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The solution of two-dimensional steady and transient fluid flow problem by the truly 

meshless local Petrov-Galerkin (MLPG) method has been addressed in the present article. 

The unknown function of velocity u(x) is approximated by moving least square approximant 

uh(x). The essential boundary condition is imposed both by the direct and penalty function 

methods. Fourth order spline weight function, monomial basis function and a set of non-

constant coefficients are used to construct the approximants. The two-level  method is 

employed for temporal discretization. The results obtained by the MLPG method are 

compared with the analytical solution and also with the benchmark method results and found 

to be in the excellent agreement. 
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1. INTRODUCTION

Finite element method (FEM) has been established as a 

powerful numerical technique to address the complex 

problems of different engineering domains; still it is 

encountered with certain limitations including the mesh 

creation, which is a costly and time consuming task than the 

assembly and solution of the FE equations. Also, there are 

certain class of problems for which the FEM is not a suitable 

technique to address. To overcome these problems, a large 

number of meshless methods have been evolved in the recent 

years. Some of these methods are: smoothed particle 

hydrodynamics (SPH) method [1-3], diffuse element method 

[4], local boundary integral equation (LBIE) method [5-6], 

element free Galerkin (EFG) method [7-8], finite point method 

(FPM) [9], MLPG method [10-12], point interpolation method 

(PIM) [13], radial point interpolation method (RPIM) [14-16] 

and meshfree weak-strong form (MWSF) methods [17], etc. 

However, among all the meshfree methods, the MLPG 

method has become quite popular due to its successful 

acceptability in various fields of engineering [18-23]. In this 

method the domain discretization originates from a weak form 

over a local sub-domain of arbitrary shape which is located 

completely inside the global domain. It constructs the global 

stiffness matrix through the integration over local sub-

domains, naturally. Integration over local domains removes 

the need of any background mesh over entire domain. Thus, 

the proposed method does not need any mesh either at the 

stage of interpolation or at the stage of integration; hence, it 

can appropriately be called a truly meshfree method. 

The MLPG method works on Petrov-Galerkin formulation 

i.e. it picks up test and trial functions from different function

spaces. This feature provides the flexibility to formulate the

discretization method in different ways. However, there is a

strong base of available literature [24-31] that proves that the

MLPG method is one of the promising methods to solve

complex engineering problems including fluid flow problems

efficiently and effectively. 

In the present article, the MLPG method is used to solve the 

steady and transient fluid flow problems in two-dimensional 

space. Direct method of interpolation (DM) and penalty 

function methods (PM) [32] are used to enforce the essential 

boundary conditions (EBC). C++ codes have been developed 

to model the problem. The results obtained by the MLPG 

method are compared with that of the analytical and 

benchmark solutions. 

2. THE MLPG METHOD

The MLPG method utilizes the MLS scheme [33], which 

consists of three components: a completely monomial basis 

function, a set of coefficients that depends on node position 

and a weight function associated with each node. The 

unknown function u(x) is approximated by MLS approximant 

uh(x) as,           
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where pT(x) = (p1 (x), p2 (x),……, pm (x)) is a complete 

monomial basis. The coefficient vector a(x) is determined by 

minimizing a weighted discrete L2 norm defined as, 
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where w(x, xi) is a weight function, u(xi) = ui is the nodal 

parameter of the field variable at node xi and n is the number 

of nodes in the support domain of x for which the weight 

function 𝑤(𝑥, 𝑥𝑖) ≠ 0. The stationarity of J with respect to a(x)
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results in the following linear system: 

 

A(x)a(x) = B(x)u                                                    (3) 

 

The above equation can be written as,  

 
1( ) −=a x A (x)B(x)u              (4) 

                                         

where matrices A(x) and B(x) are defined as, 
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Substituting a(x) in Eqn. (1), the MLS approximant is 

obtained as, 
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The choice of weight function affects the resulting 

approximation uh(x). The weight function w(x, xi) is non-zero 

over a small domain in the neighbourhood of node xi. 

Therefore, the selection of appropriate weight function is 

essential in the MLPG method. The fourth order spline weight 

function [34] is used in the present analysis and can be written 

as, 
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where 𝑑𝑖 = ‖𝒙 − 𝒙𝒊‖, i.e. the Euclidean distance from node xi 

to point x. 

MLS shape functions do not possess Kronecker delta 

function property; hence, imposition of EBC is not an easy 

task.  

 

 

3. DISCRETIZATION OF GOVERNING EQUATIONS 
 

An incompressible fluid flowing through a long and 

uniform duct is considered in Fig. 1. 

