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Fluid dynamic systems are usually optimised through the equation of conservation of energy 

according to the first law of thermodynamics. In the aeronautic sector, many authors are 

claiming the insufficiency of this approach and are developing studies and models with the 

aim of coupling the analyses according to the first and the second law of thermodynamics. 

Second law analysis of internal fluid dynamics has not been studied with the same attention. 

Just heat exchangers and heat dissipation by electronic circuits are mostly considered. This 

paper focuses on the analysis of general internal fluid flow problem and recognizes initially 

it according to the first law of thermodynamics. The energy equation for a control volume is 

given in integral form along with a discussion on the concepts of total energy, heat and work. 

The dissipative terms, which need to be minimised to increase the system efficiency, are 

deeply analysed leading to a new dimensionless formulation of the equation of conservation 

of energy. It is based on Bejan number, according to the formulation by Bhattacharjee and 

Grosshandler. This formulation has been directly connected to second law analysis 

concerning both entropy generation and exergy dissipation making a step toward a future 

unification of the two alternative formulations of Bejan number which have been historically 

developed. The ambition of this research is far from providing a definitive solution. 

Otherwise, it aims to both raise problems and stimulate a discussion. Bejan number has been 

actually used in the definition of diffusive phenomena, such as convection and diffusion 

through porous media. Is it reasonable to enlarge its domain to the much larger domain of 

general fluid dynamics? If this extension will be evaluated possible, what are the potential 

implications for the future of scientific research? Can be the ambiguity between Hagen 

number and Bejan number be resolved? Can be the ambiguity between the diffusive 

definition and the entropy generation definition of Bejan number be solved? Can it be 

possible to state the equivalence between the two alternative formulations? Is it possible to 

define fluid dynamic and diffusive problems according to a unified vision in the domain of 

thermodynamics? What are the implications concerning analysis and optimisation of fluid 

dynamics phenomena by new equations that couples first and the second law of 

thermodynamics? Could it have the role of producing an effective unification of a larger 

multidisciplinary domain?  
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1. INTRODUCTION

The analysis of general fluid flows inside an arbitrary 

control volume, which has been performed in this paper, 

connects to the intuition, which has been presented by 

Liversage [1] in the Bachelor final year project. He studied the 

drag reduction effects by a sharkskin surface with triangular 

profiles. He made some considerations on the drag force in 

fluid dynamics: 
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After taking into account the analysis of fluid dynamic 

dissipation in pipes by Medina et al. [2] managed to rewrite 

the drag expression in equation (1). If the drag force is 

expressed by the identity D=AwΔp and both sides of equation 

(1) are multiplied by μ2 / (ρ l2), he obtained equation (2), which

is reported below.
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Equation (2) can be expressed in the following form. 
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Liversage and Trancossi [4] have observed that 
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is identical to Bejan number as defined by Bhattacharjee et al. 

[3] and have rewritten equation (3) consequently.  
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where CD is the drag coefficient, Aw is the wet area, and Af is 

the front area.  

A better analysis of the nature of friction, which has 

evidenced that fluid dynamic drag, is composed of two major 

components, one relates to the shear stress with the walls, and 

the other relates to the viscosity. A detailed analysis on fluid 

dynamic dissipations models has been performed with 

particular attention to Betz [5], Maskell [6], Ashforth-Frost et 

al. [7], Kin et al. [8], Drela [9], Sato [10] and Bhattacharyya et 

al. [11]. Two different pressure jumps have been identified Δpτ, 

which relates to shear stress, and Δpν, which relates to viscous 

phenomena in the boundary layer. The equation of CD has been 

rewritten in the following form: 
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The activity by Liversage and Trancossi which has 

hypothesised the relation of Bejan number and fluid dynamic 

drag let open a series of problems which have high scientific 

value in the study of fluid dynamics and convective exchange 

problems.  

