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A numerical study of the natural convection of laminar heat transfer in the stationary state 

in a horizontal annular space between a heated square inner cylinder and a cold elliptical 

outer cylinder was investigated. This annular space is traversed by a Newtonian and 

incompressible fluid. The Prandtl number is set to 0.71 (air case) for different Rayleigh 

numbers. The governing equations of the problem were solved numerically by the 

commercial code Fluent, based on the finite volume method and the Boussinesq 

approximation. The inner and outer surfaces are isothermal. The study was performed for 

Rayleigh numbers ranging from 1.3 × 103 to 5.5× 105. Particularly, we have studied the 

effects of different thermal Rayleigh numbers on natural phenomenon convection. The 

results were presented in the form of isotherms, streamlines, and local and average Nusselt 

numbers. The purpose of this study is to observe the influence of the thermal Rayleigh 

number on the structure of the flow and distribution of the temperature. 
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1. INTRODUCTION

Throughout The study of the natural convection in closed 

enclosures was the subject of many theoretical and 

experimental studies. Many published works were elaborated 

and concern the natural convection in annular spaces such as 

the square, the rectangle, the triangle, the cylindrical, the 

elliptic and the spherical geometry. 

The considered applications heighted the thermal 

insulation, the heat exchangers, the cooling of the electronic 

systems, electrical machines, geophysics, and the nuclear 

reactors. For example, Calcagni et al. [1] studied 

experimentally the free convection in a two-dimensional 

rectangular cavity with a heating located on the bottom wall 

through two vertical sides. The upper wall was maintained 

adiabatic. Lakhal et al. [2] studied numerically the transient 

natural convection in a square cavity subjected from below to 

a sinusoidal variation of the temperature for a Prandtl number 

equal to 0.71 (air) and for Rayleigh numbers varying from 105 

to 106. Hossain and Wilson [3] studied unsteady laminar 

natural convection in a rectangular enclosure formed by non-

isothermal walls. The walls horizontal top and vertical rights 

of the enclosure are cooled. The bottom wall was heated to a 

constant temperature, whereas the left vertical wall was heated 

but it was considered non-isothermal for Rayleigh number 

equal to 105. Kazmierczak et al. [4] studied the transient 

natural convection in a square cavity due to a sinusoidal 

variation of the temperature in a hot vertical wall. The opposite 

wall (cold) was maintained at a constant temperature 

constantly lower than that of the vertical wall. They analyzed 

the effects of the period and the amplitude of the oscillating 

temperature through the cold wall of the cavity. All transient 

solutions were obtained in a periodic time. Ridouane et al. [5] 

studied numerically the laminar natural convection in a 

triangular cavity filled with air. The vertical walls were heated 

and the inclined walls were cooled. The variations of the 

Nusselt number were correlated according to the Rayleigh 

number and the angle of inclination (α compressed in the range 

of 5° to 63°). Also, the authors compared this rate of transfer 

with that of the differentially heated cavity. They show that 

this rate is very important for low Rayleigh and falls for the 

strong values of Rayleigh. Chamkha and Ismael [6] studied 

numerically the heat transfer convection-conduction in a 

square cavity heated by triangular solid wall in steady-state. 

The governing equations of the heat transfer were based on the 

Darcy model. They analyzed the effect of the nanofluid type, 

the voluminal fraction in nanoparticles, the Rayleigh number, 

the dimension of the obstacle and the thermal conductivity 

compared to the base fluid, on the characteristics of flow and 

heat transfer. Kholal et al. [7] studied numerically the mixed 

convection in a circular tube inclined to the horizontal and 

heated using a heat flow constant and uniform on its entire 

circumferential surface. The flow inside the tube was laminar. 

The governing elliptic differential equations were solved using 

the finite volume method and for a Reynolds number equal to 

500 and different combinations of the Grashof number (104, 

105, 106) and angle of inclination (0°, 30°, 60°, 90°). Francis 

et al. [8] made a study on natural convection in a space 
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between two concentric cylinders. They used a CFD 

calculation code to reproduce the experimental results. In this 

comparative study, the interest was mainly concentrated on 

large widths (of the order of half a meter or more) and large 

radius ratios. The steady-state CFD analysis consisting of 

concentric cylindrical models for larger geometries was 

compared favorably with the results of correlations of Kuehn 

and Goldstein [9-10] in the Rayleigh number varying between 

105 and 108. Khaleel and Dawood [11] examined numerically 

the influence of the installation of two adiabatic obstacles on 

the natural convection in a porous layer of constant thickness 

with different lengths and angular positions. This porous layer 

surrounded by two elliptic cylinders, isothermal hot surface for 

the inner wall and isothermal cold surface for the outer wall. 

