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Hydrogen sulphide coolers are jacketed shell-and-tube heat exchangers designed to cool 

down the gas from 416.15 K to 310.15 K, as well as to remove sulphur carryovers. It is 

difficult to accurately compute their performance by traditional methods, since thermal 

analysis is based on several simplifications and empirical correlations. To overcome this 

limitation, the aim of present research was to propose an artificial neural network model for 

prediction of coolers outputs, using the mean absolute percentage error, correlation 

coefficient and extrapolation capability as selection criteria. Structure optimization was 

carried out through a network growing strategy, using 120 experimental data points for 

networks training, validation and testing. Model generalization was verified by comparing 

responses against the predictions of a validated phenomenological model, based on the  

ε-NTU method, for one set of 20 unseen data points. Best performance was obtained with the 

6-5-4-3 multilayer perceptron, using the Levenberg-Marquardt learning algorithm. 99.47 % 

overall correlation and 0.33 % mean absolute percentage error were achieved when 

computing the hydrogen sulphide and water streams outlet temperatures. Despite the high 

prediction performance, a few model responses were found deprived of physical sense.  
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1. INTRODUCTION

Hydrogen sulfide (H2S) is a toxic and flammable gas that 

occurs both naturally and from human-made processes. 

Although it is usually obtained from “sour gas” contained in 

natural gas, the commercial way to produce a high-purity 

stream is by reacting hydrogen with molten sulphur at 698 - 

753 K and 800 kPa. Applications for this compound include 

nuclear industry heavy water, sulfur and sulfuric acid 

production, nickel plus cobalt hydro metallurgical extraction, 

methyl mercaptan and gas odorizers manufacture, among 

others [1]. 

Present research was carried out in an online system of 

hydrogen sulphide gas coolers, belonging to a 99.8%-purity 

production plant. The function of these jacketed shell-and-

tube heat exchangers is to cool down the main process stream 

from 416.15 K to 310.15 K, and remove the remaining 

sulphur carried over by the gas. Because of the complex 

nature of the heat transfer processes simultaneously occurring 

within mentioned equipment, their performance has not been 

accurately calculated at the plant site by traditional rating 

methods. A set of simplifications and assumptions were 

introduced by the engineers to make the theoretical model 

simple enough for the analysis [2-3]. In this respect, novel 

techniques are required for improved prediction of the heat 

exchangers outputs. 

Artificial neural networks (ANN) have been successfully 

employed for various heat transfer applications and thermal 

analysis of heat exchangers. Once trained, they are a quick 

and reliable tool for anticipating thermal processes 

performance. Other advantages are precise approximations of 

complex non-linear problems, greater efficiency than 

phenomenological models and “black box” approach, hence 

not requiring a detailed knowledge of the physical 

phenomena describing the system under analysis [3-6]. 

Several authors have used ANN for shell-and-tube heat 

exchangers modeling. Pandharipande et al. [7] optimized a 

multilayer feed forward network, also called a perceptron, in 

order to estimate hot and cold water outlet temperatures as a 

function of flow rates and inlet temperatures. The research 

was carried out at lab scale, using a 0.39 m2 heat exchanger. 

Mandavgane & Pandharipande [8] conducted a similar 

research, employing the same experimental setup for two 

study cases: water–20% glycerin and water–40% glycerin. A 

more rigorous study was implemented by Xie et al. [9], who 

investigated three shellside heat exchanger configurations. 

Prediction of outlet temperature differences for each fluid 

and overall heat transfer rates was performed, by using eight 

independent variables: Inlet temperatures, tubeside and 

shellside Reynolds number, tubes quantity, center tube 

diameter, baffles number and baffle pitch. 

Another model was further developed by Moghadassi et al. 

[10], establishing 22 networks for anticipating different fluids 

properties and equipment parameters. Data sets were 

collected form Kern’s book, TEMA standard and Perry’s 

handbook. Different from above-mentioned studies, an 

industrial scale research was carried out by Jasim [11] for 

prediction of water and air exit temperatures in an online air 

cooler. Selected input variables were water and air inlet 

temperatures, as well as air mass flowrate. Network training 

and testing were accomplished by means of a 200 

experimental data points.  