Does the connection between Bejan number and fluid 

dynamic drag allow thinking to more extensive involvement 

of Bejan number into the representation of fluid dynamic 

phenomena?  

Considering the similar formulations of Bejan and Hagen 

numbers [12-14], what is the correct dimensionless number to 

represent fluid dynamic dissipations?  

Two different dimensionless magnitudes have been 

independently defined as Bejan number. Bejan and Sciubba 

[15] have envisaged the diffusive formulation, Bhattacharjee 

et al. have explained it in terms of the momentum diffusivity 

of the fluid (kinematic viscosity ν), Petrescu [16] has described 

it in terms of thermal diffusivity α of the fluid, Awad [17] has 

formulated it in terms of mass diffusivity D of the fluid in 

porous systems. This formulation has been generalised by 

Awad diffusive Bejan Number, which has been extended by 

Awad [18], who have demonstrated that the diffusive 

formulations reduce to the same quantity if Reynolds analogy 

being valid (Pr = Sc = 1). Sciubba [19] has defined the 

thermodynamic formulation of Bejan number as the ratio 

between entropy generation by convective heat transfer and 

total entropy generation. Is it possible to express the diffusive 

Bejan number concerning second law of thermodynamics? Is 

it possible to resolve the dualism between the two formulations? 

Is it possible to define particular conditions under which the 

two definitions can be coincident? 

Is it possible to use the Bejan number to create an adequate 

description of fluid dynamic phenomena according to the 

second law of thermodynamics to enlarge the possibilities of 

optimisation of a fluid dynamic system through the options 

which are offered by exergy of entropy generation techniques?  

This paper aims to start a discussion on the above-opened 

problems in modern thermodynamics. It will attempt to give 

an even still partial and problematic answer to the above 

questions in the case of a very general fluid dynamic system 

in which a flow is moving on an arbitrary path which develops 

inside an arbitrary domain with inlets and outlets. It will also 

analyse if further problems, which may arise.  

 

 

2. INCOMPRESSIBLE FLUID FLOW 

 

The fluid flow in an arbitrary domain is a fundamental and 

well-referenced problem that will be considered in the attempt 

of approaching the above questions. It is an internal fluid 

dynamic problem, which can be described by the three 

conservation laws. In particular, the flow of a generic flow into 

an arbitrarily shaped pipe has been considered (Figure 1).  

It will be analysed in the case of both an incompressible 

fluid and a compressible fluid with arbitrary inlet conditions 

and hydrostatic jump. Arbitrarily, it is possible to consider 

pumps that transfer a certain amount of work to the fluid, 

turbines that receive work from the fluid, and an arbitrary 

amount of heated and cooled surfaces. 

A general schematization of the considered problem with 

the related domain is presented in Figure 1.  

 

 
 

Figure 1. Schematization of the generic considered domain 

 

The steady state of any fluid system [20-21] with inlets and 

outlets can be described by equation of conservation of mass 

and equation of conservation of energy for the control volume 

with inlets and outlets of mass, energy, work together with 

internal dissipations. Subscripts 'i' and 'e' indicate inflows and 

outflows of mass. The case of an incompressible fluid flow is 

considered (=const).  

 

2.1 Conservation of mass  

 

The law of conservation of mass [22] becomes: 

 

i i i e e em m Au m A u const = = = = =
                               (7) 

 

where subscripts 'i' and 'e' indicate energy inflows and 

outflows respectively. The equation can be expressed in a 

dimensionless form by multiplying both terms by L/(μAw) and 

becomes 
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2.3 Conservation of momentum 

 

The third and more complex equation, which describes a 

fluid flow, relates to the law of conservation of momentums. 

Linear momentum equation for fluids can be developed by 

starting from Newton's 2nd Law. The sum of all forces applied 
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on the control volume equals the time rate of change of the 

momentum.  

