of problems in many fields makes them very 

attractive. Also, faster computers and faster algorithms have 

made it possible to use artificial neural networks to solve 

complex industrial problems that formerly required too much 

computation [21].  

 

 
 

Figure 2. Representation of Artificial neural network (ANN) 

process 

 

In this study, the multiple input parameters were taken for 

ANN and Random Forest analysis with a single output. While 

using ANN, 10 numbers of hidden neurons were selected.  

Where in random forest 100 number of iterations were 

performed. The input and output parameters taken for analysis 

are shown in Table 1 below. 

 

Table 1. Input and output parameters taken for ANN and 

Random forest analysis 

 
Input parameters are taken in 

ANN, and Random forest 

analysis are  

Output Parameter 

1. No. of rounds 

2. No. of observations 

3. The depth of drill holes (m) 

4. The diameter of the hole 

(mm) 

5. Burden (m) 

6. Spacing (m) 

7. Maximum charge/delay (kg) 

8. Maximum charge/round (kg) 

1. Peak Particle velocity 

(mm/s) 

 

 

5. SCALED DISTANCE REGRESSION ANALYSIS 

 

Scaled Distance regression analysis approach was given by 

USBM [22]. The scaled distance is a concept put forward by 

using the amount of explosive energy in shock and seismic 

waves, and the effects by distance. The scaled distance (SD) is 

derived by combining the distance between the source and 

measurement points, and the maximum charge per delay. This 

scaled distance is defined by the equation below: 

 

𝑆𝐷 = 𝐷/√𝑊𝑑                                                                       (1) 

 

where SD is the scaled distance (m/kg1/2), D is the absolute 

distance between the shot and the station (m), and Wd is the 

maximum explosive charge per delay (kg).  

The peak level of ground motion at any given point is 

inversely proportional to the square of the distance from the 

shot point [16].  The peak particle velocity (PPV) is given by 

the following equation: 

 

𝑃𝑃𝑉 = 𝐾 × (𝑆𝐷)𝑛                                                               (2) 

 

where K and n are site/ geological constant factors. The site 

factors are determined from a logarithmic plot of peak particle 

velocity (PPV) versus scaled distance (SD). The straight-line 

best representing the data has a negative slope n and an 

intercept K. 

 

 
6. METHODOLOGY 

 

In this paper the blast-induced ground vibration data was 

collected with different initiation system (Electronic initiation, 

Nonel and Detonating cord with cord relay), actual peak 

particle velocity (PPV) and blast design parameters were 

recorded for each. After getting the actual values and blast 

design parameters, the data collected was processed 

individually for each initiation system using the random forest 

algorithm and Artificial Neural Network (ANN). The input 

data used are blast design parameters, the distance at which the 

vibration was recorded and maximum charge per delay to get 

the output of actual PPV values collected. The closest relation 

between input data and output data (Table 1) were generated 

with a minimum possible error with each approach (random 

forest and ANN), and values of PPV were predicted with its 

correlation coefficient for each initiating system. Also, the 

scale distance regression analysis is done with different 

initiations system, and correlation coefficient for the curve is 

calculated. After applying each approach (Random forest, 

ANN, and Scaled distance) for different initiation system, the 

values of correlation coefficient were analyzed to find the 

effect of accuracy of initiation systems on blast-induced 

ground vibrations. 

 

6.1 Data collection  

 

The study site (i.e. an opencast (OC) coal mine) is located 

in an eastern-central part of Jharia Coalfield in Dhanbad 

district of Jharkhand (Figure 3). The OC Mine is being worked 

using shovel-dumper combination for removal of overburden 

(OB), extraction & transportation of coal. The rock strata in 

the mine area belong to Barakar Formation of Lower 

Gondwana group under cover of soil, alluvium and sandy soil. 
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The blast-induced ground vibration was measured by three 

numbers of MINIMATE PLUS (Instantel Inc. Canada) 

vibration monitors. These instruments are a microprocessor-

based unit having tri-axial transducers. The instrument 

measures Peak Particle Velocity (PPV) in three mutually 

perpendicular directions, i.e. longitudinal, transversal and 

vertical along with respective frequencies and amplitude. 