Mathematical Modelling of Engineering Problems 
Vol. 5, No. 4, December, 2018, pp. 348-356 

Journal homepage: http://iieta.org/Journals/MMEP 

348



 

Lastly, Iyengar [12] performed thermal analysis of a one-

shell-pass two-tube-passes heat exchanger, with design 

parameters taken from a literature case study. Kern’s method 

correlations were used to generate 1080 data points. 

Independent variables were velocity, baffle distance, pipe 

thickness and tube pitch, while outputs consisted of overall 

heat transfer coefficient and pressure drops. 

On previous researches, statistical parameters like mean 

absolute percentage error (MAPE), mean squared error 

(MSE), coefficient of determination ( 2R ) and correlation 

coefficient ( R ) were used to choose the network structure 

that performs better. However, generalization ability was not 

evaluated even when overfitting and extrapolation errors are 

well-known limitations of ANN [4, 6]. Industry equipment 

simulations require not only to be accurate, but also 

reasonably effective beyond experimental data. Taking these 

facts into account, the objective of present study is to propose 

an ANN model for prediction of hydrogen sulphide gas 

coolers outputs, assessing the extrapolation capability during 

the network structure optimization process.  

 

 

2. SYSTEM DESCRIPTION AND EXPERIMENTAL 

SETUP 

 

The studied system consists of four jacketed shell-and-tube 

heat exchangers, having “BEU with external jacket” type 

designation according to the TEMA standard [13]. They are 

three-fluid heat exchangers. 

Each pair operates independently, in a series/parallel 

arrangement (Figure 1). The hydrogen sulphide gas flows on 

the shellside, in a single pass, while the cooling water 

circulates at the tubeside, in four passes, as well as one pass 

through the external jacket. Every heat exchangers pair 

operates for eight hours in gas cooling service, and later they 

are switched over to supply steam (at the tubeside and the 

jacketside) for four or six hours to remove sulphur buildups 

from inside the equipment. While one set operates in the 

cooling cycle, the other runs in sulphur drainage service. 

 

 
 

Figure 1. Hydrogen sulphide gas coolers pair 

 

Three experimental observations were performed for eight 

hours on alternate days, after starting the same heat 

exchangers pair in the cooling service. During each cycle, 

twenty measurements of the mass flowrates, inlet and outlet 

temperatures were recorded for every stream (tubeside water, 

hydrogen sulphide and jacketside water) on each cooler. A 

120 rows database was arranged. 

The following instrumentation was used: 

• Temperatures: industrial thermowells and Ashcroft 

bimetallic thermometers, 0.1 K measurement precision; 

• Water flowrate: Proline Prosonic Flow 93T portable 

flowmeter, 6.3·10-6 m3/s measurement precision; 

• Hydrogen sulphide flowrate: 4-20 mA process signal to 

a Siemens S7-400 PLC and Citect SCADA 7.10 system, 10-4 

kg/s measurement precision. 

 

 

3. ANN MODEL DEVELOPMENT 

3.1 Methodology overview 

A multilayer perceptron (MLP) was used for prediction of 

the hydrogen sulphide gas coolers outputs. According to 

Mohanraj et al. (2015), this is the most suitable ANN 

architecture for heat exchangers modeling and simulation [4]. 

Those operational parameters having a relevant effect on 

desired outputs were considered. Therefore, selected input 

variables were inlet temperatures, mass flowrates and time, 

while the response variables conformed to the outlet 

temperatures of involved three fluids (Figure 2). Operating 

time was included as an independent variable due to its 

influence on fouling factor and, consequently, deleterious 

effect on the overall heat transfer coefficient [2]. 

 

 
 

Figure 2. ANN schematic model 

 

The number of neurons in the input and output layers 

equals the number of independent and dependent variables, 

respectively [3, 4, 6]. Optimization of the number of hidden 

layers and hidden neurons was performed by means of a 

network growing strategy, because smaller networks with 

fewer weights and biases usually generalize better. Besides, 

this is a more efficient approach than pruning algorithms, 

where the majority of the learning time is dedicated to 

configurations that are bigger than necessary [14].  

A total of 27 network structures were tried and results 

subsequently compared. Training, validation and testing of 

every network configuration was carried out by using 120 

data points, obtained through the experimental method. 