Ghernoug et al. [12-13] studied numerically the phenomenon 

of the natural convection, in laminar and permanent in an 

annular space, situated between two horizontal eccentric 

cylinders, oriented according to an angle α. They considered 

in a first case, both cylindrical isothermal walls of the 

enclosure. In a second case, the inner cylindrical wall was 

submitted to a density flux constant. The effect of inclination, 

relative eccentricity values and Grashof number on the results 

obtained was examined. Bouras et al. [14-15] investigated 

double diffusive natural convection in an annular space 

between two elliptical cylinders of confocal horizontal axes. 

They used thermal Rayleigh numbers up to 5x105. Also, they 

examined the influence of Rayleigh number and Prandtl 

number on isotherms, is concentrations and streamlines. 

Mehrizi et al. [16-17] studied numerically the laminar natural 

convection by the method of Lattice Boltzmann, in two-

dimensional annulus between a heated triangular inner 

cylinder and an elliptical outer cylinder. A constant 

temperature limit condition was imposed on both the inner and 

outer surfaces. The study was performed for different angles 

of inclination of the inner triangular and outer elliptical 

cylinders. The space is filled with air as a working fluid. 

Mehrizi et al. [18] studied the effect of nanoparticles on the 

heat transfer by natural convection. Xu et al. [19] studied 

numerically the heat transfer by transitory natural convection 

of gallium between two coaxial cylinders in a circular cylinder 

on the outside and a triangular cylinder inside, for a Prandtl 

number equal to 0.023. 

According to these anterior results, it is clear that the study 

of the natural convection has been studied by different authors. 

However, the square ellipse enclosure has evoked 

considerable interest; it arises from available works very little 

information is currently available.  

In the present study, we are interested in the natural 

convection in an annular space delimited by two cylinders of 

horizontal axes, heated by a square inner cylinder and a cold 

elliptical outer cylinder. This annular space is traversed by a 

Newtonian and incompressible fluid, in steady-state and 

laminar. Particularly, we studied the effect of the Rayleigh 

number on the structure of the flow, the distributions of the 

temperature and the current function. Thus the rates of heat 

transfer are presented by the local and average Nusselt 

numbers. 
 

 

2. PHYSICAL MODEL MATHEMATICAL 

FORMULATION 
 

2.1 Description of the problem 
 

Figure 1 shows a cross section of the system. In this system, 

we consider the elliptical annular space characterized by the 

eccentricity of the outer elliptical tube (e = 0.7). The inner 

cylinder presents a heated square characterized by the 

dimension h, outer cylinder presents a cold elliptic. The 

annular space is closed and contains an incompressible fluid 

with a kinematic viscosity ν=1,50.10-5 and thermal diffusivity 

α= 2,08.10-5. The outer wall and the inner wall generate a 

vertical gradient in temperature (active walls). 

 
Figure 1a. Schematic presentation of the physical model 

 

 
 

Figure 1b. A typical grid distribution (230×130) with 

uniform and orthogonal distributions 

 

2.2 Simplifying hypotheses 
 

The flow of natural convection is caused by the thermal 

forces of pushes and remains laminar. It is supposed that the 

physical properties are constant except for the density of the 

mixture which depends on its temperature according to the 

relation of the approximation of Boussinesq: 

 

𝜌(𝑇) = 𝜌0[1 − 𝛽𝑡(𝑇 − 𝑇0)]                                                 (1)  

                                                              

We admit that the problem is two-dimensional, permanent 

and laminar. 

 

2.3 Mathematical formulation 

 

The characteristic quantities used to adimension the 

problem are: the temperature differences ΔT = Tc-Tf  between 

the walls of the system and the thermal diffusivity α of the 

fluid. 