 

 
 

Figure 3. Google Earth image of data collection site 

 

The vibration data for each initiation system, i.e. Electronic 

initiation system, Non-electric (NONEL) and detonating cord 

with cord relay were collected. Details of vibration data 

collected with each initiating system are shown in Table 2 

below:  

 
Table 2. Details of vibration data collected at an opencast 

coal mine 

 

Details of Blast 

Initiation System 

NONEL 
Electronic Delay 

Detonator 

Detonating 

Cord 

No. of rounds 10 14 10 

No. of 

observations 
36 54 

38 

The depth of drill 

holes (m) 

4.4 – 5.9 

m 
4.3 – 6.4 m 

3.9 – 6.1 m 

The diameter of 

hole (mm) 
160 160 

160 

Burden (m) 3 3 3 

Spacing (m) 3.5 3.5 3.5 

Explosive 

charge/hole (kg) 

27.15 – 

42.15 
30.15 – 60.15 

20.15 – 

50.15 

Maximum 

charge/delay (kg) 
42.15 60.15 

50.15 

Maximum 

charge/round (kg) 
1634.2 1986.75 

1949.15 

 

 
7. ANALYSIS 

 

As discussed above methodology the data collected is 

processed using Random forest algorithm, Artificial neural 

network (ANN) and Scaled distance regression analysis 

approach for each initiating system. 

 
7.1 Detonating cord with cord relay 

 

The vibration data collected were analyzed using the 

Random forest, ANN and scaled distance and predicted the 

value of PPV and Correlation coefficient is calculated as 

shown in Table 3. Also, the analysis using scaled distance, 

ANN, and the Random forest is shown in Figure 4, Figure 5 

and Figure 6 respectively. Figure 4 is a plot between PPV and 

Scaled Distance as per scaled distance regression analysis 

which shows the power relation with correlations coefficient 

of 0.9429. Figure 5 is the representation of training, testing and 

validation of data using ANN with their correlation 

coefficients. Figure 6 is the report of random forest algorithms 

used for prediction of PPV with the collected data od PPV 

using D-cord. 

 

 
 

Figure 4. Scaled distance regression analysis equation using 

the Detonating cord 

 

 
 

Figure 5. Artificial neural network (ANN) analysis for 

Detonating cord initiation system 

 

 
 

Figure 6. Random forest analysis for detonating cord 

initiation system 
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The predicted values of PPV using Scaled distance, ANN 

and random forest algorithm and actual values of PPV 

recorded for blasts using detonating cord with cord relay is 

plotted on a same curve in Figure 7. 

 

 
 

Figure 7. Comparison curve b/w Actual PPV and RF, ANN, 

Scaled Distance predicted value for detonating cord 

 
Table 3. The Predicted value of PPV using Random forest, 

ANN and Scaled distance for detonating cord 

 
PPV 

Actual 

Predicted PPV 

Using Random 

Forest (R2 = 

0.9534) 

Using ANN 

(0.9659) 

Using Scaled 

distance (R2 

=0.9429) 