Levenberg-Marquardt (LM) and Bayesian Regularization 

(BR) back propagation learning algorithms were 

implemented during this stage (refer to section 3.2). 

Extrapolation capability was determined by comparing the 

trained neural network outputs against the predictions made 

by a phenomenological model, for a different set of 20 data 
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points that was gathered by means of a central composite 

design (refer to section 3.3). The optimized ANN model was 

chosen on the basis of its predictive ability performance, by 

computing the correlation coefficient and the MAPE for  

the entire 140 points databases. MATLAB was used for all 

calculations. 

3.2 Networks training, validation and testing 

The ANN optimization was performed by changing the 

number of hidden neurons and hidden layers, as well as the 

training algorithm, to find out the network architecture with 

best predictive capability. The number of hidden layers was 

studied from 1 to 3, while total number of hidden neurons 

was varied from 1 to 19, with an increment of two (Table 1). 

 

Table 1. Studied ANN structures 

 
Case Hidden  

layers 

Hidden 

neurons 

Network 

configuration 

1  1 6-1-3 

2  3 6-3-3 

3  5 6-5-3 

4  7 6-7-3 

5 1 9 6-9-3 

6  11 6-11-3 

7  13 6-13-3 

8  15 6-15-3 

9  17 6-17-3 

10  3 6-2-1-3 

11  5 6-3-2-3 

12  7 6-4-3-3 

13  9 6-5-4-3 

14 2 11 6-6-5-3 

15  13 6-7-6-3 

16  15 6-8-7-3 

17  17 6-9-8-3 

18  19 6-10-9-3 

19  3 6-1-1-1-3 

20  5 6-3-1-1-3 

21  7 6-3-3-1-3 

22  9 6-5-3-1-3 

23 3 11 6-5-3-3-3 

24  13 6-5-5-3-3 

25  15 6-5-5-5-3 

26  17 6-7-5-5-3 

27  19 6-7-7-5-3 

 

The log-sigmoid transfer function (logsig) was used for all 

hidden layers, thus allowing the network to learn linear and 

nonlinear relationships between input and output vectors. As 

logsig generates outputs between 0 and 1, it provides positive 

values for the response variables as expected for the 

investigated heat exchangers outlet temperatures. However, 

the linear transfer function (purelin) was employed for the 

output layers, to ensure that model responses are not limited 

to a small range of values as it happens if sigmoid neurons 

are utilized [15]. 

Every network structure was trained with two back 

propagation algorithms: LM and BR. The first learning 

procedure is a second-order numerical optimization 

technique that combines the advantages of Gauss-Newton 

and steepest descent algorithms. In general, for function 

approximation problems, it has higher stability and faster 

convergence for moderate size networks as compared to 

other training algorithms. The second one is an automated 

mathematical process that converts a nonlinear regression 

into a well-posed statistical problem, in a ridge regression 

manner. It minimizes a combination of squared errors and 

weights, and then determines the correct solution so as to 

produce a network that generalizes well. The BR training 

algorithm is considered as one of the best approaches to 

overcome the overfitting tendencies of neural networks, 

although it generally takes longer to converge than early 

stopping. In both cases the performance function was set to 

the MSE [10, 15-16].  

Inputs and targets data were all normalized to fall into the 

range between 0 and 1, in order to make the training 

procedure more efficient and enhance the learning speed [3, 

15-16]. Eq(1) was used for this purpose. 

 
min( )

max( ) min( )

i
i

X X
Y

X X

−
=

−
 (1) 

 

Where: Y – normalized value; X – primary data. 

Since networks were trained under supervision, the 

experimental data was randomly divided into three data sets 

when applying the LM algorithm: 70 % for training, 15 % for 

validation and 15 % for testing. Each set was selected to be 

representative of all points in the entire experimental range [4, 

10, 13]. In the case of the BR algorithm 30 % of the data was 

used for testing, as this procedure does not require that the 

validation data set be separate from the training one [15]. 

MATLAB default training parameters were applied. 

After completion of the training stage every network 

structure was tested and outlet temperatures prediction 

performances were compared. The configuration reporting 

higher overall correlation coefficient and lower MAPE was 

chosen as the best performing network. 