 

( )
i i
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m
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                                                                (9) 

 

It is evident that equation (9) can be easily applied in the 

domain of particle mechanics. Otherwise in fluid mechanics 

[23] the integral application to a control volume (and not to 

individual particles) require computing the momentum inside 

the control volume, and the momentum passing through the 

surface. It can be consequently being expressed in the 

following general formulation, which has been obtained by 

Reynolds Transport Theorem. 
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                                  (10) 

 

where u is the velocity vector, n is the outward normal unit 

vector, and ΣF is the sum of all forces (body and surface 

forces), which are applied to the control volume.  

The law of conservation of linear momentum states that the 

sum of all forces applied on the control volume is equal to the 

sum of the rate of change of momentum inside the control 

volume and the net flux of momentum through the control 

surface. 

For steady flow, the rate of change of momentum inside the 

control volume vanishes. The sign of the force and velocity 

vectors (F and V) depends on the assigned coordinate system. 

The sign on the quantity u·n depends on the orientation of both 

velocity and the control surface. The unit normal vector n is 

usually assumed positive when it points out of the control 

surface. 

In the case of the flow of a fluid in an arbitrary complex 

piping system, the conservation of momentum can be 

simplified for steady state conditions. In this case, it can be 

assumed that the control volume presents simple and localized 

inlets and outlets and piping, whatever complex they are 

connects inlets and outlets, the momentum equation becomes 
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                       (11) 

 

If we consider the conservation of mass law, the following 

formulation can be achieved:  

 

dm/dt = ρAV,  

 

and the momentum equation simplifies to 
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e ii e ii
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                                    (12) 

 

where e represents outflow and i inflow. It must be remarked 

that any force that exercise its action on the world outside the 

domain must be computed, including weight reactions and the 

resultants of induced shear stresses.  

Equation 34 can be expressed in an explicit way as follows: 

 

e e e i i ii e ii
A u Au = −  F u u

                                   (13) 

 

By considering the domain in Figure 1, the useful 

representation of the domain for the specific calculation is 

represented below in Figure 2.  

 

 
 

Figure 2. Domain and characteristic vectors for the 

assessment of equation of conservation 

 

In the particular case, which has considered and is presented 

in Figure 1 and 2, the equations of conservation of momentums 

can be expressed as:  

 

               (14) 

 

and can be expressed as follows 

 

                             (15) 

 

By multiplying the two equations by L2/(Aiν2), it results: 

 

       (16) 
 

in which Rx and Rz are the reactions over x and z-axis. It can 

also be remarked that all the terms have the same dimensions 

of Bejan number.  

 

2.2 Conservation of energy 

 

The first law of thermodynamics states that energy can 

neither be created nor destroyed, but only change forms. It can 

be represented by a set of integral terms, one for the control 

volume, and one for the control surface, that consider that new 

energy can be added or subtracted from the system through 

heat and work. The integral form of the equation of 

conservation of energy [24-25] in fluids is expressed below.  
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Equation (17) is the general equation for the specific fluid 
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flow with mass inflows and outflows and energy and work 

inlets and outlets. To express a dimensionless formulation of 

equation (17) after dividing by the mass flow m  both sides of 

the equation.  
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It is possible to multiply both terms of the equation by the 

same dimensionless quantity L2/2.  
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Equation (18) shows that the dimensionless dissipative term 

has the same dimensions of Bejan number. 

The last term of equation (18) allows verifying that the 

hypothesis by Liversage and Trancossi is coherent with the 

energy conservation law in fluid dynamics, even if a more in-

depth analysis on this dissipative term is necessary. 

  

2.4 General dimensionless expression of conservation laws 

 

It can be possible to express a general form of the 

conservation laws by the following system of equations. 

 

a. conservation of mass: 
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b. conservation of linear momentums along x-axis: 
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c. conservation of linear momentum along y-axis:  
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d. conservation of energy 
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As noticed above, the terms of the four equations have the 

same dimensions of Bejan number, even if they differ from 

Bejan number, because of they a function of a pressure jump, 

but the local pressure defines them in a well-defined point of 

the system.  