1.769 3.03 1.787914 2.564921 

2.174 2.851 2.072367 2.894409 

2.203 2.888 2.177766 2.956755 

2.25 2.653 1.933229 2.956755 

2.924 3.582 2.785779 3.308113 

3.205 4.488 3.287279 3.647218 

3.304 3.929 3.160113 3.556777 

3.469 4.104 3.405996 3.690769 

3.814 3.583 3.748549 3.840978 

3.829 4.663 4.134037 4.146625 

4.028 4.516 5.222822 4.131416 

4.062 4.07 3.825649 3.7928 

4.325 3.932 3.825649 3.7928 

4.492 4.688 4.134037 4.146625 

4.537 4.24 4.324689 4.168523 

4.581 4.062 4.324689 4.168523 

5.197 6.561 4.893068 4.500235 

5.287 5.241 5.293765 4.549625 

5.293 5.29 5.159811 4.549625 

5.872 4.745 5.596651 4.690787 

6.56 5.043 6.098105 4.997879 

6.92 8.787 7.123752 8.783503 

7.364 9.142 6.613665 8.357367 

8.131 7.994 6.979745 6.303098 

8.655 9.729 12.70883 9.250129 

9.563 7.255 9.246324 7.276709 

9.838 8.649 10.32998 7.966846 

10.29 9.352 10.14682 7.607803 

10.85 13.224 10.42117 7.966846 

11.13 11.9 10.73303 12.4393 

12.35 11.162 11.42628 13.32202 

12.81 20.314 18.07711 14.32341 

16.59 13.752 18.19589 14.32341 

19.46 15.931 20.11885 16.78696 

27.29 26.063 26.18906 32.08309 

28.28 21.503 26.53367 32.08309 

28.84 25.109 26.18906 32.08309 

32.26 21.355 27.61853 37.25097 

 
 

A. NONEL INITIATING SYSTEM 

 

The vibration data collected using NONEL initiating system 

were analyzed using the Random forest, ANN and scaled 

distance and predicted value of PPV and Correlation 

coefficient is calculated as shown in Table 4. Also, the analysis 

using scaled distance, ANN and Random forest is shown in 

Figure 8, Figure 9 and Figure 10 respectively. Figure 8 is a plot 

between PPV and Scaled Distance as per scaled distance 

regression analysis which shows the power relation with 

correlations coefficient of 0.942. Figure 9 is the representation 

of training, testing and validation of data using ANN with their 

correlation coefficients. Figure 10 is the report of random 

forest algorithms used for prediction of PPV with the collected 

data od PPV using NONEL initiating system. 

 

Table 4. Predicted value of PPV using Random forest, ANN 

and Scaled distance for Nonel initiating system 

 
PPV 

Actual 

Predicted PPV 

Using 

Random 

Forest (R2 = 

0.9568) 

Using ANN 

(R2=0.966) 

Using Scaled 

distance (R2 

=0.942) 

2.275 3.024 2.439494 2.711871 

2.376 3.203 2.862266 2.781619 

2.492 3.005 2.817177 2.485645 

2.53 2.967 2.483618 2.781619 

2.658 2.799 2.907473 2.538706 

2.768 2.839 2.452363 2.781619 

2.843 2.861 2.552501 2.854828 

2.965 3.005 2.686117 2.931754 

2.973 2.85 2.997327 2.593942 

3.016 3.009 2.899065 3.097929 

3.061 2.889 3.086917 2.651489 

3.238 3.219 3.011483 3.187838 

3.336 3.199 3.11523 3.282795 

3.522 3.619 3.27366 3.438851 

3.637 3.318 3.238019 3.383228 

3.65 4.015 3.591371 3.783643 

4.006 4.566 4.014179 4.528679 

4.127 4.102 4.054218 4.132002 

4.176 4.077 4.220859 4.287975 

4.229 4.076 4.404289 4.455429 

4.301 4.389 4.428307 4.711864 

4.355 4.087 4.831371 4.830123 

4.529 5.333 5.25449 5.123437 

5.039 6.033 5.622193 5.355612 

5.718 4.171 6.22363 5.268986 

5.842 6.29 5.662265 5.190824 

5.996 6.335 6.142596 5.458222 

6.142 6.969 6.726847 6.780088 

6.361 6.242 6.142596 5.458222 

7.113 6.744 6.380642 5.884761 

7.589 6.328 6.896128 6.187905 

7.925 6.559 8.19112 7.302805 

7.972 7.528 8.663334 7.762889 

9.341 8.487 9.184069 10.63985 

9.808 8.159 9.184069 10.63985 
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Figure 8. Scaled distance regression analysis equation using 

Nonel initiating system 

 

Figure 9. Artificial neural network (ANN) analysis for Nonel 

initiation system 

 

 
 

Figure 10. Random forest analysis for NONEL initiation 

system 

The predicted values of PPV using Scaled distance, ANN 

and random forest algorithm and actual values of PPV 

recorded for blasts using NONEL initiating system is plotted 

on a same curve in Figure 11. 