3.3 Extrapolation capability assessment 

3.3.1 Extrapolation test database 

The 20 points database used to determine the networks 

extrapolation capability was analytically obtained by varying 

the fluids mass flowrates, which are the three independent 

variables prone to significant changes within the hydrogen 

sulphide cooling process. A central composite design was 

applied, consisting of a 23 full factorial design extended with 

properly planned extra runs (Figure 3). This approach is very 

useful for fitting response-surface models and optimization 

[17]. 

Points at the corners of the central composite cube were 

defined by experimental poles plus/minus the standard 

deviation, whereas the star points outside the face-center of 

the cube were calculated by adding/subtracting two times the 

standard deviation (Table 2). According to a standard normal 

distribution, 68.26 % and 95.44 % of the scores lie within 

one and two times the standard deviation, respectively [18]. 

The flowrate-related input variables were determined as 

per the above, although fixed values were considered for 

remaining independent variables. While means were used for 
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inlet temperatures (307.45 K for water and 405.83 K for 

hydrogen sulphide), the maximum magnitude was considered 

for the operating time (8 h). On the other hand, values of the 

response variables were calculated through the model 

described on next section. 

 

 
 

Figure 3. Three-factors central composite design 

 

Table 2. Extrapolation test database input variables 

 
 Mass flowrates (kg/s) 

No. Tubeside 

water 

Hydrogen 

sulphide 

Jacketside 

water 

1 0.5310 1.0301 0.2140 

2 0.6390 1.0301 0.2140 

3 0.5310 1.1515 0.2140 

4 0.6390 1.1515 0.2140 

5 0.5310 1.0301 0.2370 

6 0.6390 1.0301 0.2370 

7 0.5310 1.1515 0.2370 

8 0.6390 1.1515 0.2370 

9 0.5850 1.0908 0.2255 

10 0.5850 1.0908 0.2255 

11 0.5850 1.0908 0.2255 

12 0.5850 1.0908 0.2255 

13 0.5130 1.0908 0.2255 

14 0.6570 1.0908 0.2255 

15 0.5850 1.0027 0.2255 

16 0.5850 1.1789 0.2255 

17 0.5850 1.0908 0.2100 

18 0.5850 1.0908 0.2410 

19 0.5850 1.0908 0.2255 

20 0.5850 1.0908 0.2255 

 

3.3.2. Reference phenomenological model 

A phenomenological model was established to compute 

the outlet temperatures of the three streams involved in the 

hydrogen sulphide cooling process, as function of mass 

flowrates, inlet temperatures and fluids thermo-physical 

properties. Basic relationships used for this purpose were: 

Eq(2) the heat transfer rate equation, based on first law of 

thermodynamics under no phase change and constant specific 

heats; Eq(3) the overall energy balance applied to the studied 

heat exchangers assuming steady-state, steady flow, plus no 

heat losses to the surroundings [2, 19]. 

 

{1, 2,3}n     ( )n n nQ m Cp T=    (2) 

 

2 1 3Q Q Q= +  (3) 

 

where: Q – heat transfer rate, W; m  – mass flowrate, kg/s; 

Cp – specific heat at constant pressure, J/(kg·K); T – 

temperature difference, K. Subscripts: 1– first fluid (tubeside 

water); 2 – second fluid (shellside hydrogen sulphide); 3 – 

third fluid (jacketside water). Key properties of the main 

process stream are shown below (Table 3) [1]. 

 

Table 3. Hydrogen sulphide thermo-physical properties 

 
Property Description / Value Units 

Physical state Gas - 

Molecular weight 34.081 kg/kmol 

Density * 9.224 kg/m3 

Dynamic viscosity * 1.59·10-5 Pa·s 

Specific heat * 1086.911 J/(kg·K) 

Thermal conductivity * 0.229 W/(m·K) 

* Note: Fluid properties at 363.15 K and 0.79 MPa (absolute). 

 

By rearranging Eq(2), both water streams outlet 

temperatures are calculated as: 

 

{1,3} and { , }n k a b         
 out  inn n

k

n

Q
T T

C
= +  (4) 

 

where: T – fluid temperature, K; C – heat capacity rate, W/K, 

used to replace the term ( )m Cp . Subscripts: a – inner 

thermal communication, between tubeside and shellside 

fluids; b – outer thermal communication, between shellside 

and jacketside fluids; in – inlet conditions; out – outlet 

conditions. 