 

 
 

Figure 1. Model cross-section of the fluid flowing through a 

duct 

The momentum equation for incompressible fluid flowing 

through a long and uniform duct is given as, 
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The initial and essential boundary conditions are, 
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The weighted residual formation for Eqn. (9) in local 

domain ΩQ can be expressed as, 
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The weak form of the Eqn. (11) is obtained as, 
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3.1 Enforcement of boundary conditions by the Penalty 

function method (PM) 

 

The penalty parameter can be expressed by α and is equal 

to 1 x 1010. 
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The unknown function, u, at any instant of time t, is 

approximated by MLS scheme as follows: 
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The following relations are obtained: 
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3.2 Enforcement of boundary conditions by the direct 

method of interpolation (DM) 
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Temporal discretization has been addressed by two-level  

method [35] as,  

 
' 1 '[ ] [ ( 1) ]n nt t t ++  = + −  + C K T C K T F

        
(22) 

 

Where, n’ denotes the time level. 

 

 

4. NUMERICAL RESULTS AND DISCUSSIONS  

 

In this section, viscous incompressible fluid flowing 

through a long and uniform duct is simulated by the MLPG 

method. Both, steady-state and transient analysis are 

performed. The fluid properties such as viscosity and density 

are assumed to be constant.  

The model and its data used for the steady-state and 

transient analysis of fluid flowing through a long duct are 

shown in Table 1 and Table 1 respectively.  

  

Table 1. Data for two-dimensional steady-state and transient 

fluid flow 

 

Parameter Value of the Parameter 

D 0.10 m 

H 0.10 m 

-∂p/∂z 4000 N/m2/m 

ρ 1000 kg/m3 

μ 2.5 Ns/m2 

us 0.0 m/s 

uini 0.0 m/s 

∆t 0.01 s 

 

The accuracy of the results in two-dimensional analysis, 

obtained by the MLPG method, largely depends upon the 

values of parameters like-order of basis function (m), number 

of internal nodes required in the support domain for the 

interpolation of point of interest (NSN), number of nodes 

required on the boundary of support domain for the 

interpolation of point of interest (NSB) and number of nodes 

required to calculate average nodal spacing (NL); so, there is a 

strong need to identify the optimum range of these parameters 

before initialization. 
According to Liu and Gu [34], for two-dimensional cases, 

the average nodal spacing can be calculated by, 
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                                   (23) 

 

where, AS is the area of the estimated support domain; nAS is 

the number of nodes covered by the estimated domain with the 

area of AS. 

 

4.1 Steady-state analysis 

 

A study has been conducted for the steady-state problem to 

identify the optimum range of parameters at the centre of duct 

(x= H/2, y= D/2) by calculating the relative errors with respect 

to the analytical solution [8]. 

The optimum range of parameters for steady-state analysis 

has been identified as 7 for NSN, 7 for NSB and 6 for NL 

respectively at 121 and 324 nodes for m=3. 
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Figure 2. Variation of relative error for NSN by taking PM 

and DM for the enforcement of EBC 
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Figure 3. Variation of relative error for NSB by taking PM 

and DM for the enforcement of EBC 
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Figure 4. Variation of relative error for NL by taking PM and 

DM for the enforcement of EBC 

 

Table 2. Comparison of MLPG results with analytical 

solution under steady-state conditions at x= H/2, y= D/2 of 

the duct cross-section 

 
S. 

No.  

Number of 

nodes 

Analytical 

solution result 

MLPG results 

v, m/s % Error 

PM 

1 121 
1.1802 

1.1801 0.0085 

2 324 1.1972 1.4404 

DM 

1 121 
1.1802 

1.1822 0.1695 

2 324 1.1975 1.4659 

 

Table 2 shows an error estimate for the MLPG method at 

the centre of the duct cross-section. The maximum error 

obtained by the PM and DM has been found to be 1.44% and 

1.46% respectively at 324 nodes. However, this error is 

0.0085% and 0.1695% respectively at 121 nodes; hence, the 

results obtained by the MLPG method at 121 nodes are more 

accurate than 324 nodes. Also, the PM is found to be more 

accurate than DM. 