 

Figure 11. Comparison curve b/w Actual PPV and RF, 

ANN, Scaled Distance predicted value for NONEL initiating 

system 
 

B. ELECTRONIC INITIATION SYSTEM 

 

The vibration data collected using electronic initiating 

system were analyzed using Random forest, ANN and scaled 

distance and predicted value of PPV and Correlation 

coefficient is calculated as shown in Table 5. Also, the analysis 

using scaled distance, ANN and Random forest is shown in 

figure 12, figure 13 and figure 14 respectively. Figure 12 is a 

plot between PPV and Scaled Distance as per scaled distance 

regression analysis which shows the power relation with 

correlations coefficient of 0.9418. Figure 13 is the 

representation of training, testing and validation of data using 

ANN with their correlation coefficients. Figure 14 is the report 

of random forest algorithms used for prediction of PPV with 

the collected data od PPV using electronic initiations system. 

 

Figure 12. Scaled distance regression analysis equation using 

the Electronic initiating system 
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Figure 13. Artificial neural network (ANN) analysis for 

Electronic initiation system 

 

Table 5. Predicted value of PPV using Random forest, ANN 

and Scaled distance for Electronic initiating system 

 

PPV 

Actual 

Predicted PPV 

Using RF 

(R2 = 

0.9793) 

Using ANN 

(R2= 0.980) 

Using Scaled 

distance 

(R2=0.9418) 

1.814 2.719 1.863577 2.313641 

1.836 2.588 1.893469 2.248813 

1.98 2.682 1.808023 2.559409 

2.106 2.24 2.41516 2.593936 

2.195 2.589 2.355597 2.700735 

2.311 2.909 2.593305 2.75085 

2.376 2.343 2.279329 2.628355 

2.413 2.897 2.460693 3.056178 

2.529 2.913 2.738952 2.468794 

2.555 3.064 2.67389 2.410246 

2.63 2.611 2.499497 2.896252 

2.843 2.521 2.590475 2.821858 

2.981 2.49 2.557442 2.618138 

2.992 2.779 3.10345 2.529966 

3.069 2.81 3.596864 2.731044 

3.116 3.364 3.378178 3.048418 

3.253 3.418 3.463081 3.13838 

3.263 3.126 2.666989 3.030064 

3.277 3.328 2.590428 3.42885 

3.319 3.495 2.450034 3.328229 

3.326 3.453 3.485032 3.233261 

3.72 3.109 2.471426 3.42885 

3.772 3.352 3.628103 3.439424 

3.923 5.192 4.34306 4.280846 

4.066 4.847 4.750226 4.64867 

4.697 4.423 4.350185 3.797097 

4.713 4.675 4.36847 3.931638 

5.101 4.971 4.918485 4.228228 

5.348 5.212 5.577978 4.854733 

5.445 4.829 5.14294 4.39214 

5.483 4.954 5.429902 4.64867 

5.561 5.208 5.193582 4.39214 

5.608 5 5.886405 4.960411 

5.849 6.318 6.185736 5.873697 

6.854 4.466 6.510324 5.584686 

7.209 6.166 7.495926 6.540609 

8.149 8.788 8.016308 9.36057 

8.581 8.464 8.501341 10.00748 

8.649 8.739 9.000617 10.74006 

8.966 10.944 9.992867 11.20451 

8.986 8.811 9.52164 11.57576 

9.789 10.099 9.575193 9.598574 

10.29 9.273 9.431857 8.943855 

10.35 9.549 9.170657 8.365697 

10.54 11.476 10.83264 12.53698 

11.57 10.66 10.83264 12.53698 

11.71 11.985 11.84679 13.65298 

11.87 12.95 13.54578 12.53195 

12.36 11.56 11.84679 13.65298 

13.49 12.423 12.75992 11.43506 

13.91 13.047 12.75871 11.43506 

14.12 11.778 14.1605 11.20451 

14.2 11.85 14.1847 12.2019 

14.45 12.603 14.80748 15.40605 

 

 
 

Figure 14. Random Forest (RF) analysis for Electronic 

initiation system 

 
The predicted values of PPV using Scaled distance, ANN 

and random forest algorithm and actual values of PPV 

recorded for blasts using electronic initiating system is plotted 

on a same curve in Figure 15. 