While Bejan number depends on the pressure jump between 

two different states, the dimensionless terms in those equations 

have identical dimensions but slightly different meaning for 

Bejan number. These terms do not include the pressure jump 

between two points in a system, but they contain the 

dimensionless pressure value in a point of the system. As we 

see from equation 18 all the terms are equal to a dimensionless 

power (energy divided by time).   

It is consequently necessary to differentiate them from the 

Bejan number, because of the different meaning. These 

dimensionless magnitudes can be defined as Bejan 

dimensionless energy. Therefore the traditional formulation of 

Bejan number is equal to the Bejan number and they are 

identified by the Greek letter .  
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These considerations allow writing that Bejan number is the 

difference of two Bejan dimensionless energies with the same 

nature: 
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The following substitution can be done 
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ReL,j is the Reynolds number related for the entire length of 

the pipe for the generic j velocity condition.  

The quadratic term can require further considerations  
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which is the dimensionless kinetic energy, where pk,j is the 

dynamic pressure exerted by a fluid flowing at velocity uj.  
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                                                                (24) 
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is dimensionless hydrostatic pressure, where pz,j is the 

hydrostatic pressure exerted by a fluid with a hydrostatic 

height zj. 
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is dimensionless pressure where pj is the pressure of the fluid 

in the generic position j. 
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is a dimensionless horizontal reaction, where xRp
is the ratio 

of the reaction Rx and the wet area Aw; 
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is the dimensionless vertical reaction, where zRp
is the ratio of 

the reaction Rz and the wet area Aw; 
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is a dimensionless weight of fluid in the pipe where pm is the 

ratio of the weight of fluid inside the tube and the wet area Aw; 
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is dimensionless mechanical power; 
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is dimensionless heat power;  
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is dissipative losses. 
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is the dimensionless area of the generic section j of the domain.  

Consequently, the dimensionless equations become: 

 

a. conservation of mass: 

 
* *

, ,i k i e k eA A =
                                                           (34) 

 

or 
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, ,Re Rei L i e L eA A=
                                                          (34’) 

 

b. conservation of linear momentums along x-axis: 

 
* * 2 * 2 *
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                        (35) 
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c. conservation of linear momentum along y-axis: 

 

 0m Rz − + =
                                                                   (36) 

 

d. conservation of energy 
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It is evident that equations (32’) can be expressed in two 

competitive formulations that can be used for solving different 

problems. The first one focuses on the initial and final state 

conditions, which are evidenced: 
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where   
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The second one focuses on the differences between inlet and 

outlet conditions and becomes: 
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that corresponds to 
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Both formulations lead to a more compact formulation, that 

focuses into a unified vision of the inlet and the outlet energy 

states and it is reported in equation  

 
* * Betot LBe W Q=  + +

.                                    (38) 

 

where 

  

, ,eBe =Be Be Betot k z p tot i tot + + = +
. 

 

2.5 Consideration on Bejan number and the defined Bejan 

dimensionless energy 

 

The dimensionless expression of the conservation equations 

(19) to (22) has allowed defining a new local dimensionless 

magnitude, which is derived from the traditional definition of 

Bejan number by Bhattacharjee et al. and generalised by Awaz. 

It appears as a local formulation of Bejan number, which 

characterises inlets and outlets of the domain or subdomain 

and applies in any arbitrary point of a fluid dynamic system. If 

we consider the diffusive definition of Bejan number as 

expressed in equation (4), it is evident that it can be expressed 

as 
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,                                    (39) 

 

where p1 and p2are the pressure conditions in two arbitrary 

points 1 and 2. Consequently, it is possible to hypothesise that 

the traditionally defined Bejan number can be expressed as the 

difference of two local dimensionless energies.  