The mathematical model includes the continuity equation, 

the momentum equations and energy equation. 

The equation of continuity com is written as follows: 

 

0
U V

X y

 
+ =

 
                                                                       (2)  
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The momentum equations are written as follows: 

 
2 2

2 2

U U P U U
U V

X Y X X Y

    
+ = − + +

    
                                    (3)   

                                                                 
2 2

2 2 Pr

V V P V V Ra
U V

X Y Y X Y


    
+ = − + + +

    
                         (4)  

                                                                

The equation of energy is written as follows: 

 
2 2

2 2

1

Pr
U V

X Y X Y

       
+ = + 

    
                                        (5)   

 

The initial condition is:     

 

0U V= =                                                                             (6) 

       

0 FT T T= =                                                                            (7)  

                 

In addition, the boundary conditions on the system are 

defined in the internal cylinder (trapeze) as follows: 

 

u = v = 0                                                                             (8)    

                                                               

T = TC                                                                                  (9)     

                                                          

However, in the external cylinder (ellipse), we can write: 

 

u = v = 0                                                                           (10)     

                                                                       

FT T=                                                                                 (11)    

                                                          

The dimensionless parameters that govern the problem are 

the thermal Rayleigh (Rat), Prandtl number (Pr) and Nusselt 

numbers (Nu). 

The thermal Rayleigh number for this problem is defined by: 

 

( ) 3

C F

T

g T T H
Ra





−
=                                                      (12)     

where H is the characteristic length, which is chosen as the 

space between the two cylinders. The number of Prandtl is 

defined as follows: 

 

Pr



=                                                                                (13)  

                                                                              

The local Nusselt number is defined on the characteristic 

length L by:  

 

l

Wall

Nu L
n


=


                                                                  (14)    

                                                    

where �⃗�  is a normal vector on the wall, and ф is the 

dimensionless temperature. The perimeter of the ellipse Pe and 

the perimeter of square P were chosen as the characteristic 

length L. 

The average Nusselt number for the ellipse and the square 

can be evaluated by:  

 

0

1 P

o LNu Nu dPe
Pe

=                                                           (15)     

                                                         

 Nu̅̅ ̅̅
s =

1

P
∫ NuL

P

0
dP                                                            (16)         

                                                       

The average Nusselt number for both surfaces is:       

 

2

e s

avg

Nu Nu
Nu

+
=                                                             (17)      

                                                                              

2.4 Meshing choice 

 

In this study, several grids were used arbitrarily for the 

considered configuration (Figure 1b) for Rat=105 to observe 

their effect on the results. Table 1 shows, therefore, the 

variation of the average Nusselt number, according to the 

considering nodes. According to these simulations the grid 230 

X 130 appears more adequate to choose. 

 

Table 1. Variation of the average Nusselt number according to the number of nodes for Rat=105 

 
MMesh size  200x100 210x110 220x120 230x130 240x140 

NNu (avg)  5.6496 5.5818 5.4955 5.4319 5.4250 

RRelative 

EError (%) 

1.2147       1.5704       1.1709         0.1272 

 

2.5 Numerical method  

 

The governing equations are solved iteratively by 

employing the control volume method. The commercial CFD 

code Fluent 6.3 was used as a solver to study the natural 

convection heat transfer, with the imposed boundary 

conditions. This method has the advantage of satisfying the 

mass, the momentum and energy equations in all the volumes. 

The computational domain was generated and meshed in the 

environment of the preprocessing code Gambit 2.3. Fine 

structured quadrilateral cells are generated in the thin 

boundary layers near the walls and grid structured not uniform 

tight are generated near to the borders of the walls. The spatial 

term in the governing equations are discretized using the Body 

Force Weighted implicit scheme. This type of scheme was 

recommended for the flows implying of important voluminal 

forces. The second-order scheme was used since it allows 

some stability and minimizes the numerical diffusion. The 

SIMPLE algorithm of Patankar and Spalding [20] was used to 

implement the pressure-velocity coupling. In addition, the 

residuals of calculation were controlled to ensure the 

convergence criterion and the stability of the solution. 