 

 
 

Figure 15. Comparison curve b/w Actual PPV and RF, 

ANN, Scaled Distance predicted value for Electronic 

initiating system 

 

 

8. COMPARISON OF CORRELATION 

COEFFICIENTS  

 

The analysis was made for different initiating system, i.e. 

Detonating cord, Nonel and Electronic initiation system using 
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random forest, ANN and Scaled distance regression analysis 

and the correlation coefficients obtained and presented below 

in Table 6 and Figure 16 below. 

 

Table 6. Summary of correlation coefficient obtained using 

Scaled distance (SD), ANN and Random forest (RF) methods 

for different initiating system 
 

Initiating 

System 

R2 value 

with RF 

R2 value with 

ANN 

R2 value 

with SD 

ED 0.9793 0.980 0.9418 

NONEL 0.9568 0.966 0.9429 

DF 0.9534 0.9659 0.942 

 

 
 

Figure 16. Values of correlation coefficients obtained with 

different analysis for different initiation system 

 

 

9. DISCUSSION 

 

With the correlation coefficients obtained between 

predicted and actual PPV value with Random forest, ANN and 

scaled distance regression analysis while using different 

initiation systems, it can be seen that the highest value of 

correlation coefficient is observed with ANN analysis method. 

Whereas least value of correlation coefficient is obtained by 

Scaled distance regression analysis approach. A significant 

value of correlation coefficient which is higher than Scaled 

distance regression analysis approach is found using Random 

forest algorithm.  

Further, it can be seen that the highest value of correlation 

coefficient has been obtained with the Electronic initiation 

system, and with Detonating cord. This implies that the 

relation generated by the Random forest method, ANN and 

Scaled distance method between the input parameters (blast 

design parameters, the distance at which vibration reading was 

recorded and maximum charge per delay) and an output 

parameter (vibration in PPV) is more accurate in case of an 

Electronic initiation system. This may be attributed to the fact 

that the measured charge per delay might have been different 

than the actual charge per delay experienced during blasting 

due to cap scattering or inaccuracies in firing time of 

detonators. The maximum charge per delay is more accurate 

or the actual charge per delay in case of Electronic initiation 

system. Electronic initiation system is accurate and each hole 

blasts at their designated time due to very less cap scattering 

(±0.05%). The value of charge per delay considered for 

NONEL and Detonating cord initiation system might have 

been different than the actual charge per delay as the higher 

cap scattering results overlapping of detonation of holes. 

10. CONCLUSION 

 

The study conducted in this paper has indicated the 

following useful inferences. 

• Out of the three methods used in this paper for 

prediction of blast-induced ground vibration, Artificial 

neural network (ANN) has predicted the most accurate 

value with highest correlation coefficients. While Random 

forest algorithm predicted the values with lower correlation 

coefficient than ANN but higher than Scaled distance 

regression approach. Which makes ANN the preferred tool 

(Among the three tools used) for predicting blast-induced 

ground vibrations in blasting. 

• The highest value of correlation coefficient with all 

three methods used for prediction is obtained with 

Electronic initiation system. This indicates that due to the 

accuracy of Electronic initiation system the actual charge 

per delay is accurate which helps in the precise prediction 

of blast-induced ground vibration. 

• On the basis of the conducted study, it may be 

concluded that for calculating the maximum charge per 

delay in controlled blasting operation, electronic detonators 

with ANN predictor may be used for precise prediction of 

blast-induced ground vibration in control blasting over the 

random forest and scaled distance regression analysis. 

Which will be a great help to mine operators in the 

conduction of controlled blasting near habitation. 
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