Once all water temperatures are known, the hydrogen 

sulphide exit temperature is determined by substituting Eq(2) 

into Eq(3) and rearranging terms: 

 

1 1 out 1 in 3 3 out 3 in
2 out 2 in

2

( ) ( )C C
T T

T T T

C

T − + −
= −  (5) 

 

Inner and outer heat transfer rates (
aQ  and 

bQ ) required to 

compute the outlet temperatures according to Eq(4) were 

calculated through the Effectiveness–Number of Transfer 

Units (ε-NTU) method [2]. In this context, governing 

equations are: 

 

{ , } and {1,3}k a b n       
2 2 in  inmin(C ,C ) ( )k k n nQ T T=   −  (6) 

 

{ , }k a b       (   flow arrangement)k k kf NTU , Cr , =  (7) 

 

where:  – exchanger heat transfer effectiveness;  

NTU – Number of Transfer Units; Cr – heat capacity rate 

ratio. The formulas for NTU  and Cr  are given by Eq(8) and 

Eq(9), respectively. 

 

{ , } and {1,3}k a b n         
2/ min(C ,C )k k k nNTU A U=   (8) 
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{ , } and {1,3}k a b n        
2 2min(C ,C ) / max(C ,C )k n nCr =  (9) 

 

where: A  – heat transfer surface area, m2; U – overall heat 

transfer coefficient, W/(m2·K). 

As shown in Eq(7), the heat transfer effectiveness can be 

expressed as function of the Number of Transfer Units, the 

heat capacity rate ratio and heat exchanger type. Hence, the 

inner thermal communication effectiveness, necessary to 

compute the heat transfer rate as per Eq(6), is based on  

a shell-and-tube exchanger, TEMA “E” shell, mixed fluid 

configuration: 

 

( )
( )

1
2

2

2

1 exp 1
2 1 1

1 exp 1

a a

a a a

a a

NTU Cr
Cr Cr

NTU Cr


−

 + −  +
 =  + + + 
 

− −  +  

 (10) 

 

In an analogous manner, the outer thermal communication 

effectiveness is calculated by considering a counterflow heat 

exchanger configuration: 

 

 
 

1 exp (1 )

1 exp (1 )

b b

b

b b b

NTU Cr

Cr NTU Cr


− −  −
=

−  −  −
 (11) 

 

Lastly, the overall heat transfer coefficients are determined 

to compute the Number of Transfer Units (
aNTU  and 

bNTU ) 

according to Eq(8). Under fouled conditions, the inner 

thermal communication coefficient is calculated by Eq(12), 

while the outer one is given by Eq(13): 

 

                                 (12) 

 

                            (13) 

 

where: 
id  and 

od  – tubes inside and outside diameter, m; 
iD  

and 
oD – shell inside and outside diameter, m; h – convective 

heat transfer coefficient, W/(m2·K); 
tubesk and 

shellk  – metal 

thermal conductivity, W/(m·K); 
fR  – fouling thermal 

resistance, m2·K/W. 

The convective heat transfer coefficients were calculated 

as follows: 

 

• Tubeside fluid (
1h ): Nusselt number as per Seider & 

Tate correlations [20]. 

• Shellside fluid (
2h ): Taborek method for shellside 

single-phase flow, shell-and-tube heat exchangers with single 

segmental baffles [21].  

• Jacketside fluid (
3h ): Nusselt number as per Ghiwala & 

Matawala correlation, valid for water laminar flow through 

annular sections [19]. 

 

Since the controlling resistance has a remarkable effect on 

the precision of proposed approach, fouling thermal 

resistances were estimated by means of a multivariable 

regression model [22]: 

 

2

2

 in

0,644582 0,558398 0,00337132

0,0000468447

faR m t

T

= −  +  −

− 

 (14) 

 

3 2

3 in

2 in

0,3923 0,176388 0,168991

0,00114202 0,000510782

0,000013262

fbR m m

t T

T

= −  −  +

+  − 

− 

−
 (15) 

 

where: t – operating time, h. 