In this case, if dimensionless energy (which has the 

dimension of the Bejan number) has been indicated with the 

Greek letter   

 
2p l
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and equation (39) becomes  
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It is possible to describe the state of an arbitrary point of the 

system by a dimensionless number that accounts the 

characteristic properties of the fluid in the specified position, 

which are kinetic energy, potential energy and pressure energy 

if considered in the first two cases according to their pressure 

equivalences: 

 

a. dynamic pressure:
20.5kp u=
,                       (40) 

 

b. hydrostatic pressure: zp gz=
.                      (41) 

 

This local dimensionless number is defined below. 
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From equation (42) it is possible to express Bei-e as  

 

( ) ( ), , , , , ,Bei e k i z i p i k e z e p e     − = + + − + +
                      (43) 

 

Equations (28), (29) and (43) open a series of questions 

about the definition of Bejan number. In particular, Bejan 

number presents the characteristics of being considered a 

difference of two dimensionless energy states that defines 

uniquely the energy in a point of a system, whatever is the sum 

of the energy components that constitute it.  

Dimensionless energy expressed by equation (30) could be 

named as Bejan energy because it represents the dimensionless 

energy  of one of the points between which Bejan number is 

calculated.  

Bejan number is a potentially constitutive dimensionless 

magnitude of fluid dynamics and represents the dimensionless 

difference between two energy states inside the system in 

which a fluid flows. It is also evident that the conservation law 

as formulated by using Bejan number could produce 

significant benefits in the numerical calculation because they 

contain significant simplifications of the number of computed 

magnitudes and could allow a major simplification of the 

equation to be computed and a possible reduction of 

computational errors in numerical computations.  

3. ANALYSIS OF LOSSES IN FLUID DYNAMICS 

 

Recently Herwig and Schmandt [26] have studied 

dissipative and friction phenomena in fluid dynamics. Any real 

process generates losses of mechanical energy that increases 

the internal energy. This energy conversion process maintains 

the total energy of the system and deals strictly with energy 

availability and usefulness. Consequently, it belongs strictly to 

the second law of thermodynamics. It can be expressed in both 

entropy generation terms and exergetic terms as a loss of 

exergy or available work, corresponding to degradation of 

available energy in the flow field. 

 

3.1 Nature of fluid dynamic losses 

 

Fluid dynamic losses can be expressed in different ways 

depending on their nature.  

 

a. Internal flow 

Scientific literature reports two different formulations. One 

is the Colebrook, and White friction factor [27-29] has been 

formulated in equation (44): 

 

2 2

2 2
av av

dp f L
u P f u

dx D D

 
= − → 

;                      (44) 

 

In equation 39, the friction coefficient f is the Fanning 

friction factor, which is the ratio between the local shear stress 

and the local flow kinetic energy density. Equation (39) is a 

function of wall friction coefficient and represents the 

resultant of wall shear stresses.  

Internal flow losses can also be expressed in terms of head 

loss coefficient K [30-32] according to the well-known 

formulation below: 

 

2

2
avP K u


 =

.                                                                (45) 

 

b. External flow 

Friction losses are expressed in terms of drag force [33-36], 

which is a formulation which accounts the head losses. It is a 

function of drag coefficient according to equation (46): 

 

2

2
D D fF C u A


=

.                                                  (46) 

 

The different formulations of the fluid flow losses which 

have been defined present different nature and can be observed 

that they have distinct natures and different values.  

It must be noticed that dissipative, and skin friction 

formulations of drag do not bring to the same results, because 

they have very different natures as Drela [37] has observed.  

Skin friction model focuses on what happens on the surface 

and can be defined by the following equation. 

 

   =
==  dx dzCUρ  dx dz τ D feyxyf

3

0                       (47) 

 

On the other side, dissipation terms consider all the losses 

in the boundary layer along its complete development, 

including also what happens in the boundary layer and after 

detachment.  
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3

0

δ

xy e D

u
Φ  τ  dy  dx dz  ρ U C  dx dz

y


 
= = 

 
  

        (48) 

 

The meaning of the two terms can be explained at domain 

level by figure 3 in a case of external fluid dynamics and by 

Figure 4 in the case of internal fluid dynamics.  