 

 

3. RESULTS AND DISCUSSION 

 

The effect of different Rayleigh numbers on the natural 

convection of heat transfers in an enclosure delimited by two 
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horizontal confocal cylinders elliptic and square, filled of air 

(Pr = 0.71) was studied for four different Rayleigh numbers. 

Results are presented in the form streamlines, isotherms, local 

and average Nusselt numbers. 

 

 
(a) Present work 

 

 
(b) Elshamy [24] 

 
Figure 2. Streamline (left half) and isotherms (right half) to 

Rat = 104 

 

 
 

 
 

Figure 3. Local Nusselt number along inner and outer 

ellipses  

 

The natural convection between the horizontal elliptic 

cylinders confocal by ElShamy et al. [21] was chosen for the 

validation of this study. These results were presented in the 

form of isotherms and of streamlines for two different 

Rayleigh numbers, as shown in figure 2. Moreover, the local 

Nusselt number was compared with the results of ElShamy 

[21] for different Rayleigh numbers extending from 104 to 105 

(figure 3). In the case of two elliptic horizontal confocal, the 

eccentricity of the inner and outer wall was taken 0.9 and 0.4, 

respectively, and the Rayleigh number equal to 104 (figure 2). 

The local Nusselt numbers of the inner and outer cylindrical 

ellipse for two Rayleigh numbers based on original paper 

description were plotted in figure 3. The result indicates an 

acceptable agreement with the results which presented by 

ElShamy et al. [21]. In every case, the results show that two 

symmetrical cells of recirculation are formed in right and left 

of the vertical symmetry of the cavity. It due to the strength of 

buoyancy produces by gradient of temperature. In these 

conditions, the fluid is raised on the side of inner cylinder, and 

the flow becomes fresh and denser by the outer cylinder.  

 

3.1 Effect of the thermal Rayleigh number 

 

Figure 4 shows the isotherms and streamlines for different 

values of the thermal Rayleigh number equal to 𝑅𝑎𝑡 =
1.3 103, Rat = 104, 𝑅𝑎𝑡 = 3.3 104 and 𝑅𝑎𝑡 = 5.5 105. 

For the thermal Rayleigh number equal to 1.3 103 (figure 

4(a)), the isotherms are concentric around the square. As for 

streamlines, it has been observed that the flow is organized in 

two cells which turn very slowly in opposite directions, one to 

the right and the other to the left of the inner wall. The two 

cells are similar in shape and symmetrical to a vertical line 

passing through the center of the square. The values of the 

streamlines are very small. The process of heat transfer takes 

place mainly by conduction because the convection is weak. 

The buoyancy force is proportional to the difference in 

temperature being very low. 

 

 
(a) Rat=1.3×103 

 

 
(b) Rat=104 

 

 
(c) Rat=3.3× 104 

 

 
 

(d) Rat=5.5× 105 

 

Figure 4. Isotherms and streamlines 
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In the case of the thermal Rayleigh number equal to 104 

(figure 4(b)), the isotherms change substantially to follow the 

direction of flow. Also, the values of the streamlines on the 

same figure increase significantly, reflecting a transformation 

from conductive to convective transfer. The hot fluid in the 

vicinity of the square tube rises under the effect of buoyancy 

and the cold fluid near the elliptical cylinder falls under the 

effect of gravity. 

For Rat = 3.3×104 (figure 4(c)), the isotherms with the top 

of the square tube change the hemispherical form to the shape 

of thermal plume. The ascending flow appears monocellulaire 

on the side of the cylinder interior and going down on the side 

of the cylinder external. In this case, the natural convection 

predominates and the values of the streamlines increase. At 

higher Rayleigh. 

Rat = 5.5×105 (figure 4(d)), the boundary layers become 

thinner and longer. The centers of the recirculation cells move 

upwards because the convection effects become greater. The 

heat transfer rate and the value of the streamlines are higher. 