Eq(14) and Eq(15) not only considers the fouling process 

dynamic nature, but also allows fouling factors to be 

determined from experience, with same-service heat 

exchangers. References on sulphur buildup fouling were not 

found elsewhere. 

 

 

4. RESULTS AND DISCUSSION 

4.1 Phenomenological model validation 

The proposed phenomenological model was validated by 

comparing predicted results against measured outlet 

temperatures, using the experimental data points (Figure 4).  

Computed values of statistical criteria and error indexes 

confirmed the satisfactory agreement between predictions 

and observations (Table 4), thus considering this reference 

model appropriate for assessing the extrapolation capability 

of studied ANN configurations. 

 

 
(a) Tubeside cooling water 

 

 
(b) Shellside hydrogen sulphide gas 
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(c) Jacketside cooling water 

 

Figure 4. Phenomenological model verification 

 

Table 4. Phenomenological model statistical results 

 
 Outlet temperature prediction 

Criteria Tubeside 

water 

Hydrogen 

sulphide 

Jacketside 

water 
2R  0.8870 0.9339 0.9116 

R  0.9418 0.9664 0.9548 

MAPE  0.36 0.78 0.33 

MAE  1.14 2.77 1.07 

 

Where: 2R – coefficient of determination; R – correlation 

coefficient; MAPE – mean absolute percentage error, %; 

MAE – mean absolute error, K. 

4.2 ANN structures and learning algorithms analysis 

Correlations above 98.32 % and MAPE below 0.80 % 

were obtained during training, validation and testing of 

studied ANN structures by using the experimental data. 

Nevertheless, lower predictive ability performances were 

identified when assessing the extrapolation capability of each 

network configuration. For the unseen data set, correlations 

were found within the range from 91.74 % to 98.52 %, while 

MAPE varied from 0.91 % to 1.95 %. This last criterion had 

a significant influence on the overall correlation coefficient 

and overall MAPE, which resulted from networks 

performance evaluation over the entire 140 points database 

(Figures 5 to 7). 

 

 
(a) Correlation 

 
(b) Mean relative error 

 

Figure 5. Prediction performances, 1 hidden layer MLPs 

 

 
(a) Correlation 

 

 
(b) Mean relative error 

 

Figure 6. Prediction performances, 2 hidden layers MLPs 

 

 
(a) Correlation 
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(b) Mean relative error 

 

Figure 7. Prediction performances, 3 hidden layers MLPs 

 

Most of the ANN structures showed higher accuracy for 

prediction of hydrogen sulphide gas coolers outputs when 

trained with the LM algorithm, as compared to the BR 

method. It informs that, for improving generalization, the 

early stopping method implemented by MATLAB performed 

as good as the automated regularization. 

Model performance was not only dependent on network 

configuration, as mostly expressed in consulted literature. 

Proper learning algorithm selection is also important for 

ANN optimization. 

4.3 Proposed ANN model 

The optimum ANN model for prediction of hydrogen 

sulphide gas coolers outlet temperatures was the 6-5-4-3 

MLP, trained with the LM algorithm. This architecture 

provided an overall correlation of 99.47 % and a MAPE 

equal to 0.33 %. In terms of accuracy, it is comparable to 

other shell-and-tube heat exchanger ANN models (Table 5). 

 

Table 5. Comparison with other studies MLPs 

 
Research Optimized 

structure 

Achieved 

correlation 

Pandharipande et al. [7] 4-15-15-15-2 95.0-98.0 % 

Mandavgane & 

Pandharipande [8] 

4-15-15-15-2 98.0-99.5 % 

Xie et al. [9] 8-6-5-3 92.0 % 

Moghadassi et al. [10] Several 96.0-100 % 

Jasim [11] 3-16-16-16-2 100 % 

Iyengar [12] 4-6-3 98.0-99.0 % 

This research 6-5-4-3 99.47 % 

 

Computed weights and biases are shown below (Figure 8).  

The predictive ability performance was also corroborated 

by plotting the network outputs against expected exit 

temperatures, using the full data set (Figure 9). Even when a 

higher correlation was obtained for the hydrogen sulphide 

temperature, larger deviations were found on predictions 

related to this stream. The average absolute error was 0.98 K 

as compared to the experimental readings, while equal to 

6.03 K if assessed versus the phenomenological model 

outputs. These differences have no significant implication 

over the hydrogen sulphide cooling process, therefore are 

acceptable for this system study. 