 

 
 

Figure 3. Dissipative terms and their graphical representation 

in external fluid dynamics 

 

 
 

Figure 4. Dissipative terms and their graphical representation 

in internal fluid dynamics 

 

In this paper, we account the losses according to the 

dissipative model, because they give an exhaustive answer to 

the problem of the determination of losses. 

 

3.2 Dissipations and the second law of thermodynamics 

 

It must also be remarked that the fluid dynamic dissipations 

can be expressed concerning the second law of 

thermodynamics. S  The processes can be analyzed [38-41] in 

terms of both entropy generation and exergy destruction rate: 

 

0L genEx T S=
                                                                (49)  

 

The dissipated mechanical power is equal to 

 

,L D gen fE F u P A u T S =  =    = 
,                      (50) 

 

The case of an internal and an external fluid dynamic 

problem are reported below.  

 

a. External flows 

In the case of external flows the dissipated mechanical 

power is 

 

3

,
2

L D f gen fE C u A TS


= =
                                    (51) 

 

from which it can be obtained 

 

,3

2
D gen f

f

T
C S

A u 

=

.                                                  (52) 

 

Equation (52) can be substituted into (46) obtaining the 

entropic expression of friction force.   

 

2

,
2

D D f gen f

T
F C u A S

u






= =

                       (53) 

 

b. Internal flow 

It is possible to express the dissipated mechanical power by 

equation (54): 

 

3

,
2

L w i gen fp KA u T S


= = 
,                                                (54) 

 

that allows obtaining 

 

,3

2
gen f

w i

T
K S

A u
=

.                                                  (55) 

 

By substituting equation (55) into equation (45), entropic 

expression of pressure losses results:  

 

,gen f

w i

T
p S

A u
 =

.                                                   (56) 

 

3.3 A new entropic formulation of Bejan number 

 

Assuming ui the inlet velocity for the specific problem, it is 

evident that the general expression of pressure losses is 

formulated by equation (56). It can be substituted in equation 

(28) and produces: 

 
2 2 2

, ,

,2 2

gen f gen f f

L gen f
w i ww i

L TS L TS A L
Be TS

A u AA u m  
= = =               (57) 

 

Equation (57) shows that Bejan number can be formulated 

as a function of entropy generation. If we consider equation 

(38) it can be possible to determine that 

 
2 2 2

,2 2 2

f

tot gen f
w

AL L L
Be W Q TS

Am m m  
=  +  +         (58) 

 

It can be observed that  
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,gen QQ TS =
 

 

from which it results  

 

( )
2

, , ,2tot gen W gen Q gen f

L
Be T S S S

m
= + +

                      (59) 

 

from which  

 
2

,2tot gen tot

L
Be TS

m
=

                                                  (60) 

 

where  

 

, , , ,gen tot gen W gen Q gen fS S S S= + +
                                    (61) 

 

Equation (60) confirms that the Bejan number can be 

expressed as a function of entropy generation. These 

considerations allow advancing the hypothesis of considering 

Bejan number a thermodynamic function in fluid dynamics.   

 

 

4. FURTHER DISCUSSION 

 

4.1 Bejan number versus Hagen number 

 

Awad [42-43] has studied the relations between Bejan and 

Hagen number. The actual formulation of fluid dynamic 

equations allows improving the analysis of Bejan number and 

its connection with Hagen number.  

Hagen number is defined as;  

 
3

2

1
Hg

dp L

dx 
= −

                                                                 (62) 

 

moreover, Bejan dimensionless energy as: 

 
2

2

j

j

L p



=

 
 

It is consequently evident that Hagen number is equal to the 

Bejan dimensionless energy derived for x times L:  

 
3

2
Hg

j jd dpL
L

dx dx




= =

. 