 

4.2 Transient analysis 

 
The analysis of transient model has been carried out in this 

section by the MLPG method by using the PM and DM at 121 

and 324 nodes respectively. A study to identify the optimized 

range of parameters have been conducted and explored as m=3, 

NSN= 7, NSB=7 and NL=6 for 121 nodes and m=3, NSN= 7, NSB=7 

and NL=5 for 324 nodes respectively.  
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Figure 5. Transient two-dimensional analysis of fluid flow 

problem at x= H/4, y= D/4 
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Figure 6. Velocity of fluid at x/H = 0.0125 obtained by the 

MLPG method using PM 
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Figure 7. Velocity of fluid at x/H = 0.025 obtained by the 

MLPG method using PM 
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Figure 8. Velocity of fluid at x/H = 0.050 obtained by the 

MLPG method using PM 

Y=y/D

0.0 0.2 0.4 0.6 0.8 1.0

V
e
lo

c
it
y
, 
m

/s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 s

0.4 s

0.6 s

0.8 s

1.0 s

Steady- State

 
121 nodes 

Y=y/D

0.0 0.2 0.4 0.6 0.8 1.0

V
e

lo
c
it
y
, 
m

/s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 s

0.4 s

0.6 s

0.8 s

1.0 s

Steady- State

 
324 nodes 

 
Figure 9. Velocity of fluid at x/H = 0.0125 obtained by the 

MLPG method using DM 
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Figure 10. Velocity of fluid at x/H = 0.025 obtained by the 

MLPG method using DM 
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Figure 11. Velocity of fluid at x/H = 0.050 obtained by the 

MLPG method using DM 

A comparison of the MLPG results and the benchmark 

method results [8] at x= H/4, y= D/4 for 121 and 324 node 

numbers respectively are demonstrated in Fig. 5. The results 

obtained by the MLPG results are found to be in good 

agreement with the benchmark method results; also, the figure 

demonstrates the superiority of the PM over DM. 

Figs. 6-8 show the progression of fluid velocity with time at 

different locations along the cross-section of the duct till the 

attainment of steady-state by the MLPG method for 121 and 

324 nodes respectively. 

The EBC is imposed by the PM. The velocity is found to be 

least near the walls of the duct and most at the centre of the 

cross-section i.e at x/H = 0.050. 

Figs. 9-11 show the progression of fluid velocity with time 

at different locations along the cross-section of the duct till the 

attainment of steady-state by the MLPG method for 121 and 

324 nodes respectively. The EBC is imposed by the DM. The 

velocity is found to be least near the walls of the duct and most 

at the centre of the cross-section i.e at x/H = 0.050.  

It is because of the boundary conditions imposed on the four 

boundaries of the duct cross-section (refer Eqn. 10). At and 

near the surfaces the velocity of fluid is assumed to be 

negligible; however, the fluid velocity apart from the surface 

gradually increases and reaches to maximum at the centre due 

to no or less effect of boundary conditions. It can also be 

observed that after certain period of time the time-profiles 

attain the steady-state.  

 

 

5. CONCLUSIONS 

 

The MLPG method, due to its flexibility in formulation is 

employed to investigate the fluid flow problems. Careful 

selection of parameters yield the accurate results. In the 

steady-state and transient two-dimensional fluid flow problem 

the EBC is imposed both by the DM and PM respectively. 

Two-level  method has been employed in both the problems 

for temporal discretization. The fourth order spline weight 

function has been used to interpolate the test function. C++ 

codes have been developed to model the sample problems. The 

results obtained by the model problems have been compared 

with that of the analytical and benchmark solutions and found 

to be in very good agreement. The fluid velocity is found to be 

highest at the centre of the cross-section of the duct. Finally, it 

can be concluded that the MLPG method can be a good choice 

to solve the fluid flow though a long and uniform duct with 

meshing and remeshing of computational domain. 
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NOMENCLATURE 

 

A Cross-sectional area of duct, m2 

a(x) Vector of coefficients 
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A(x) Weighted momentum matrix 

D Bredth of duct, m 

F Load vector 

H Length of duct, m 

K Stiffness matrix 

p(x) Basis function 

∆t Time step, s 

uf Fluid velocity, m/s 

us Fluid velocity along the surface of duct, m/s 

ui Nodal parameter of u at x=xi 

uini Initial velocity of fluid, m/s 

u(x) Unknown scalar function of a field variable 

v Test function for MLPG method 

w Weight function 

wi Gauss weights 

x Coordinate in x- direction 

y Coordinate in y- direction 

Greek symbols 

 

 

 Penalty parameter 

 thermal expansion coefficient, K-1 

Γ Boundary of global domain 
Γ1 Boundary of the top surface of the duct 

Γ2 Boundary of the left surface of the duct 

Γ3 Boundary of the bottom surface of the duct 

Γ3 Boundary of the right surface of the duct 

μ
 

Dynamic viscosity, Ns/m2 

ρ Density of material, kg/m3 

Φ
 

MLS shape function 

  Domain 

ΩQ Local domain 
 ΩQ Boundary of local domain 
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