 

 
 

Figure 8. 6-5-4-3 perceptron weights and biases values 

 

 
(a) Tubeside cooling water 

 

 
(b) Shellside hydrogen sulphide gas 
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(c) Jacketside cooling water 

 

Figure 9. ANN model verification 

 

Despite proposed perceptron was found to be effective for 

extrapolation beyond the training data, within the conditions 

evaluated on this research, some model responses are 

deprived of physical meaning. Heat transfer rate unbalances  

2 1 3( ) 0Q Q Q− +   were noticed when using the extrapolation 

test database for simulation of the heat exchangers, as well as 

non-controlling streams having a major effect on the 

hydrogen sulphide gas outlet temperature (Figure 10). 

According to the ANN model outputs, released heat 

markedly differs from absorbed heat on data points 3, 4, 7 

and 8, where the hydrogen sulphide gas flowrate is evaluated 

at its next to highest value (refer to Table 2 on section 3.3.1). 

A similar behavior was exposed for data points between 14 

and 18, where the extreme flowrates of each stream were the 

inputs. On the other side, it can be seen that the effect of the 

tubeside water flowrate over the hydrogen sulphide outlet 

temperature is sometimes overrated by the ANN model. As 

cooling water is not the lowest convective heat transfer 

coefficient stream, for constant hydrogen sulphide flowrates 

(actually the controlling fluid) the difference between 

predicted outlet temperatures should be minimum. The 

overrate is confirmed by comparing the perceptron responses 

against the phenomenological model outputs for data point 

pairs 3-4, 7-8, as well as 13-14. 

 

 
 

Figure 10. Model responses analysis 

5. CONCLUSIONS 

 

An ANN model has been proposed after a network 

structure and learning algorithm rigorous selection. In this 

respect, the 6-5-4-3 MLP trained with the LM method is 

recommended for prediction of hydrogen sulphide gas 

coolers outlet temperatures. It attained a 99.47 % overall 

correlation and 0.33 % MAPE. Extrapolation capability was 

confirmed by computing same performance parameters for 

data points beyond the training set, in this manner obtaining a 

correlation of 98.52 % and a MAPE equal to 0.97 %. 

Proposed model will not only facilitate the study of 

different plant operational scenarios, but also doing the 

analysis without the risk of exposures to fugitive emissions of 

a lethal compound like hydrogen sulphide. However, it is not 

recommended to employ the neural network outputs for 

physical understanding of heat transfer processes occurring 

within studied heat exchangers. 
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ABBREVIATIONS 

 

ANN artificial neural networks 

BR Bayesian Regularization  

LM Levenberg-Marquardt  

MAE mean absolute error 

MAPE mean absolute percentage error 

MLP multilayer perceptron 

MSE mean squared error 

 

 

NOMENCLATURE 

 

A  heat transfer surface area, m2 

C  heat capacity rate, W/K 

Cp  specific heat at constant pressure, J/(kg·K) 

Cr  heat capacity rate ratio 

id  tube inside diameter, m 

od  tube outside diameter, m 

iD  shell inside diameter, m 

oD  shell outside diameter, m 

h  convective heat transfer coefficient, W/(m2·K) 

tubesk  tubes metal thermal conductivity, W/(m·K) 

shellk  shell metal thermal conductivity, W/(m·K) 

m  mass flowrate, kg/s 

NTU  Number of Transfer Units 

Q  heat transfer rate, W 

R  correlation coefficient 
2R  coefficient of determination 

fR  fouling thermal resistance, m2·K/W 

t  operating time, h 

T  fluid temperature, K 

T  temperature difference, K 
U  overall heat transfer coefficient, W/(m2·K) 

X  primary data value 

Y  normalized data for variable X  

Greek symbols 

 

 

  exchanger heat transfer effectiveness, % 

Subscripts 

 

 

1  first fluid (tubeside water) 

2  second fluid (shellside hydrogen sulphide) 

3  third fluid (jacketside water) 

a  inner thermal communication, between 

tubeside and shellside fluids 

b  outer thermal communication, between 

shellside and jacketside fluids 

in  inlet conditions 
out  outlet conditions 
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