 

Being Bejan dimensionless energy a local dimensionless 

magnitude it is the finding agrees with the considerations by 

Awad. It can be possible to define Hagen number as the rate 

of change of Bejan dimensionless energy over the fluid path 

length.  

 

4.2 Considerations about the diffusive and entropic Bejan 

number definition 

 

Further considerations can be focused on the two historical 

definitions of Bejan number. In this paper, it has been found 

that the diffusive formulation of Bejan number could be 

expressed as a function of entropy generation. In any case, a 

coincidence between the two formulations is still far to found. 

It could be possible to determine less significant correlations 

between the two dimensionless magnitudes.  

 

 

5. CONCLUSIONS 

 

This paper has started from the initial intuition by Liversage 

and the following activity by Liversage and Trancossi. They 

have hypothesised the existence of a correlation between fluid 

dynamic drag and Bejan number in its diffusive formulation.  

It has been possible to consider that Bejan number can be 

expressed as the difference of Bejan dimensionless energies  

in two points of the systems. It demonstrates that Bejan 

number is not only strictly related to fluid dynamics but it can 

be considered a fundamental magnitude of fluid dynamics 

even including Reynolds number by equation (24). It leads to 

determine that the kinetic component of Bejan number Bek 

could be considered as the difference between square 

Reynolds number calculated in two points of the domain.   

It has been demonstrated that Bejan number allows 

producing a useful and effective description of fluid dynamic 

phenomena according to the second law of thermodynamics, 

is a function of enthalpy generation. This relation enables 

enlarging the possibility of using it as an effective mean of 

optimisation of fluid dynamic systems concerning both first 

and second law of thermodynamics. Bejan number can be 

expressed in the domain of both first and second law of 

thermodynamics. Bejan number is potentially the critical 

element of a new dimensionless expression of the equations of 

fluid dynamics and allows developing new perspective 

through better optimisation of fluid dynamic systems.  

A possible relation between Bejan and Hagen numbers has 

been found if Bejan dimensionless energies are considered. It 

has been determined that Hagen number could be regarded as 

the derivation of Bejan number for x times L.  

In any case, even if an entropic expression of the diffusive 

definition of Bejan number, it has not been possible to 

determine any correspondence between the diffusive and the 

entropic formulation of Bejan number.  

This paper introduces a potential future discussion on 

possible formulations of the equations of conservation in fluid 

dynamics. Rather than presenting a possible solution, it aims 

to open a new perspective to approach fluid dynamic problems, 

with particular attention to multidisciplinary areas that require 

an effective analysis according to the second law of 

thermodynamics.  

The possibility of determining fluid dynamic equations in 

terms of diffusive Bejan number and the possibility of 

expressing it as a function of entropy generation opens the 

possibility of a future unification of fluid dynamics and 

thermodynamics and creating a much larger physical domain.  
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NOMENCLATURE 

 

A area, m2 

Be Bejan number 

CD drag coefficient  

CP specific heat, J. kg-1. K-1 

D drag force, N 

g acceleration of gravity, m/s2 

l length path, m 

p pressure, Pa  

Q heat, J 

S entropy, J/ºK 

u   velocity, m/s  

W work, J 

 

Greek symbols 

 

 

 thermal diffusivity, m2. s-1 

Δu2 difference of square velocites, m2/s2  

Δp pressure jump, Pa 

ΔQ Difference of energies, kg/m3   

ΔW difference of works, m 

Δz hydrostatic height jump, m 

 Bejan dimensionless energy, - 

ν kinematic viscosity, m2/s 

µ dynamic viscosity, kg. m-1.s-1 

ρ density, kg/m3   

 

Subscripts 

 

 

av average  

D drag  

e outflow 

f front surface 

i inflow  

in inlet 

k kinetic 

out outlet  

p pressure 

w wet surface 

z hydrostatic 
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