So, we find that the intensity of the flow increases with the 

growth of the Rayleigh number 

 

3.2 Local Nusselt number along the outer  

 

Figure 5 illustrates the evolution of the local Nusselt 

number on the wall of the elliptical cylinder. According to 

these results, it is clear that the increase of the Rayleigh 

number increases the value of the local Nusselt number. For a 

small Rayleigh number Rat = 1.3×103, this increase is small 

since most heat transfer is conductive. For the largest values 

of the Rayleigh number (Rat = 3.3×104 and 5.5×105), the 

maximum of the local Nusselt number is reached at the angular 

position θ = 90°. However, the minimum value is located in 

the lower part of the elliptical cylinder located at θ=270 °. In 

this range of Rayleigh numbers, most of the heat transfer is by 

convection, as we have deduced from figure 4. 
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Figure 5. Variation of the local Nusselt number along the 

outer wall 

 

3.3 Local Nusselt number along the inner wall 

 

Figure 6 presents the variation of the local Nusselt numbers 

along the inner walls. According to these results, it has been 

noted that the increase in the thermal Rayleigh number, the 

value of the local Nusselt number increases. The Nusselt 

number is important in the corners of the square tube and is 

low on the rest of the square.Indeed, it has been observed that 

the local Nusselt number is larger on the two upper corners, 

where the heat transfer rate is important compared to two 

bottom corners. 

 

 
 

Figure 6. Variation of the local Nusselt number along the 

inner wall 

 

3.4 Average Nusselt number 

 

 
 

 
 
Figure 7. Variation of the average Nusselt number according 

to the thermal Rayleigh number 

 

Figure 7 illustrates the variation of the average Nusselt 

number as a function of the thermal Rayleigh number. 

According to these results, it is clear that at low values of the 

thermal Rayleigh number (Rat≤104), the Nusselt number 

values are constant and almost close to the conductive value. 

So, the heat transfer is essentially conductive when the 

Rayleigh number is small as we have deduced from figure 4. 

For the greatest values of the thermal Rayleigh number, the 

rate of the thermal transfer increases with the increase of the 

thermal Rayleigh number. Then, the transfer of the heat 

becomes convective. 

 

383



 

4. CONCLUSIONS 

 

In this paper, we have numerically studied the laminar and 

permanent two-dimensional natural convection in an annular 

space between two cylinders. The inner cylinder is square in 

shape and the outer cylinder is elliptical, filled with a 

Newtonian and incompressible fluid. 

The mathematical model describing the present problem 

was developed based on the continuity equation, the Navier-

stokes equations and the energy equation. We have presented 

the effect of the thermal Rayleigh number on the flow structure, 

the temperature distributions and the streamline as well as the 

heat transfer rates represented respectively by the local and 

average Nusselt numbers. 

The obtained results confirm that for a small thermal 

Rayleigh number, the heat transfer within the annulus is 

essentially controlled by the conduction process. As the 

thermal Rayleigh number increases (Rat ≥104), the role of 

convection becomes predominant. The local and average 

Nusselt numbers increase with the increase of the thermal 

Rayleigh number. The local Nusselt number is important in the 

corners of the square wall (bigger on the two upper corners) 

and small on the rest of the latter. On the hot wall, the 

maximum of the local Nusselt number is reached at the angular 

position (θ = 90 °), and the minimum is reached in the lower 

elliptical cylinder (θ = 270 °). 

These results will be used for the design of engineering and 

the process improvement of the heat exchangers, the drying 

processes, the cooling of electronic circuits and the cooling of 

nuclear reactors. 
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NOMENCLATURE 

 

a                     Grand axe de cylindre elliptique  

b                     Petit axe de cylindre elliptique  
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Nuavg              Nombre de Nusselt moyen 

h                  Longueur de la carré, m  

𝑁𝑢̅̅ ̅̅
𝑒𝑙𝑙𝑖𝑝𝑠𝑒        Nombre de Nusselt locol externe   

𝑁𝑢̅̅ ̅̅
𝑐𝑎𝑟𝑟é          Nombre de Nusselt locol externe  

Pr :                 Nombre de Prandtl                                       

e                     Excentricité de l'ellipse   

Rat                  Nomber de Rayleigh thermique  

P                     Pression au sein du fluide  

∆T                   Ecart de température, K                

Tf                    Température de la paroi froide externe, K 

Tc                    Température de la paroi chaude externe, K 

 

Lettres grecques 

 

α                   Diffusivité thermique,m2/ s 

β                   Coefficient d’expansion 

ν                   Viscosité cinématique, m2/S 

θ                   Angle 

ρ                   Masse volumique du fluide, kg/m3 
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